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Abstract

Simple models of interacting agents can be formulated as jump Markov
processes via suitably specified transition probabilities. Their aggregate
dynamics might then be analyzed by the Master equation for the change of
the probability distribution over time, or the Fokker-Planck equation that
is obtained by a power series expansion and governs the probability distri-
bution for fluctuations around an equilibrium. With such information on
the transient density of the process, maximum likelihood estimation of its
parameters becomes feasible. Even if the Fokker-Planck equation can not
be solved explicitly, one can resort to numerical approximations like the
Crank-Nicolson method for approximate ML estimation. We explain this
algorithm with a simple model of interacting agents and show that the
approximate ML procedure works well and has desirable accuracy even in
the case of bimodal limiting distributions. We illustrate possible applica-
tions by estimating the parameters of this model for a popular business
climate index for the German economy.

- preliminary version -
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1 The basic framework

Many agent-based models with simple rules of agents’ adaption to external in-
fluences allow for a representation of their aggregate quantities via Markovian
stochastic processes. A comprehensive formalization of the time development
of the probability distribution over their configuration space can be attempted
via the Master equation formalism or approximations to it such as the Fokker-
Planck equation for the dynamics of the transitional density (cf. the seminal
methodological contributions by Weidlich and Haag, 1983; Aoki, 1996; and Wei-
dlich, 2002). In the following we will particularly focus on the fertilization of
the Fokker-Planck equation for estimation of the parameters of the underlying
hypothetical model. The Fokker-Planck equation associated to a stochastic pro-
cess is a parabolic differential equation for the change in time of the transitory
density of the process. Although the Fokker-Planck equation occupies a very
prominent place in statistical physics (Risken, 1989; Frank, 2005), it seems that
due to the different research perspectives in this field, it has never been used as
a tool for estimation of parameters of physical models.

Nevertheless, the use of the Fokker-Planck equation for parameter estima-
tion is straight forward: if on has available discrete observations of a diffusion
process and if the Fokker-Planck equation of the hypothesized process could be
solved explicitly, the time-dependent solution to the transient density at the
times of observations could be used to estimate the parameters via a standard
maximum likelihood approach. Unfortunately, in models of interacting agents,
a closed-form solution to the Fokker-Planck equation is usually not available. In
this case, however, we could resort to numerical approximations of the Fokker-
Planck equations. Numerical integration of partial differential equations via fi-
nite difference of finite element methods is also a well developed field (Thomas,
1995) and has found important applications both in statistical physics (Park and
Petrosian) and financial mathematics (Seydel, 2002, part III). A well-known area
of application is the pricing of American options and exotic options for which
no closed-form solutions of the modified Black-Scholes equation exist. The only
application within an estimation framework can be found in a different branch
of computational finance, namely diffusion processes of the term structure of
interest rates. The first to propose approximate ML estimation on the base of
a numerical integration of transitory densities has been Poulsen (1999) whose
approach has been compared to alternative methods by Jensen and Poulsen
(2002). Hurn et al. (2006) propose refinements using finite elements rather
than finite differences.

In order to set the stage for the presentation of this methodology, consider
a parabolic stochastic differential equation:

∂f(x)
∂t

=
∂

∂x
(µ(x, θ)f(x)) +

∂2

∂x2
(g(x, θ)f(x)) (1)
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If (1) refers to a Fokker-Planck equation, the unknown function f(x, t) is the
transitory density of x, and we can write µ(x, θ) = −A(x, θ) , g(x, θ) = 1

2D(x, θ)
with A(x, θ) and D(x, θ) the drift and diffusion functions of the process, and θ
a set of unknown parameters that one wants to estimate.

If no closed-form solution for f(x, t) is available (which will mostly be the
case), one can study the time development of the density via numerical inte-
gration of eq.(1). Various methods for discretisation of the stochastic equation
(1) can be used. If one uses an evenly spaced discrete grid, one speaks of finite
difference methods, if one uses a flexible grid, one speaks of refined finite element
methods.

In principle, the first and second derivatives on both sides of eq. (1) could
be approximated either via forward differences of backward differences (called
explicit or implicit methods). Higher accuracy of the approximation can be
achieved by combining both forward and backward differences by computing
central differences around intermediate grid points. This approach is known as
the Crank-Nicolson method and will be adopted in what follows.

To concretize the finite difference approximation, consider a ‘space’ grid with
distance h between adjacent knots: xj = x0 + j ·h; j = 0, 1, ..., Nx and similarly
equally spaced points along the time axis between t = 0 and the final time T :
ti = i · k with i = 0, ..., Nt and k = T

Nt
.

In a forward discretization, (1) would have to be replaced by

f i+1
j − f i

j

k
=

µj+1f
i
j+1 − µjf

i
j

h
+

gj+1f
i
j+1 − 2gjf

i
j + gj−1f

i
j−1

h2
(2)

with f i
j := f(x0 + j · h, ik) and µj := µ(x0 + j · h, θ), gj := g(x0 + j · h, θ).

