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Abstract

The paper approaches the modeling of the yield curve from a stochastic volatility perspective
based on time deformation. The way in which we model time deformation is new and di¤ers from
alternatives that currently exist in the literature and is based on market microstructure theory
of the impact of information �ow on a market. We model the stochastic volatility process by
modeling the instantaneous volatility as a function of price intensity in the spirit of Cho and
Frees (1988), Engle and Russell (1998) and Gerhard and Hautsch (2002). One contribution of the
paper therefore lies with the introduction of a new transaction level approach to the econometric
modelling of stochastic volatility in a multivariate framework exploiting intensity-based point
processes previously used by Bowsher (2003), Hall and Haustch (2003). We �nd that the individual
yields of U.S. treasury notes and bonds appear to be driven by di¤erent �operational�clocks as
suggested by the market segmentation theory of the Term Structure but these are related to each
other through a multivariate Hawkes model which e¤ectively coordinates activity along the yield
curve. The results o¤er some support to the Market Segmentation or Preferred Habitat models
as the univariate Hawkes models we have found at each maturity are statistically signi�cantly
di¤erent from each other and the major impact on each maturity is activity at that maturity.
However there are �ows between the di¤erent maturities that die away relatively quickly which
indicates that the markets are not completely segmented. Diagnostic tests show that the point
process models are relatively well speci�ed and a robustness comparison with realized volatility
indicates the close relationship between the two estimators of integrated volatility but also some
di¤erences between the structural intensity model and the model free realized volatility. We have
also shown that bond returns standardized by the instantaneous volatility estimated from our
Hawkes model are Gaussian which is consistent with the theory of time deformation for security
prices quite generally.
JEL: C16, E43, F3, G1, G12
Keywords: Term structure, Interest rates, Multivariate modeling, Hawkes process, Time de-

formation.

1 Introduction

Financial markets evolve on a time scale that is invariably di¤erent from chronological or clock time
which is, after all, only determined by the rate by which the earth revolves around the sun. The
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relevance of this time scale, which may be natural for the analysis of physical phenomena, can be
questioned when �xed intervals of clock time contain di¤ering numbers of transactions - markets
move fast and slow as noted for instance by Hasbrouck (1999). If the underlying stochastic process
that we wish to model is indexed to a di¤erent time scale than clock time then it becomes di¢ cult, if
not impossible, to properly measure the properties of these processes without taking into account of
time deformation1. This would seem to be crucial for the statistical analysis of security prices quite
generally.

This paper considers these issues in the context of modelling the yield curve and asks the following
questions; "Do yields on the di¤erent maturities operate on the same time scale, and if not how are
they coordinated?", "Does this have any implications for modelling the yield curve as a whole?", and
"How is information transferred along the yield curve if di¤erent information is relevant at di¤erent
points on the yield curve?"

We attempt to answer these questions by bringing market microstructure based empirical models
of information �ow to asset pricing in the yield curve. We propose a new approach by specifying
a structural stochastic volatility model for bond prices through a price intensity based measure of
instantaneous volatility. Our approach recognizes the in�uence of information �ow on the market
via trading activities and that this information �ow is lumpy and non smooth in clock time. Hence
it is natural to consider a new time scale which is based on information �ow when modelling the
statistical properties of bond prices.

A central question is how to measure information and several alternatives have been suggested in
the literature. We exploit what is perhaps the most natural measure of trading activity by using the
price intensity to measure market time.2 We model the conditional price intensity at di¤erent points
on the yield curve through a dynamic non-homogenous Poisson process that captures the clustering
of activity as a function of backward recurrence time and this provides a structural explanation of
the transformation between market time and clock time.3 The estimated price intensity is then used
to estimate the instantaneous volatility in the relevant market, in our case, 2, 5 and 30 year US
treasury notes and bonds. This provides a new structural approach to stochastic volatility modelling
through a point process modelling of activity in the market based on information �ow rather than
a linear autoregressive model that is frequently used. These instantaneous volatilities may then be
used to calibrate a yield curve model such as the Heath, Jarrow and Morton model (1992), to price
derivatives and to study how di¤erent news events change the shape of the yield curve.4 In the current
paper we focus on analyzing whether there is a single time scale in the yield curve or whether there
are di¤erent time scales corresponding to di¤erent news events and hence information at di¤erent
points on the yield curve. This has a direct interpretation in terms of the Market Segmentation
or Preferred Habitat model of the term structure, see Culbertson (1957) and Modigliani and Sutch
(1966) or more recently Vayanos and Vila (2007). We �nd, using a multivariate Hawkes model
to model the multivariate intensity processes corresponding to the di¤erent yield-to-maturities, that
there are in fact di¤erent time scales at each point in the yield curve but these are in turn coordinated
by the multivariate Hawkes model into a common time scale that ensures the bond market functions
coherently.

