
Critical Phenomena in Portfolio Selection

      Imre Kondor

       Collegium Budapest and Eötvös University, Budapest
Workshop on Statistical Physics and Financial Markets

April 20-21, 2007
ICTP, Trieste and EU-NEST project

COMPLEXMARKETS



Contents

The subject of the talk lies at the crossroads of   finance,
statistical physics and computer science

The main message:
- portfolio selection is highly unstable,
- the estimation error diverges for a critical value of the

ratio of the portfolio size N and the length of the time
series T,

- this divergence is an  algorithmic phase transition that is
characterized by universal scaling laws,

- similar critical phenomena are found in other, related
problems (complex optimization, multivariate
regression, etc.)
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Rational portfolio selection seeks a tradeoff
between risk and reward

• In this talk I will focus on equity portfolios

• Financial reward can be measured in terms of the return
(relative gain):

    or logarithmic return:

• The characterization of risk is more controversial



The most obvious choice for a risk
measure: Variance

• Its use for a risk measure assumes that the
probability distribution of returns is sufficiently
concentrated around the average, that there are
no large fluctuations

• This is true in several instances, but we often
encounter „fat tails”, huge deviations with a
non-negligible probability
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Alternative risk measures
• There are several alternative risk measures in use in

the academic literature, practice, and regulation
• Value at risk (VaR): the best among the p% 

worst losses (not convex, punishes diversification)
• Mean absolute deviation (MAD): Algorithmics
• Coherent risk measures (promoted by academics):

Expected shortfall (ES): average loss beyond a 
high threshold
Maximal loss (ML): the single worst case
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Portfolios
• A portfolio is a linear combination (a weighted average)

of assets     :

    with a set of weights wi that add up to unity (the budget
constraint):

• The weights are not necessarily positive – short selling
• The fact that the weights can be arbitrary means that the

region over which we are trying to determine the optimal
portfolio is not bounded
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Markowitz’ portfolio selection theory
Rational portfolio selection realizes the
tradeoff between risk and reward by
minimizing the risk functional

   over the weights, given the expected
return, the budget constraint, and
possibly other costraints.
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How do we know the returns and the
covariances?

• In principle, from observations on the market
• If the portfolio contains N assets, we need O(N²)

data
• The input data come from T observations for N

assets
• The estimation error is negligible as long as

NT>>N², i.e. N<<T
• This condition is often violated in practice
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Information deficit
• Thus the Markowitz problem suffers from

the „curse of dimensions”, or from
information deficit

• The estimates will contain error and the
resulting portfolios will be suboptimal

• How serious is this effect?
• How sensitive are the various risk measures

to this kind of error?
• How can we reduce the error?
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Fighting the curse of dimensions
• Economists have been struggling with this problem for

ages. Since the root of the problem is lack of sufficient
information, the remedy is to inject external info into the
estimate. This means imposing some structure on σ. This
introduces bias, but beneficial effect of noise reduction
may compensate for this.

• Examples:
- single-factor models (β’s)         All these help to
- multi-factor models  various degrees.
- grouping by sectors         Most studies are based
- principal component analysis             on empirical data
- Bayesian shrinkage estimators, etc.
- Random matrix theory



Our approach:
• Analytical: Applying the methods of statistical

physics (random natrix theory, phase transition
theory, replicas, etc.)

• Numerical: To test the noise sensitivity of various
risk measures we use simulated data
The rationale is that in order to be able to compare
the sensitivity of various risk measures to noise, we
better get rid of other sources of uncertainty, like
non-stationarity. This can be achieved by using
artificial data where we have total control over the
underlying stochastic process.
For simplicity, we mostly use iid normal variables
in the following.
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• For such simple underlying processes the exact risk
measure can be calculated.

• To construct the empirical risk measure

    we generate long time series, and cut out segments of
length T from them, as if making observations on the
market.

• From these „observations” we construct the empirical
risk measure and optimize our portfolio under it.
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The ratio qo of the empirical and the exact
risk measure is a measure of the estimation
error due to noise:



The case of variance as a risk
measure

• The relative error       of the optimal
portfolio is a random variable, fluctuating
from sample to sample.

• The weights of the optimal portfolio also
fluctuate.
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The distribution of qo over the samples



Critical behaviour for N,T large, with N/T=fixed

The average of qo as a function of N/T can be
calculated from random matrix theory: it diverges
at the critical point N/T=1
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Associated statistical physics model: a
random Gaussian model
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The standard deviation of the estimation error
diverges even more strongly than the

average:

                                           ,   where r = N/T
)1(
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Instability of the weigths
The weights of a portfolio of N=100 iid normal

variables for a given sample,  T=500



The distribution of weights in a
given sample

• The optimization hardly determines the
weights even far from the critical point!

• The standard deviation of the weights
relative to their exact average value also
diverges at the critical point



Fluctuations of a given weight from sample to
sample, non-overlapping time-windows, N=100,

T=500



Fluctuations of a given weight from sample to
sample, time-windows shifted by one step at a

time, N=100, T=500



If short selling is banned
If the weights are constrained to be positive, the

instability will manifest itself by more and more
weights becoming zero – the portfolio
spontaneously reduces its size!

Explanation: the solution would like to run away,
the constraints prevent it from doing so,
therefore it will stick to the walls.

Similar effects are observed if we impose any other
linear constraints, like limits on sectors, etc.