Replacing the forward difference on the left-hand side by the backward differ-
ence f i

j−f i−1
j , we obtain the implicit finite difference approximation. While the

forward and backward approximations are of local accuracy (at the mesh points)
O(k)+O(h2), higher accuracy can be obtained by taking the average of both the
forward and backward difference approximation. This is known as the Crank-
Nicolson method and can be shown to have local accuracy O(k2)+O(h2). Note
that the Crank-Nicolson approach effectively approximates the continuous-time
diffusion at intermediate points (i + 1

2 )k and (j + 1
2 )h rather than those on the

grid itself.

Because of the necessity of restricting the approximation to a finite interval,
boundary conditions have to be imposed in order to prevent transitions to in-
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accessible states. In the Crank-Nicolson approach this requires the assumption

f j

− 1
2

= f(x0− 1
2
h, jk) = 0 and f j

N+ 1
2

= f(x0 +(Nx +
1
2
)h, jk) = 0 (3)

(cf. Giuliani). While such simple Dirichlet boundary conditions preserve
the local second order accuracy, more complex derivative boundary conditions
in certain applications would require a careful analysis of the errors brought
about by their discretization. It is important to note that the no-flux boundary
conditions guarantee conservation of probability mass within the underlying
x-interval if (1) governs the dynamics of a transient density (i.e. if (1) is a
Fokker-Planck equation).

The second order accuracy of the Crank-Nicolson scheme can be checked in
applications by trying different step sizes h or k. Denote by v1, v2 and v3 the
approximations of the continuous solution f , using step sizes k and h, h

2 and
h
4 , respectively. Then by expanding the error of the approximation in a Taylor
series:

v1 = f − hc− kd− h2l − k2m + ... (4)

v2 = f − 0.5hc− kd− 0.25h2l − k2m + ... (5)

v3 = f − 0.25hc− kd− 0.0625h2l − k2m + ... (6)

It follows that the quotient of the differences of these approximations yields:

v2 − v1

v3 − v2
' 2

c + 1.5hl

c + 0.75hl
(7)

Hence, if the method is first-order accurate, c 6= 0 should be the dominating
component and evaluating (7) at the grid points, we would expect to see values
close to 2. On the contrary, prevalence of values around 4 all over the place
would be seen as a confirmation of the theoretical second-order accuracy of the
Crank-Nicolson scheme. The same operation can be performed in the time di-
rection as well using differences k, k

2 , and k
4 . We will see an illustration of this

experimental determination of the order of accuracy in our application below.

On the base of the Crank-Nicolson (or any other finite difference approxi-
mation), we can estimate the parameters of a diffusion process with discretely
spaced observations via approximate maximum likelihood.
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The negative log-likelihood of a sample of observations X0, . . . , XT is

−logf0(X0 | θ)−
T−1∑
s=0

logf(Xs+1 | Xs, θ) (8)

where f0(X0 | θ) is the density of the initial state (which in practical appli-
cations will be skipped because of its negligible influence and the possible lack
of a closed-form solution for the stationary density) and f(Xs+1 | Xs, θ) is the
value of the transitional density at s+1 conditioned on the previous observation
at time s,Xs. This continuous density is approximated by our finite difference
scheme. Poulsen (1999) shows that the pertinent estimator is consistent, asymp-
totically normal and can be asymptotically equivalent to full ML estimates, at
least under the Crank-Nicolson approximation scheme.

2 Finite difference approximation of a canoni-
cal’ interaction model

For illustration of the above framework, we use an approach that goes back at
least to Weidlich and Haag (1983) and had been used in a macroeconomic setting
by Kraft, Landes and Weise (1986) among others and in behavioral finance
models by Lux (1995, 1997). The model deals with a binary choice problem
and stochastic transitions of agents between both alternatives due to exogenous
factors and group pressure. Let the two groups have occupation numbers n+

and n− ,respectively, with the overall population size being 2N (multiplication
by 2 simply serves to avoid the case of an odd number of individuals).
The socio-economic configuration at any time can be described via the difference
between group occupation numbers:

n =
1
2
(n+ − n−) (9)

or an equivalent opinion index:

x =
n

N
=

n+ − n−
2N

with x ∈ [−1, 1]. (10)

A simple stochastic process of individual moves between groups can be built
upon Poisson probabilities to jump from the “+” to the “−” group or vice versa
within the next instant. We denote this transition rates by w↑ and w↓ and
assume that they are the same for all agents within our group.
For the sake of our illustration, we follow the earlier literature assuming an
exponential functional form of w↑ and w↓:

w↑ = v exp(U), w↓ = v exp(−U) (11)
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The forcing function U is assumed to consist of a constant factor (bias) α0

and a second component formalizing group pressure in favor or against homo-
geneous decisions, α1x:

U = α0 + α1x. (12)

The parameters of the model are, thus: v which determines the frequency
(time scale) of moves between groups, α0 which generates a bias towards the
choice of “+” (“−”) if positive (negative) and α1 which formalizes the degree of
group pressure (if it is positive, if negative it would rather imply a tendency of
non-conformity). Models with this basic ingredients have been thoroughly in-
vestigated in the literature. The basic outcome of the model can be summarized
by the following findings:

i) For α1 ≤ 1, the group dynamics defined by (11) and (12) is characterized
by a stationary distribution with a unique maximum. If α0 = 0, this
maximum is located at x∗ = 0. It shifts to the right (left) for α0 > 0,
(< 0).

ii) For α1 > 1 and α0 not too large, the stationary distribution has two
maxima. If α0 = 0, the distribution is symmetric around 0. It becomes
asymmetric if α0 6= 0 with right-hand (left-hand) skewness and more con-
centration of probability mass in the right (left) maximum if α0 > 0, (< 0)
holds.

iii) If |α0| becomes very large, the smaller mode vanishes and the station-
ary distribution becomes uni-modal again. This happens if |α0| increases
beyond the bifurcation value α0 given by:

cosh2(α0 −
√

α1(α1 − 1)) = α1 (13)

In most applications, the first step towards an analysis of the above group
dynamics consists in the derivation of a quasi-deterministic law of motion for
the first moment of x:

d

dt
x = v(1− x)eα0+α1x − v(1 + x)e−α0−α1x (14)

(14) is exact in the limit of an infinite population size and provides a first-
order approximation of the dynamics of x for finite populations.

One easily recovers that the features of the unconditional distribution ((i) to
(iii)) are reflected in the existence and stability of steady states of (14).

A more comprehensive description of the dynamics can be obtained via the
Fokker-Planck equation. Its drift component can be shown to be:
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A(x) =
n−
2N

w↑(x)− n+

2N
w↓(x) = v(1− x)eα0+α1x − v(1 + x)e−α0−α1x (15)

which, of course, coincides with the right-hand side of (14), while the diffu-
sion term is:

D(x) =
1
N

(
n−
2N

w↑(x)+
n+

2N
w↓(x)) =

1
N

(v(1−x)eα0+α1x +v(1+x)e−α0−α1x)

(16)

This is certainly a case in which the conditional density can not be solved for
explicitly due to the high degree of non-linearity of both the drift and diffusion
components. For numerical integration, we can, however, resort to the Crank-
Nicolson scheme as introduced above. Fig. 1 shows an example with a strongly
peaked initial distribution which evolves into a bi-modal distribution over time.
Underlying parameters are: v = 3, α0 = 0, α1 = 1.2, N = 50 for the parameters
of the agent-based model, h = 0.0025 and k = 0.01 for the discretization in
space and time, T = 2 for the time horizon of the numerical integration and a
space grid extending from −1 to 1 in accordance with the support of the variable
x has been used. The initial condition, x0 = 0, has been approximated by a
Normal distribution density ΦN (x0 + A(x)k, D(x)k) evaluated at grid points
−1 + jh; j = 0, 1, . . . , Nx, in the x direction for the first time increment k.
This avoids the problems of a Dirac δ-function as initial condition and can
be interpreted as a first-order Euler approximation using the known drift and
diffusion functions for the initialization of the approximation.

We proceed by checking the theoretical second-order accuracy of our ap-
proximation. We perform the order determination separately in each direction
for the approximation exhibited in Fig. 1. Table 1 exhibits results for selected
grid points with (7) applied to both the h and k distances. As can be seen, the
expected dominance of values close to 4 is nicely confirmed and we can convince
ourselves that the algorithm has no problem in tracking the transition from
uni-modality to bi-modality with the required degree of accuracy.

x|t 0.25 0.5 0.75 1 1.25 1.5 1.75 2
-0.75 4.0 4.0 3.9 4.0 4.0 4.0 4.0 3.9
-0.5 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
-0.25 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0

0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
0.25 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
0.5 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
0.75 4.0 4.0 3.9 4.0 4.0 4.0 4.0 3.9

h-ratio
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x|t 0.25 0.5 0.75 1 1.25 1.5 1.75 2
-0.75 4.0 3.9 4.0 4.0 4.0 4.0 4.0 4.0
-0.5 3.9 4.0 4.0 4.0 4.0 4.0 4.0 4.0
-0.25 3.9 4.0 4.0 4.0 4.0 4.0 4.0 4.0