In section 2 we brie�y describe the Market Segmentation and Preferred Habitat models of the
term structure of interest rates. In Sections 3 and 4, we discuss time deformation and our approach to
using a multivariate point process model to model stochastic volatility at di¤erent maturities on the
yield curve. In section 5, we discuss the estimation of our model by Maximum Likelihood Methods
and the diagnostic tests we apply. We then describe the data in section 6 and the empirical results
in section 7 before drawing some conclusions.

1A translation of clock time into a time scale that re�ects market activity or information �ow.
2Price intensity measures the rate of price changing trades.
3The backward recurrence time is the time elasped since the last event and is a left-continuous function before t.
4We consider this issue in a related paper- Information Flow down the Yield Curve.
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2 Market Segmentation and the Preferred Habitat Model

In contrast to modern theories of the Yield Curve which rests on a representative agent who will seek
out arbitrage opportunities at any point in the yield curve, the Market Segmentation (Culbertson,
1957) and Preferred Habitat (Modigiani and Sutch, 1966) models both rest on the view that investors
di¤er in the maturites in which they are active given their liability structure. So for instance, Pension
Funds may be more interested in long dated bonds, say 30 years, while Life Assurance companies
will be active in shorter maturities, perhaps 15 years and asset managers will be interested in shorter
bonds. In both these theories, investors at each maturity are di¤erent and concentrate their activity
on the speci�c maturity in which they are primarily concerned and so the bond price at each point
in the yield curve will re�ect the di¤erent liquidity structures and the separate forces of demand and
supply at each maturity. The shape and movement of the yield curve is then seen to be determined
by the di¤erent market forces and pressures at each maturity. Modern theories of the Yield Curve
downplay the heterogeneity implied by these theories and the di¤erent preference and information
structure that is implied at each point in the yield curve. In contrast the Market Segmentation
Theory assumes that neither investors nor borrowers are willing to move from one maturity to
another to take advantage of arbitrage opportunities provided by changing expectations and forward
rates. The Preferred Habitat Theory recognizes that the term structure re�ects expectations of the
future path of interest rates and a risk premium but rejects the uniform rise in the risk premium
with maturity. Instead Modigliani and Sutch (1966) argue that there will be some movement in
activity between maturities that are in excess supply and those in excess demand at any point but
that the compensation required, through the risk premium, will re�ect the individual inducement
required for the market participant to move out of their preferred habitat. Individuals have di¤erent
risk preferences and di¤erent risk horizons.

Vayanos and Vila (2007) have recently developed a modern Preferred Habitat model in which
investors with preferences for speci�c maturities trade with risk averse arbitrageurs and it is the
arbitrageurs who integrate the markets for di¤erent maturities by incorporating information about
expected short rates into bond prices. The point process models that we develop below coincide
almost exactly with this theoretical structure. By focusing on activity at each point in the yield curve
separately we can examine if there are critical di¤erences in each market and what the interactions
are at the highest frequency of trading. In our model, the multivariate Hawkes model serves as the
device that integrates the market as a whole and hence captures the arbitrageurs activity. There are
important implications for policy in examining how information �ows down the yield curve as it is
often seen to be critical to understand how changes in the policy rate which immediately a¤ect the
short end of the yield curve are transferred to the long end. We can examine this question precisely
using the multivariate Hawkes model developed below.

