The Abdus Salam
International Centre for Theoretical Physics
United Nations

Workshop on Understanding and Evaluating Radioanalytical Measurement Uncertainty

5-16 November 2007

Alpha Spectrometry:

Exercise 2

Paul MARTIN
International Atomic Energy Agency IAEA
Agency's Laboratories Seibersdorf
Chemistry Unit, A-2444 Seibersdorf AUSTRIA

Alpha Spectrometry: Exercise 2

Task

The task is to calculate the activity concentration (including uncertainty) of ${ }^{210} \mathrm{Po}$ in a sample, calculated to the date of chemical separation of Po from the sample matrix.

Basic data (note: ks = kiloseconds)

Item	Symbol	Quantity	Unit
Tracer		Po-209	
Tracer calibration date		5 July 2005	
Po separation date		5 July 2007	
Count date		9 Aug 2007	
Count time	t_{C}	212.048	ks
Tracer mass	$C_{T, T}$	7.8578 ± 0.0880	$\mathrm{mBq} / \mathrm{g}$
Tracer activity concentration on calibration date	m_{s}	2.365	g
Sample mass	n_{209}	3251	Counts
Counts Po-209 region	n_{210}	4989	Counts
Counts Po-210 region	$\mathrm{G}_{209, \mathrm{~B}}$	0.033 ± 0.012	Counts/ks
Background + blank Po-209 region	$\mathrm{G}_{210, \mathrm{~B}}$	0.083 ± 0.019	Counts/ks
Background + blank Po-210 region	ε		
Detection efficiency	ε	0.2157	

Notes

Number of days from calibration date to count date $=t_{T}=765$ days
Number of days from separation date to count date $=t_{S}=35$ days
$\lambda_{\mathrm{T}}=$ decay probability constant for ${ }^{209} \mathrm{Po}=1.8606 \times 10^{-5}$ days $^{-1}$
$\lambda_{\mathrm{P}}=$ decay probability constant for ${ }^{210} \mathrm{Po}=5.0092 \times 10^{-3}$ days $^{-1}$
For simplicity, the following are ignored in this exercise:

- Uncertainty on the Po-209 and Po-210 decay probability constants
- Detection efficiency and gravimetric weighing uncertainties
- Tailing of Po-210 peak into Po-209 peak area
- Emission probabilities of Po-209 and Po-210 (i.e. assume both Po-209 peaks are included in the counts measured), and decay of Po-209 and Po-210 over the course of the count time

Step 1: Calculate the relevant tracer activity to the count date
(a) Adjust tracer activity concentration to the count date

$$
C_{T, C}=C_{T, T} \times e^{-\lambda_{T} t_{T}}=
$$

(b) Calculate activity Po-209 added (adjusted to count date)

$$
A_{T, C}=m_{T} \times C_{T, C}=
$$

Step 2: Calculate count rates for Po-209 and Po-210 peaks
(a) Calculate gross count rates
$G_{209}=\frac{n_{209}}{t_{C}}=$
$G_{210}=\frac{n_{210}}{t_{C}}=$
(b) Calculate net count rates (i.e. minus background+blank)

$$
N_{209}=G_{209}-G_{209, B}=
$$

$N_{210}=G_{210}-G_{210, B}=$

Step 3: Calculate activity concentration of Po-210 in sample
(a) Basic calculation
$C_{P, C}=\frac{N_{210}}{N_{209}} \times \frac{A_{T, C}}{m_{s}}=$
(b) Adjust result to Po separation date

$$
C_{P, S}=\frac{C_{P, C}}{e^{-\lambda_{P} t_{S}}}=
$$

Step 4: Calculate Po tracer recovery (optional)

$$
R_{T}=\frac{N_{209}}{\varepsilon \times A_{T, C}} \times 100=
$$

Step 1: Calculate the relevant tracer activity to the count date

(a) Adjust tracer activity concentration to the count date

$$
\begin{aligned}
C_{T, C} & =C_{T, T} \times e^{-\lambda_{T} t_{T}} \\
& =(7.8578 \pm 0.088) \times \exp \left(-1.8606 \times 10^{-5} \times 765\right) \\
& =(7.7467 \pm 0.0868) \mathrm{mBq} / \mathrm{g}
\end{aligned}
$$