0 6.1 4.0 4.0 4.0 4.0 4.0 4.0 4.0
0.25 3.9 4.0 4.0 4.0 4.0 4.0 4.0 4.0
0.5 3.9 4.0 4.0 4.0 4.0 4.0 4.0 4.0
0.75 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0

k-ratio

Table 1: Order determination for the Crank-Nicolson method applied to the
interacting agent model. All parameter values and settings like in Fig. 1

x|t 0.25 0.5 0.75 1 1.25 1.5 1.75 2
-0.75 6.1 4.2 4.0 4.0 4.0 4.0 4.1 4.1
-0.5 5.0 4.1 4.0 4.0 4.1 4.1 4.2 4.2
-0.25 4.4 4.0 4.0 4.1 4.2 4.5 4.9 4.8

0 4.1 4.0 4.1 7.2 3.4 3.5 3.3 2.1
0.25 4.0 4.2 3.7 3.7 3.6 3.2 5.9 4.4
0.5 4.1 3.6 5.7 4.2 4.1 4.1 4.0 4.0
0.75 4.4 4.0 4.0 4.0 4.0 4.0 4.0 4.0

h-ratio

x|t 0.25 0.5 0.75 1 1.25 1.5 1.75 2
-0.75 13.3 4.1 4.0 4.0 4.0 4.0 4.0 4.0
-0.5 5.8 4.0 4.0 4.0 4.0 4.0 4.0 4.0
-0.25 4.3 4.0 4.0 4.0 4.0 4.0 4.0 4.0

0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
0.25 4.0 4.1 4.0 4.0 4.0 4.0 4.0 4.0
0.5 4.1 4.0 4.0 4.0 4.0 4.0 4.0 4.0
0.75 3.9 4.0 4.0 4.0 4.0 4.0 4.0 4.0

k-ratio

Table 2: Order determination with a different initial value, x0 = 0.9. All other
parameters and settings as in Fig. 1 and Table 1.

Results become slightly worse if one considers more extreme starting points:
Table 2 exhibits error ratios at selected grid points for the same model param-
eters and approximation scheme like in Table 1 but with x0 = 0.9 rather than
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x0 = 0. As can be seen, the approximation suffers somewhat at small t for
values very far from the initial value. This deviation from second-order accu-
racy is likely due to the initialization via the Euler approximation (which is not
second order accurate) but this effect gets nicely washed out with increasing
time horizon.

3 Monte Carlo simulations of approximate ML
estimation

We now turn to estimation of model parameters on the base of the numerical ap-
proximation to the Fokker-Planck equation. Poulson (1999) has demonstrated
that this approximate likelihood approach is consistent and asymptotically nor-
mal and that it can be asymptotically equivalent to ‘true’ ML estimation under
certain conditions. In his Theorem 3, he shows that the grid size has to be-
have like h(t) = T−δ with δ > 1

4 which will be guaranteed in our applications.
He also points out that - in contrast to simulated ML approaches - there is
no stochastic approximation error and the accuracy of the approximation is di-
rectly controlled by the user. In order to study the performance of the method
we conduct a small simulation experiment on the base of our canonical inter-
action model. Because of the time needed for approximate ML with numerical
integration of the transient density we have to restrict this Monte Carlo study
to a few selected parameter values. The following sets of parameters have been
chosen:

• set I: v = 3, α0 = 0, α1 = 0.8

• set II: v = 3, α0 = 0.2, α1 = 0.8

• set III: v = 3, α0 = 0, α1 = 1.2

• set IV: v = 3, α0 = 0.2, α1 = 1.2

In all scenarios, N = 50, i.e. the population size is equal to 100 (2N). Our
choice of parameters is governed by our interest to compare the performance in
situations with uni-modal and bi-modal distributions, as well as situations with
and without a bias term α0 6= 0.

Because of the computational demands of this method, the sample size has
been restricted to T = 200 observations at discrete integer time intervals which
have been extracted from a true multi-agent simulation with small time incre-
ments ∆t = 0.01. The time scaling parameter v has been fixed in order to have
some chance of switching between both modes in the bi-modal case as other-
wise we would not expect the estimation procedure to detect a bi-modal dis-
tribution (whether this conjecture really holds, might be checked in subsequent
Monte Carlo experiments). The Crank-Nicolson finite difference discretization
is applied with widths k = 1

8 and h = 0.02 in the time and space direction,
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respectively (note that in the space direction h = 0.02 corresponds exactly to
the discreteness of the index x for our setting with N = 50).

In order to have at least a certain benchmark for comparison of accuracy of
the parameter estimates, we compare the resulting estimates with those obtained
under k = 1. The later can be interpreted as an Euler approximation since it
approximates the transient density by a Normal distribution (with mean and
standard deviation taken from the drift and diffusion functions of the Fokker-
Planck equation) which in the Crank-Nicolson approach is used only for the
initialization of the iterations. This Euler approximation does, of course, not
yield consistent estimates and so we would expect it to be inferior to the Crank-
Nicolson-ML approach. In order to get some insight into the dependence of the
parameter estimates on the step size used in the Crank-Nicolson approximation,
we also compare results obtained with time increments k = 1

8 and k = 1
16 .