3 Time Deformation

Most empirical models of security prices have ignored the question of what time scale should be
employed to measure the properties of the asset of interest. Common practice uses a �xed interval of
clock time, be it one minute or one day, and these do not necessarily re�ect the varying amounts of
information on the underlying process in these �xed intervals. Although such temporal aggregation
super�cially facilitates empirical analysis it masks the true stochastic process that drives asset prices
and confuses the ability of statistical methods to measure the process. Hasbrouck (1999) notes that
the time aggregation of data smears the impact of individual events and aggravates problems of
simultaneity. Ait-Sahalia and Mykland (2003) highlights the biases and adverse e¤ects of sampling
discreteness and randomness when using a discrete sampling scheme. Information on the underlying
process is simply lost on aggregation to �xed intervals of clock time and ad hoc assumptions must
be used to �nd representative values for the interval of clock time; such as the choice to use daily
closing values to represent the entire day.
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Time deformation is a more subtle and deeper issue that is independent of temporal aggregation
and rests on the recognition that stochastic processes may evolve on di¤erent time scales than
natural clock time. For instance consider a sequence of transactions that occur at irregular points in
clock time carried out at di¤erent prices and di¤erent volumes; we can create di¤erent time scales
de�ned by volume for instance or price so that the volume time scale increased by one unit each
time, say, 10 million dollars had been transacted since the last �time� point or alternatively the
price change had increased by 5 ticks5. These two time scales would not necessarily coincide of
course and represent two very simply possible choices from a large number of di¤erent potential
time scales that could be considered; see Le Fol and Mercier (1998). Clark (1973) demonstrated
that the subordinated stochastic structure implied by time deformation can potentially reconcile the
observed non-Gaussianity of returns if a proper measure of information �ow can be recovered. The
argument being that information �ow measures the correct time scale on which the underlying price
process should be measured and once returns are conditioned on this measure of information �ow
(or in this time scale) then the central limit theorem applies and Gaussianity is returned. Market
microstructure theory is consistent with this approach. Diamond and Verecchia (1987) and Easley
and O�Hara (1992) have noted that when traders are informed, they are more likely to be impatient
(short durations) and when traders are informed, they would ideally prefer to trade large volumes
or successive waves of smaller trades. The critical question lies in how to measure information.

A number of di¤erent proxies have been put forward, for example; volume- Clark (1973), Epps
and Epps (1976), Tauchen and Pitts (1983), Karpo¤ (1987), Gallant, Rossi and Tauchen (1992),
Blume, Easley and O�Hara (1994), the number of trades- Jones, Kaul and Lipson (1994), Ané and
Geman (2000), trade duration- Russell and Engle (1998), Engle (2000) and trade intensity - Salmon
and McCullouch (2005). In this paper, we di¤er from Salmon and McCullouch (2005) by using the
price intensity because of its relationship with the volatility of returns. If informed traders trade
more frequently after an information event through a series of price changing trades, there is a direct
relationship from information to the volatility of asset returns via the price intensity.

Time deformation has been modelled in several di¤erent ways in the literature and a natural
representation through stochastic subordination is in terms of stochastic volatility models. Stochastic
volatility represents a latent process and one approach developed by Stock (1998) assumes that the
multivariate latent process = (s), the volatility at each maturity in the yield curve, we are interested
in modelling, evolves smoothly in operational or market time s. Stock assumes a mapping between
market time s and clock time t : s = g(t) which describes the relationship between the two time
scales.(Stock, 1988; Ghysels and Jasiak, 1995). This approach to stochastic volatility is structural
and rests on the idea that further market or economic variables appear within the function g(�)
directing the process by which information �ow a¤ects the relationship between clock time and
market time. The approach we follow is similar but employs a more natural speci�cation by exploiting
an underlying point process model for the stochastic price intensity process at each point in the yield
curve. The univariate and multivariate Hawkes processes that we describe below allow self and cross
excitation from the activity at di¤erent maturities along the yield curve to account for the clustering
of activity and information transfer between the di¤erent yields. These Hawkes models are then used
to model the price intensity which we take as our market time scale and e¤ectively replace Stock�s
logistic speci�cation for g(t).