(b) Calculate activity Po-209 added (adjusted to count date)

$$
\begin{aligned}
A_{T, C} & =m_{T} \times C_{T, C} \\
& =9.322 \times(7.7467 \pm 0.0868) \\
& =(72.215 \pm 0.809) \mathrm{mBq}
\end{aligned}
$$

Step 2: Calculate count rates for Po-209 and Po-210 peaks

(a) Calculate gross count rates

$$
\begin{aligned}
G_{209} & =\frac{n_{209}}{t_{C}} \\
& =\frac{3251 \pm \sqrt{3251}}{212.048} \\
& =(15.331 \pm 0.269) \mathrm{counts} / \mathrm{ks} \\
G_{210} & =\frac{n_{210}}{t_{C}} \\
& =\frac{4989 \pm \sqrt{4989}}{212.048} \\
& =(23.528 \pm 0.333) \mathrm{counts} / \mathrm{ks}
\end{aligned}
$$

(b) Calculate net count rates (i.e. minus background+blank)

$$
\begin{aligned}
N_{209} & =G_{209}-G_{209, B} \\
& =(15.331 \pm 0.269)-(0.033 \pm 0.012) \\
& =15.298 \pm \sqrt{0.269^{2}+0.012^{2}} \\
& =(15.298 \pm 0.269) \mathrm{counts} / \mathrm{ks}
\end{aligned}
$$

$$
\begin{aligned}
N_{210} & =G_{210}-G_{210, B} \\
& =(23.528 \pm 0.333)-(0.083 \pm 0.019) \\
& =23.445 \pm \sqrt{0.333^{2}+0.019^{2}} \\
& =(23.445 \pm 0.334) \mathrm{counts} / \mathrm{ks}
\end{aligned}
$$

Step 3: Calculate activity concentration of Po-210 in sample
(a) Basic calculation

$$
\begin{aligned}
C_{P, C} & =\frac{N_{210}}{N_{209}} \times \frac{A_{T, C}}{m_{s}} \\
& =\frac{23.445}{15.298} \times \frac{72.215}{2.365}=46.795 \mathrm{mBq} / \mathrm{g}=46.795 \mathrm{~Bq} / \mathrm{kg}
\end{aligned}
$$

$$
\begin{aligned}
\mu\left(C_{P, C}\right) & =C_{P, C} \times \sqrt{\left(\frac{\mu\left(N_{210}\right)}{N_{210}}\right)^{2}+\left(\frac{\mu\left(N_{209}\right)}{N_{209}}\right)^{2}+\left(\frac{\mu\left(A_{T, C}\right)}{A_{T, C}}\right)^{2}} \\
& =46.795 \times \sqrt{\left(\frac{0.334}{23.445}\right)^{2}+\left(\frac{0.269}{15.298}\right)^{2}+\left(\frac{0.809}{72.215}\right)^{2}}=1.181 \mathrm{~Bq} / \mathrm{kg}
\end{aligned}
$$

Therefore: $C_{P, C}=46.795 \pm 1.181 \mathrm{~Bq} / \mathrm{kg}$
(b) Adjust result to Po separation date

$$
\begin{aligned}
C_{P, S} & =\frac{C_{P, C}}{e^{-\lambda_{P} t_{S}}} \\
& =\frac{46.795 \pm 1.181}{\exp \left(-5.0092 \times 10^{-3} \times 35\right)}=55.76 \pm 1.41 \mathrm{~Bq} / \mathrm{kg}
\end{aligned}
$$

Step 4: Calculate Po tracer recovery (optional)

$$
\begin{aligned}
R_{T} & =\frac{N_{209}}{\varepsilon \times A_{T, C}} \times 100 \\
& =\frac{15.298}{0.2157 \times 72.215} \times 100=98.2 \%
\end{aligned}
$$

$$
\begin{aligned}
\mu\left(R_{T}\right) & =R_{T} \times \sqrt{\left(\frac{\mu\left(A_{T, C}\right)}{A_{T, C}}\right)^{2}+\left(\frac{\mu\left(N_{209}\right)}{N_{209}}\right)^{2}} \\
& =98.2 \times \sqrt{\left(\frac{0.809}{72.215}\right)^{2}+\left(\frac{0.269}{15.298}\right)^{2}}=2.0 \%
\end{aligned}
$$

Therefore: $R_{T}=98.2 \pm 2.0 \%$