Table 3 shows our results exhibiting the mean estimates, finite sample stan-
dard errors and root-mean squared errors for all underlying parameters. The
main message is that we can estimate the parameters v, α0 and α1 quite ac-
curately even for our relatively small sample of 200 observations. In all cases,
the Crank-Nicolson estimates are by far better than those obtained on the base
of the Euler approximation, in terms of bias and standard error. One also in-
fers that estimated parameters become somewhat less reliable in the cases of
parameter sets II and IV as compared to I and III, respectively. The reason is
probably that a positive bias interferes with the effects of interaction so that the
variability of estimated parameters across samples increases. Nevertheless, the
overall bias and standard error still remain reasonable even in those cases with
α0 = 0.2 (with the exception perhaps of the estimates of v for parameter set
IV). In contrast, Euler estimates appear essentially useless in these cases. As
concerns the influence of the density of the grid, we observe only minor differ-
ences between the Crank-Nicolson approximations with k = 1

8 and k = 1
16 .

In fact, results do not uniformly improve when reducing the time increments:
while one obtains slight improvements for the parameters α0 and α1, the esti-
mates of v seem to deteriorate. The near equivalance of both settings together
with seemingly reasonable biases and standard errors suggests the conclusion
that using finer grids would probably not improve significantly the quality of
the parameter estimates.

Another set of Monte Carlo experiments is motivated by realizing that the
number of agents (the system size) N appears as a variable in the diffusion
part of the Fokker-Planck equation. Neglecting the issue of discreteness of N ,
we can, in principle, also use our approach to arrive at an estimate of the
number of active agents instead of imposing a predetermined value of N . In
our pertinent Monte Carlo experiments, we use again parameter sets I and IV
(i.e. a symmetric setting with weak herding and an asymmetric one with strong
herding), with N = 50 or N = 500 in both cases. The results are exhibited in
Table 4... (to be added)
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Euler Crank-Nicolson Crank-Nicolson
(k = 1) (k = 1/8) (k = 1/16)

v α0 α1 v α0 α1 v α0 α1

mean 0.999 -0.001 0.642 2.980 -0.000 0.793 3.023 -0.000 0.794
set I FSSE 0.091 0.007 0.052 0.567 0.005 0.028 0.585 0.005 0.028

RMSE 2.003 0.007 0.166 0.564 0.005 0.028 0.583 0.005 0.028
mean 0.439 0.578 0.123 2.992 0.216 0.772 3.547 0.211 0.782

set II FSSE 0.048 0.097 0.171 1.046 0.057 0.105 1.422 0.038 0.069
RMSE 2.561 0.390 0.698 1.041 0.059 0.108 1.517 0.039 0.071
mean 1.019 0.000 1.173 2.884 0.000 1.196 2.952 0.000 1.196

set III FSSE 0.126 0.024 0.034 0.457 0.009 0.015 0.499 0.009 0.015
RMSE 1.913 0.024 0.043 0.469 0.009 0.016 0.499 0.009 0.015
mean 0.232 1.741 -0.698 1.369 0.262 1.123 1.748 0.245 1.144

set IV FSSE 0.026 0.350 0.426 0.245 0.127 0.159 0.439 0.127 0.159
RMSE 2.768 1.580 1.945 1.326 0.141 0.175 1.326 0.135 0.168

Table 3: Approximate ML Estimates: the table displays the mean parameter
estimates over 200 Monte Carlo replications together with their finite sample
standard errors (FSSE) and root mean squared errors (RSME).

4 Estimation of Interactive Opinion Formation:
The Case of the ZEW Business Climate Index

ν α0 α1 α2 N logL AIC BIC
Model 1 0.78 0.01 1.19 -726.9 1459.8 1464.1

(baseline) (0.06) (0.01) (0.01)
Model 2 0.15 0.09 0.99 21.21 -655.9 1319.7 1322.0
(end. N) (0.07) (0.06) (0.14) (9.87)
Model 3 0.14 0.15 0.94 -1.09 19.55 -655.7 1321.5 1321.8

(feedback from i) (0.07) (0.17) (0.21) (2.55) (10.13)
Model 4 0.13 0.09 0.93 -4.55 19.23 -650.4 1310.9 1311.1

(feedback from IP) (0.06) (0.07) (0.16) (2.53) (8.78)
Model 5 0.04 0.45 -11.93 5.75 -654.2 1316.4 1318.7

(no interaction) (0.01) (0.12) (3.98) (1.59)

Table 5: Parameter Estimates for Stochastic Models of Interacting Agents. De-
tails on the underlying models appear in the main text. The numbers in brackets
are standard errors of parameter estimates.