4 The Model of Bond Prices and Price Intensity

Time deformation, through a subordinated stochastic process, naturally de�nes a stochastic volatility
model as described originally by Clark (1973). The directing process in our case is the intensity

5Another classic example is how to value two identical second hand cars that are of the same age but one has done
100,000 miles and the other 10,000. Clearly their common age measured by clock time would not deliver the correct
valuation and some account, a time deformation, would have to be made for milage. Second hand car dealers are
arbitrageurs in time deformation!
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process which drives the stochastic volatility and hence returns. Consider the following stochastic
di¤erential equation for bond returns:

dB (t)

B (t)
= � dt+ � (t) dW1 (t) , (1)

where B (t) is the bond price and W1 (t) is a standard Wiener process. A standard stochastic
volatility model assumes that log volatility is driven by a second Wiener process W2(t) through an
Ornstein-Uhlenbeck type process,

d log �(t) = a((b� log �(t))dt+ cdW2(t)

which assumes that log volatility evolves smoothly in clock time t. Instead we specify the stochastic
volatility process by assuming6:

dB (t)

B (t)
= � dt+

p
�2 (g (t))dW1 (t) (2)

which implicitly implies that log volatility evolves smoothly in market time (s = g(t));
We can estimate the volatility process directly from the price intensity in the following manner;

�2 (s) = lim
�!0

1

�
[prob jB (t+�)�B (t)j � dB j Ft]�

�
dB (t)

B (t)

�2
(3)

= lim
�!0

1

�

h
prob

�
NdB (t+�)�NdB (t)

�
> 0 j Ft

i
�
�
dB (t)

B (t)

�2
(4)

�2 (s) = �dp (t;Ft)
�
dB (t)

B (t)

�2
,

where s = g(t) = �dp (t;Ft) = �+
Z
(0;t)

W (t� u; �) dN (u) (5)

where �dp (t;Ft) is the conditional price intensity at time t, and �2
�
�dp (t;Ft)

�
is the directing

stochastic volatility. The mapping between market time, s = �dp (t;Ft) ; and the calendar time,t;
given by the stochastic intensity model, speci�es a structural stochastic volatility model that depends
on how we specify the intensity model and serves as the work horse for our time deformation process.
Such a speci�cation for volatility, where the instantaneous volatility is modelled using the price
intensity, is not new to �nancial economics (see for instance,Cho and Frees (1988), Engle and Russell
(1998) and Gerhard and Hautsch (2002)). Cho and Frees(1988) argue that measuring volatility by
how quickly price changes rather than by how much asymptotically eliminates the resulting measure
from micro-structure biases created for instance by bid ask bounce. In addition volatility speci�ed
in this form re�ects the economic intuition linking the rate of trading activity and the �stylized fact�
of volatility clustering. As new information arrives, if informed traders are impatient and carry out
order splitting strategies to exploit their information advantage as quickly as possible, as suggested by
the market microstructure literature, there will be clustering of trades and thus volatility clustering.
This also suggests that information is incorporated into prices through packets of trades, either fast
or slow, motivating the use of price intensity as the directing process for our time deformation model.

Empirically our approach is supported by Garbade and Lieber (1977) who found that a homoge-
nous Poisson process captures the majority of trade activity relatively well, except for the irregular

6This is di¤erent from Ghysels and Jasiak (1995) which specify the stochastic volatility process as:

d log (� (s)) = a (b� log � (s)) ds+ cdW2 (s) ,

as an Ornstein-Uhlenbeck type process estimated using Kalman �lter and e¢ cient method of moments.
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bursts of trade arrivals which invalidate the homogeneous assumption and Engle and Russell (1998)
who observe trade clustering in the NYSE.

The model we develop below draws in particular on Bowsher (2005) and Hawkes (1971) and
as opposed to Engle (2000) or Bauwens and Hautsch (2003), provides a direct speci�cation for the
stochastic intensity process in terms of the backward recurrence time of events rather than by way
of duration.