It is clear, that in these cases the solution is
determined more by the constraints than the
objective function.
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If the variables are not iid

Experimenting with various market models
(one-factor, market plus sectors, positive
and negative covariances, etc.) shows that
the main conclusion does not change – a
manifestation of universality

Overwhelmingly positive correlations tend to
enhance the instability, negative ones
decrease it, but they do not change the
power of the divergence, only its prefactor
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After filtering the noise is much reduced, and we can
even penetrate into the region below the critical point
T<N . BUT: the weights remain extremely unstable

even after filtering

ButBut:BUT:



Similar studies under mean absolute deviation,
expected shortfall and maximal loss

• Lead to similar conclusions, except that the
effect of estimation error is even more serious

• In addition, no convincing filtering methods
exist for these measures

• In the case of coherent measures the existence of
a solution becomes a probabilistic issue,
depending on the sample

• Calculation of this probability leads to some
intriguing problems in random geometry



Probability of finding a solution for
the minimax problem:
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Probability of the existence of an optimum under CVaR.
F is the standard normal distribution. Note the scaling in N/√T.

Feasibility of optimization under ES



For ES the critical value of N/T
depends on the threshold β



With increasing N, T ( N/T= fixed) the
transition becomes sharper and sharper…



…until in the limit N, T →∞ with N/T= fixed
we get a „phase boundary”. The exact phase

boundary has since been obtained by Ciliberti,
Kondor and Mézard from replica theory.



Scaling: same exponent



The mean relative error in portfolios optimized
under various risk measures blows up as we

approach the phase boundary



Distributions of qo for various risk
measures



Instability of portfolio weights

Similar trends can be observed if we look
into the weights of the optimal portfolio: the
weights display a high degree of instability
already for variance optimized portfolios,
but this instability is even stronger for mean
absolute deviation, expected shortfall, and
maximal loss.



Instability of weights for various risk
measures, non-overlapping windows



Instability of weights for various risk
measures, overlapping weights



A wider context
• The critical phenomena we observe in portfolio

selection are analogous to the phase transitions
discovered recently in some hard computational
problems, they represent a new „random Gaussian”
universality class within this family, where a
number of modes go soft in rapid succession, as
one approaches the critical point.

• Filtering corresponds to discarding these soft
modes.
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A prophetic quotation:

P.W. Anderson: The fact is that the techniques
which were developed for this apparently very
specialized problem of a rather restricted class of
special phase transitions and their behavior in a
restricted region are turning out to be something
which is likely to spread over not just the whole
of physics but the whole of science.



In a similar spirit...

• I think the phenomenon treated here, that is the sampling
error catastrophe due to lack of sufficient information
appears in a much wider set of problems than just the
problem of investment decisions. (E.g. multivariate
regression, all sorts of linearly programmable technology
and economy related optimization problems, microarrays,
etc.)

• Whenever a phenomenon is influenced by a large number
of factors, but we have a limited amount of information
about this dependence, we have to expect that the
estimation error will diverge and fluctuations over the
samples will be huge.



The appearence of powerful tools from
statistical physics (random matrices,
phase transition concepts, scaling,
universality, etc. and replicas) is an
important development that enriches
finance theory



Summary

• If we do not have sufficient information we
cannot make an intelligent decision – so far
this is a triviality

• The important message here is that there is a
critical point where the error diverges, and
its behaviour is subject to universal scaling
laws



Appendix I: Optimization and statistical
mechanics

• Any convex optimization problem can be transformed into
a problem in statistical mechanics, by promoting the
objective function into a Hamiltonian, and introducing a
fictitious temperature. At the end we can recover the
original problem in the limit of zero temperature.

• Averaging over the time series segments (samples) is similar
to what is called quenched averaging in the statistical physics
of random systems: one has to average the logarithm of the
partition function (i.e. the cumulant generating function).

• Averaging can then be performed by the replica trick – a
heuristic, but very powerful method that is on its way to
become firmly established by mathematicians (Guerra and
Talagrand).



The first application of replicas in a finance context:
the ES phase boundary (A. Ciliberti, I.K., M. Mézard)

 ES is the average loss above a high threshold β (a conditional
expectation value). Very popular among academics and slowly
spreading in practice. In addition, as shown by Uryasev and
Rockafellar, the optimization of ES can be reduced to linear
programming, for which very fast algorithms exist.

Portfolios optimized under ES are much more noisy than those
optimized under either the variance or absolute deviation. The
critical point of ES is always below N/T =1/2 and it depends on the
threshold, so it defines a phase boundary on the N/T- β plane.

The measure ES can become unbounded from below with a certain
probability for any finite N and T , and then the optimization is not
feasible!

The transition for finite N,T is smooth, for N,T →∞ it becomes a sharp
phase boundary that separates the region where the optimization is
feasible from that where it is not.



Formulation of the problem
• The time series of returns:

• The objective function:

• The variables:
• The linear programming problem:

• Normalization:



Associated statistical mechanics problem

• Partition function:

• Free energy:

• The optimal value of the objective function:



The partition function

Lagrange multipliers:



Replicas

• Trivial identity

• We consider n identical replicas:

• The probability distribution of the n-fold replicated
system:

• At an appropriate moment we have to analytically
continue to real n’s



Averaging over the random
samples

where



Replica-symmetric Ansatz

• By symmetry considerations:

• Saddle point condition:

where



Condition for the existence of a solution
to the linear programming problem

The meaning of the parameter      :

Equation of the phase boundary:





Appendix II: Portfolio optimization
and linear regression

Portfolios:
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Linear regression:
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Equivalence of the two
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Minimizing the residual error for and
infinitely large sample
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Minimizing the residual error for a
sample of length T
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The relative error
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