Since we have focused an a very simple interaction scheme, it is not obvi-
ous that its structural features should be easily applicable to economic data.
Weidlich and Haag (1983, c.5) and Kraft, Landes and Weise (1986) had pro-
posed simple business cycle models with, for example, investment decisions be-
ing driven by an opinion process like the one outlined in Sec. 2. Such models
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could be estimated using the above methodology. We leave this more demand-
ing multi-variate application to future research and turn to a particular type
of uni-variate time series in which interaction effects could arguably play some
role. Various surveys for business climate or sentiment are regularly conducted
in many countries that seem to receive much more attention by the public
than by academic researchers. The leading examples are the Michigan Con-
sumer Sentiment Index and the Conference Board Index for the U.S. economy,
which have been reported monthly since the end of the 70ties (Ludvigson, 2004,
Souleles, 2004). In Germany, similar surveys are conducted by the Ifo Institute
(Ifo Business Climate Index) and the Center for European Research (ZEW) at
the University of Mannheim (denoted the ZEW Index of Economic Sentiment).
Among these indices, the ZEW Sentiment index comes closest to the simple
structure of our ’canonical’ model in that it very literally asks for wether re-
spondents are optimistic ( “+”) or pessimistic (“-”) concerning the prospects
of the German economy over the next six months. The only difference to our
model is that ZEW also allows for a neutral assessment. We might assume that
neutral subjects can be assigned half and half to the optimistic and pessimistic
camp which, then, would allow us to apply our model directly to their data.
The index is, in fact, reported as the percentage of optimists minus pessimists
so that it can be directly used as the opinion index x introduced in Sec. 2. In
contrast, the indices for the U.S. economy are computed as weighted averages
over categorial answers to different questions while Ifo starts with sector-specific
surveys and aggregates them to an overall business climate indicator. The ZEW
index is, therefore, probably the only one that delivers us with an aggregate of
very pure binary (resp., ternary) assessments. Fig. 2 displays the entire avail-
able monthly ZEW series (starting in December 1991 and running through July,
2006). Despite quite a number of differences in the data collection process, its
development is broadly parallel to that of the Ifo index. What is striking is the
very pronounced cyclical behavior of the ZEW index with very sudden move-
ments upward and downward and a certain stagnation at times at a high or
low plateau. One could, in fact, argue that the dynamics of the ZEW index is
reminiscent of a bi-modal stochastic dynamics switching between a high positive
and a moderately negative equilibrium. It might be worthwhile to contrast this
series with what it is designed to predict, the cyclical component in economic
activity. This cyclical component appears in the lower panel of Fig. 2 in the
form of residuals of monthly industrial production from the Hodrick-Prescott
filter, which is widely seen as the state-of-the-art approach for disentangling
trend components and cyclical components in economic activity. Somewhat
surprising, the perception of the business cycle dynamics as reflected in the sur-
vey allows a much more clear cut categorization of its phases than the much
more random nature of filtered IP.

The ZEW surveys are based on about 350 respondents so that we might
take this information as a parametric restriction on N (assuming N=175). We,
then, have to estimate the parameters v, α0 and α1 in a baseline application of
our interacting-agents framework. Results are shown in Table 5. Interestingly,
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the crucial parameter α1 is significantly larger than unity indicating bi-modality
of the limiting distribution. Despite the impression of a dominance of positive
assessment over the whole sample period (quite in contrast to stereotypes of
German “angst”) the bias term α0 turns out to be not significantly different
from 0. Unfortunately, simulations of the estimated model show, that it most
likely would get stuck within one mode over a time horizon of the length of our
sample (176 observations) and would on average at most switch only once from
one mode to the other (cf. Fig. 3 and 5 below). Transitions between modes
are governed by chance fluctuations and become more and more unlikely the
higher the number of agents. Vice versa, frequent switches would only occur for
a relatively small size of the underlying population. In order to reconcile our
observation of a relatively large number of apparent switches of the mood of the
respondents with the ‘official’ system size of 350 respondents, we could argue
that the ‘effective’ system size is smaller than the official number. This would
happen if some respondents would actually move broadly synchronously and
would, therefore, nor act like independent agents. While we cannot check this
assertion due to the anonymity of the data, we could let the index itself speak
on the underlying effective system size by adding N to the list of parameters
estimated via approximate ML. This approach is somewhat similar to that of
a recent paper by Chen (2002) who argues that the relative extent of fluctua-
tions of macroeconomic data is neither in agreement with a representative-agent
framework nor with the assumption of a system size identical to the number of
individuals or companies in an economy. On the base of simple stochastic mod-
els, he argues that the relative deviation (the square of the means divided by
the variance of the data) yields an estimate of the implicit number of degrees of
freedom. While this rough non-parametric approach somewhat surprisingly pro-
vides us with µ2