First, assume N (t) to be a simple point process in [0;1) on (
;F ; P ) that is adapted to some
�ltration fFtg, and that � (t j Ft) is a positive process with a sample path that is left-continuous
with right-hand limits. Then, the conditional trade intensity can be written as:

� (t j Ft) = lim
��!0

1

�
E [N (t+�)�N (t) j Ft] , (6)

where N (t) represents the number of events that have occurred up to and including time t. We refer
to � (t j Ft) as � (t), the value of � at time t, and Ft is de�ned as the natural �ltration up to and
including time t: Within this framework, information �ow is captured by trade intensity; the higher
trade intensity the shorter trade duration indicating the presence of information.

The time deformation model for the treasury securities is fully speci�ed in a multivariate frame-
work, where each maturity in the yield curve or the number of variates is represented by the index
m 2 M , assuming that ftigi2f1;2;���g is a simple point process in [0;1), de�ned on (
;F ; P ), and
where fzigi2f1;2;���g is a sequence of f1; 2; � � �;Mg - valued random variables. Then the double se-
quence of fti; zigi2f1;2;���g is an M -variate point process on [0;1).

De�nition 1 For all m, 1 � m �M , and all t � 0,

Nm (t) =
X
i�1

1 (ti � t)1 (zi = m) ; (7)

then the M -vector process N (t) = (N1 (t) ; � � �; Nm (t)) is an M -variate counting process associated
with fti; zigi2f1;2;���;mg re�ecting the trading process at each maturity m:

The fully speci�ed intensity model for each maturity is then written as:

�m (t; �) = �m +
MX
m=1

Z
(0;t)

W (t� u; �) dN (u) , (8)

where �m > 0 is the baseline intensity, a deterministic m-vector-valued function on R
+; W > 0 is an

m�m matrix-valued function on R+; � is a vector of unknown parameters. The functions within W
will be speci�ed in our model as nonlinear autoregressive excitation processes, where the pattern of
trading in the past increases current intensities and trading activity. In the m-variate case, �m (t; �)
is driven by the backward recurrence time of m autoregressive exciting e¤ects; each capturing the
past occurrence of type m events. The diagonal entries of W will be called self-exciting e¤ects, while
o¤-diagonal entries are cross-exciting e¤ects. Note that if �m = 0 then the self and cross exciting
e¤ects in W would never be realized as there would be nothing to start the self exciting process and
so � � 0. For non-trivial results we therefore require that �m is positive. Previous work speci�es
�m using a spline or a fast Fourier transform (i.e. Bowsher, 2005; Hall and Hautsch, 2004) in order
to capture the intra-day deterministic e¤ects. Since our objective is to examine time deformation
e¤ects and in particular intra-day e¤ects we have chosen instead not to extract any deterministic
seasonal pattern and assume �m is constant. In part we have also taken this decision to avoid any
mis-speci�cation created by inappropriate modelling of the diurnal e¤ect.

We specify W using Hawkes models for the stochastic intensity with a non-negative exponen-
tially decaying function, which capture the clustering of trading. This allows us to measure the
impact of periods with di¤erent information �ow and their rates of decay. Note that �m must be
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Figure 1: Graphical Illustration of a Hawkes Model

non negative and that di¤erent forms of the decay function of the backward recurrence time are
possible but, in common with earlier work, we will employ an exponential form; W (t� u; �) =
�jm;r exp

�
��jm;r(t� � r;k)

�
.7 The �nal speci�cation of our time deformation model is then given as:

�m(t) = �m +
MX
r=1

DX
j=1

Nr(t)X
k=1

�jm;r exp
�
��jm;r(t� � r;k)

�
, (9)

where M is the number of maturities we consider, D is the number of dimensions ( exponential
functions), Nr is the number of data points of type r, and � r;k is the occurrence time for the k0th
data point of process m.

In this model, we, therefore, allow for market time to take multiple scales corresponding to
multiple types of information- if there were a single market time scale then a univariate Hawkes
model would be common for all maturities or the impact factor �jm;r will be the same for all ��s.8 A
graphical illustration of a Hawkes model is presented in Figure 1 below which shows hte self exciting
feature of the model.

