Workshop on Understanding and Evaluating Radioanalytical Measurement Uncertainty

5 - 16 November 2007

Estimation of Uncertainty arising from Sampling - Exercise

Paolo de ZORZI and Sabrina BARBIZZI

APAT - Agenzia per la Protezione dell' Ambient e per Servizi Tecnici
Servizio Metrologia Ambientale
Via Castel Romano 100
00128 Roma
ITALY
Estimation of Uncertainty arising from Sampling

using variogram parameters

Paolo de Zorzi

Workshop on

"Understanding and Evaluating Radioanalytical Measurement Uncertainty"

Trieste (Italy), 9 November 2007
Environmental Data

- Besides the effects of sampling techniques, sample preparation/reduction, and laboratory analyses, the data also differ because of spatial variation.

- Geostatistics enables us to quantify the spatial structure of a measured element separate from the total variance of the data.
Geostatistics (1)

According to geostatistics and the *regionalized variable theory*, we assume that a variable \(Z \) is the sum of three components:

\[
Z(x) = m(x) + r(x) + \varepsilon
\]

- \(m \) = structural component
- \(r \) = spatial correlated component (residual from \(m(x) \))
- \(\varepsilon \) = uncorrelated random noise
- \(x \) = location
Geostatistics (2)

Geostatistical analysis include two phases:

- spatial modelling (variography);
- spatial interpolation (kriging)
The Experimental Variogram

\[\hat{\gamma}(h) = \frac{1}{2n} \sum_{i=1}^{n} \{z(x_i) - z(x_i + h)\}^2 \]

- **RANGE**: distance beyond which there is no correlation among variables
- **SILL**: value that variogram tends to when distances get very large
- **NUGGET**: measurement uncertainties and/or microscale variations that occur over distances less than the shortest sampling interval

The spatial correlated component and the noise term are encapsulated in an experimental variogram.
Total variance

\[s_{\text{tot}}^2 = s_{S}^2 + s_{T}^2 + s_{A}^2 + s_{SP}^2 \]

- \(s_{\text{tot}}^2 \) comprises:
 - the variances of sampling \(s_{S}^2 \),
 - sample treatment/reduction \(s_{T}^2 \),
 - analysis \(s_{A}^2 \),
 - and the spatial variability \(s_{SP}^2 \)

According to Geostatistics:

- The **nugget** variance includes variances due to:
 - Sampling
 - Analysis
 - Spatial correlation that occur over distances less then the shortest sampling interval

Measurement uncertainty
Uncertainty from Sampling (2)

\[s^2_{\text{nugget}} = s^2_{\text{analysis}} + s^2_{\text{sampling}} + s^2_{\text{sample reduction}} \]

Transponing:

\[s^2_{\text{sampling}} = s^2_{\text{nugget}} - (s^2_{\text{analysis}} + s^2_{\text{sample reduction}}) \]

\[s^2_{\text{analysis}} + s^2_{\text{sample reduction}} \]

May be calculated together experimentally analysing replicates (test portions) taken from independent test samples

\[s^2_{\text{nugget}} \]

is determined by geostatistics
Uncertainty from Sampling (3)

The **sampling standard uncertainty** is:

\[u_{\text{sampling}} = \sqrt{s^2_{\text{sampling}}} \]

As **uncertainty relative** to the mean mass fraction of an element becomes:

\[u\%_{\text{sampling}} = (u_{\text{sampling}} / x_{\text{mean}}) \times 100 \]

The **sampling expanded uncertainty** is:

\[U_{\text{sampling}} = ku_{\text{sampling}} \quad (k = 2) \]
Applicability and assumptions

- Suitable data set: at least **30-100 samples** data value;
- The higher the number of samples the more accurate the fitted model;
- **No correlation** between analytical and sampling variance
- **Subjective assumptions** regarding the model for the experimental variogram
- **Repeatability** of sampling operation
Example: Variogram parameters

Scope: Estimate the $u_{s\text{ampling}}$, due to different soil sampling devices.