σ2 ≈ 0.9, our parametric model arrives at an estimate of N ≈ 20
(i.e. 40 independent agents or groups of agents). Note that this added flexibility
leads to a relatively large increase in the log likelihood and is preferred over the
baseline model by both the AIC and BIC criteria. As concern estimated param-
eters, α0 still is insignificant, while the interaction coefficient falls marginally
below 1 indicating uni-modality albeit with possibly large excursions into ex-
treme configurations. Remarkably, the estimate of the parameter v decreases
from 0.78 to 0.15 when proceeding from model 1 to model 2. The likely reason
is that the first estimation would have to come up with a higher mobility of the
population (higher propensity to change opinion) in order to compensate for the
stagnatory tendency of the larger imposed population of model 1.
We have remarked in sec. 2 that our framework allows to incorporate exoge-
nous effects on the opinion formation process. In order to do so we simply could
expand the influence function U by introducing additional factors that could be
of importance to the assessment of the business cycle by the respondents of the
survey:

U = α0 + α1x + α2y (17)

Most naturally, y could be macroeconomic data of the same frequency itself
(i.e. monthly), although our framework could also accommodate data of higher
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or lower frequency. Two such macro feedbacks have been investigated in our
models 3 and 4: the interest rate (3 month FIBOR rate) and industrial pro-
duction (HP filtered, as displayed in Fig. 2). Note that the direction of the
feedback is not predetermined in our model, i.e. α2 could turn out to positive
or negative. The outcome of the exercise shows that industrial production adds
more explanatory power than the inclusion of the interest rate: for the former
we obtain a significantly negative coefficient together with lower values of the
AIC and BIC criteria. For the interest rate, in contrast, the estimated coeffi-
cient α2 is not significant and overall improvements compared to model 2 are
smaller. However, even for the preferred model 4, the improvement compared
to model 2 is much smaller than the increase in logL, AIC and BIC achieved by
adding N as a free parameter (the step from model 1 to model 2). Furthermore
both the inclusion of the interest rate and of industrial production have only
very negligible effects on the parameters of the interacting agent model. What
is perhaps puzzling is the negative sign of the feedback effect from industrial
production which is in contrast to a positive contemporaneous correlation of
about 0.28 between both series. It appears to depict some type of ‘contrarian’
behaviour: if the economic data is indicating a boom phase, our respondents
seem already forestall the subsequent overheating of the economy and the sub-
sequent downturn and vice versa.
We tried also whether we could get rid of interaction, but the results of the
pertinent exercise (model 5) are not too plausible: a very large positive predis-
position (α0 = 0.48) together with a small population (N = 6) and a low degree
of flexibility (v = 0.03) is needed to compensate for the missing interaction ef-
fect. AIC and BIC rank this variant inferior to model 4.
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Table 7: Autocorrelations from 1.000 Monte Carlo simulations

models
ACF data 1 2 3 4 5

1 0.935 0.630 0.923 0.936 0.939 0.925
(95 %) (0.456 0.963) (0.845 0.967) (0.876 0.969) (0.908 0.968) (0.881 0.956)

2 0.830 0.404 0.853 0.875 0.880 0.851
(0.162 0.929) (0.715 0.936) (0.764 0.940) (0.820 0.934) (0.762 0.908)

3 0.709 0.266 0.789 0.816 0.819 0.780
(0.013 0.890) (0.595 0.907) (0.658 0.913) (0.732 0.900) (0.661 0.859)

4 0.584 0.175 0.729 0.761 0.758 0.710
(-0.080 0.857) (0.496 0.883) (0.556 0.886) (0.652 0.866) (0.561 0.809)

5 0.465 0.116 0.673 0.707 0.696 0.643
(-0.133 0.820) (0.398 0.860) (0.467 0.863) (0.566 0.833) (0.477 0.759)

6 0.363 0.075 0.620 0.655 0.633 0.578
(-0.171 0.784) (0.319 0.840) (0.382 0.841) (0.478 0.797) (0.391 0.710)

7 0.272 0.048 0.571 0.605 0.571 0.515
(-0.188 0.747) (0.241 0.813) (0.313 0.822) (0.392 0.759) (0.301 0.658)

8 0.186 0.032 0.525 0.558 0.512 0.455
(-0.197 0.703) (0.184 0.793) (0.246 0.801) (0.317 0.722) (0.226 0.611)

9 0.094 0.022 0.482 0.513 0.454 0.399
(-0.213 0.668) (0.121 0.774) (0.190 0.782) (0.239 0.678) (0.153 0.568)

10 0.017 0.014 0.442 0.470 0.398 0.345
(-0.220 0.631) (0.078 0.752) (0.133 0.760) (0.167 0.640) (0.079 0.519)

d 0.553 0.194 0.826 0.875 0.923 0.792
(-0.343 0.978) (0.338 1.261) (0.351 1.266) (0.455 1.346) (0.290 1.221)

5 Some specification tests

How close do time series from the estimated models get to empirical behavior of
the ZEW index? Fig. 3 exhibits three simulations over the same time horizon
of model 4 together with the empirical data. For these simulations, we have
used time increments ∆t = 0.01 for the ongoing opinion formation between
integer time steps and have injected the knowledge of the current exogenous
factor (HP-filtered industrial production) at integer time steps. As it can be
seen, the visual appearance of the three Monte Carlo runs is pretty similar to
that of the index itself and the significant feedback from industrial production
seems to direct the simulations towards a pattern that is broadly synchronous
with the ups and downs of the empirical record. Fig. 4 shows the mean and
95 percent confidence bounds from the transient density computed for model 4
over the whole observation period given the first observation of the index as the
initial condition and incorporating the feedback from the news about industrial
production. Since the empirical record stays within the 95 % bounds for practi-
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cally the entire time horizon, we may conclude that we have no reason to reject
the hypothesis that the empirical data could have emerged as one particular
sample path from our stochastic model. We note however that simulations of
models 2, 3, and 5 would lead to very similar patterns. However, for models 2
and 3 the sample paths would not be synchronous to the empirical series simply
because there is no exogenous factor (model 2) or its influence is apparently
weak (as it holds for the interest rate in the case of model 3). In contrast,
model 1 yields a very different pattern as shown in the lower right panel of Fig.
3 since with the higher ‘official’ number of respondents shifts between equilibria
become less frequent than with N ≈ 20. As can be seen in Fig. 5, the 95
percent confidence interval from the transient density of model 1 reflects the
low probability of regimes switches and remains narrowly concentrated around
the initial state up to above period 120. Note that the bias term now includes
the exogenous component, i.e. α0 has to be replaced by α0 + α2y (with y here
given by filtered IP). The ups and downs of the sentiment index during the ob-
servation period would, then, mostly reflect switches between unique equilibria
that alternate between optimistic and pessimistic majorities. Our model 4, in
fact, shows how the fuzzy exogenous information in the lower panel of Fig. 2 is
translated into a much clearer image of the business cycle dynamics in the view
of the respondents’ sentiments (upper panel of Fig. 2) via the self-referential
and self-reinforcing dynamics of the opinion formation process.
As another specification test we try to assess whether the abruptness of the up
and down movements of the index is captured by our model. For this purpose
we compute a series of one-period iterations of the transient density and extract
the 95 percent confidence intervals conditional as the realization in the previous
period. Fig. 6 shows the 95 % confidence bounds for the subsequent period’s
realization which apparently is never left by the empirical record. Upon close
investigation one might, however, find some of the downturns are getting close
to the lower boundary while the ups are pretty much in the center of the 95
percent bound.
Table 5, 6 and 7 provide a statistical analysis of 1000 Monte Carlo replications of
models 1 through 5 on the base of the estimated parameters displayed in Table
5. In order to get an impression of how closely we match the statistical features
of the data, we compare a selection of conditional and unconditional moments.
Table 6 shows the means and simulated 95 percent boundaries for the first four
unconditional moments together with the relative deviation as defined in Chen
(2002) and the mean absolute distance between the entries of each simulation
and the 176 empirical observations. As we can see, for the first to third moment
as well as the relative deviation, models 2 to 5 are all pretty close to the empir-
ical numbers while model 1 (using the ‘official’ number of 350 active agents) is
far off the mark in all cases. This confirms the visual impression reported above
that the patterns of all models with an endogenous number of effective agents
are relatively similar while model 1 stands out by its tendency of getting frozen
in the lower mode due to the negative initial condition and the high level of
persistence caused by the large number of 350 agents. For the remaining statis-
tics, we first see that kurtosis is poorly matched by all models, which might
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however be attributed to the volatility of this measure for small samples. The
distance between the empirical observations and synthetic data again shows the
greatest discrepancy for model 1 compared to all others while the feedback from
industrial production in models 4 and 5 seems to have contribute to a better fit
compared to models 2 and 3. Again, this provides a confirmation of our visual
impression reported above.
Table 7 reports autocorrelations of the simulated series for lags 1 to 10. A
glance at smaller lags again indicates that ACFs from models 2 to 5 are all very
close to their empirical counterpart while model 1 has a much lower degree of
dependence. Unfortunately, all models are only able to match about the first
four lags while the autocorrelations remain much higher than the empirical ones
for the longer lags.
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Figure 1: An illustration of the development of the transient density in the
bimodal case. The initial state x0 has been approximated by a Normal distri-
bution with small standard deviation and mean x0.

21



Figure 2: ZEW Sentiment Index and Industrial Production.
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Figure 3: Simulated Trajectories from Models 4 and 1 (lower right-hand panel.)
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Figure 4: Mean and 95 Percent Confidence Interval for Model 4 (from Fokker-
Planck Equation)
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Figure 5: Mean and 95 Percent Confidence Interval from Model 1 (from Fokker-
Planck Equation)
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Figure 6: 95 Percent Confidence Interval for One-Step Iterations of Transient
Density of Model 4.
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