- 10000 square meters reference site;
- Hand auger, mechanical auger, shovel
- Comparative sampling (sistematic random sampling);
- 105 test samples from 105 primary samples (each sampling device);
- Sample preparation and analysis by k0-INAA (Zn mean concentration value) carried out by a single lab.
Comparative sampling

105 single samples collected by 3 sampling devices

Data set of 105 values for each device
Hand auger

Mechanical auger

Shovel
Variogram parameters

Directional Variogram (90°) - Zinc (mg/kg) - Auger

Objective = 1365.085
Calculation (1)

\[s^2_{\text{sampling}} = s^2_{\text{nugget}} - (s^2_{\text{analysis}} + s^2_{\text{sample reduction}}) = 17.3 - 4.1 = 13.2 \]

\[s^2_{\text{analysis}} + s^2_{\text{sample reduction}} \]

Were calculated together experimentally analysing 10 replicates (test portions) taken from 3 independent test samples
The sampling standard uncertainty is:

\[U_{\text{sampling}} = \sqrt{S^2_{\text{sampling}}} = \sqrt{13.2} = 3.6 \text{ mg/kg} \]

As uncertainty relative to the Zn mean concentration (90.2 mg/kg) becomes:

\[U_{\% \text{ sampling}} = \left(\frac{3.6}{90.2} \right) \times 100 = 4 \% \]

The sampling expanded uncertainty is:

\[U_{\text{sampling}} = k \times 3.6 = 7.3 \text{ mg/kg} \ (k = 2) \]
Measurement standard uncertainty (from nugget value)
\[u_{\text{meas}} = 4.2 \text{ mg/kg} \]

Sampling uncertainty (subtracting analytical uncertainty from measurement uncertainty)
\[u_{\text{sampling}} = 3.6 \text{ mg/kg} \]

The contribution of the sampling to the measurement uncertainty is:
\[u_{\% s/meas} = \left(\frac{3.6}{4.2} \right) \times 100 = 76 \% \]
Uncertainty budget

<table>
<thead>
<tr>
<th></th>
<th>Zinc</th>
<th>Auger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element mean value</td>
<td>x_{mean} (mg kg$^{-1}$)</td>
<td>90,2</td>
</tr>
<tr>
<td>Nugget variance</td>
<td>s_{nugget}^2</td>
<td>17,3</td>
</tr>
<tr>
<td>Analytical variance</td>
<td>$s_{\text{analytical}}^2$</td>
<td>4,1</td>
</tr>
<tr>
<td>Sampling variance</td>
<td>s_{sampling}^2</td>
<td>13,2</td>
</tr>
<tr>
<td>Sampling standard</td>
<td>u_{sampling} (mg/kg)</td>
<td>3,6</td>
</tr>
<tr>
<td>Relative sampling</td>
<td>$u_{%\text{sampling}}$ (%)</td>
<td>4,0</td>
</tr>
<tr>
<td>Measurement standard</td>
<td>u_{meas} (mg/kg)</td>
<td>4,2</td>
</tr>
<tr>
<td>Sampling uncertainty</td>
<td>vs. the measurement</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>uncertainty</td>
<td></td>
</tr>
<tr>
<td>$u_{%\text{s/meas}}$ (%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sampling uncertainty by element and device

Uncertainty of Sampling

<table>
<thead>
<tr>
<th>element</th>
<th>Auger</th>
<th>Mech. Auger</th>
<th>Shovel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sc</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

u % sampling
In conclusion (1)

- The sampling contribution due to different sampling devices/techniques is calculated.
- It represents the repeatability of sampling operations;
- No bias (systematic) effects are considered both for sampling and analysis;
- The sample preparation is included in sampling uncertainty (from primary sample to test sample) and in the analytical uncertainty (from test sample to test portion).
In conclusion (2)

- The **sampling uncertainty** calculated is **site-specific and is applicable:**
 - to analogue soil situation and similar range of mass fractions;
 - To new independent measurements of soil collected in the same area.
- **Sampling within the site** can be the dominant component of the measurement uncertainty (typical in most environmental matrix);
- The spatial variation component is erased in the calculation considering only the nugget.