5 Maximum Likelihood Estimation

Ogata (1978) established, under certain regularity conditions, that the MLE for a simple, stationary
univariate point process model is consistent and asymptotically normal as T !1, and the likelihood

7For a more detailed analysis of the asymptotic properties and stationarity conditions see Hawkes (1971).
8Our model di¤ers from the g-HawkesE model in Bowsher (2005), which uses only the past events of the same

trading day and the previous day�s intensity. This speci�cation is more �exible, but it is di¢ cult to derive conditions
for stationarity, as the additive e¤ect of the previous events is �xed as endpoints of each individual trading day.
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ratio test of a simple null hypothesis possesses the standard �2 asymptotic null distribution. .
The assumption that the point process is simple implies that the intensity of each type m gives

the conditional probability of a trade occurring per unit of time as the time interval tends to zero. If
the sample path of the point process is integrable, then there exists an analytic likelihood function for
the speci�ed conditional intensity. Given a parameterized Hawkes�model, the unknown parameters,
� = (�m; �

j
m;r; �

j
m;r); can be estimated using MLE with a likelihood function given by:

L
�
�; fN (t)gt2(0;T ]

�
= exp

MX
m=1

264 Z
(0;T ]

log(�m(s; � j Fs))dNm (s) +
Z T

0
(1� �m(s j Fs)) ds

375 . (10)

The parameters associated with �m(t; � j Fs) in a multivariate Hawkes model are often assumed
to be variation-free or separable (Bowsher, 2005; Hall and Hautsch, 2004), allowing for separate
maximization of m log likelihood components and avoiding the curse of dimensionality. Separability
is important in a point process model because it eases the complexity of estimation as a parameter
or a set of parameters may be estimated individually9. However, as far as we can see, the full
impact of the variation-free assumption or separability has not yet been rigorously examined in this
particualr context and the impact on the asymptotic properties of the MLE estimates are therefore
still unclear. We have been able to avoid any assumption of separability by rewriting the joint
likelihood in a recursive conditional mannerand directly maximizing the joint likelihood following
the procedure outlined in Sohrmann and Tham (2006).

5.1 Stationarity Conditions

Assuming � to be constant rather than a spline allows one to derive the stationarity conditions for
the multivariate case. If

�s(t) = �s +

kX
r=1

Z t

�1
gsr(t� u)dNs(u) (11)

�(t) = �+

Z t

�1
G(t� u)dN(u), (12)

then, the vector of stationary densities is:

� = (1� �)�1 � (13)

� =

Z 1

0
G(�)d� , (14)

given � > 0. For an invertable (1� �), this condition will give k rows of stationarity conditions.
This integral equation is in general di¢ cult to solve analytically. However, an analytic solution may
be obtained when g (� � �) decays exponentially (Hawkes, 1971) and in our case corresponds to the
multivariate stationarity condition.

0 <
MX
r=1

DX
j=1

�jm;r

�jm;r
< 1

In each case reported below in our empirical results we �nd this conditon is statis�ed and therefore
the models we have estimated are stationary.

9For a more detailed discussion of separability in multi-dimensional point process, refer to Schoenberg (2003) (2004).
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5.2 Generalized Residuals and Speci�cation Testing

A common approach to evaluating point process models is to examine discrimination criteria such as
the Akaike Information Criterion or the Bayesian Information Criterion (e.g. Ogata, 1988). These
provide useful numerical comparisons of the relative goodness of �t of competing models but cannot
shed light on the speci�cation of a particular model as provided by formal speci�cation tests. In
particular, they cannot identify where a model �ts poorly nor where it fails.

Residual analysis in other statistical contexts is a standard and powerful tool for locating defects
in the �tted model and for suggesting how the model should be improved. While the same is true
in point process modelling, you need to be careful in how you de�ne the residuals in this context
as they will be yet another point process, the residual process is therefore similar to the generalized
residuals considered in Cox and Snell (1968). Much diagnostic checking in the point process literature
is carried out by examining various plots constructed from the residual process, see Baddeley et al
(2005) and Zhuang (2006).

If N(t) denotes the count process of trades then residuals can be constructed from the fact that
the unobservable error or innovation process;

I(t) = N(t)�
Z t

0
�(s)ds

is a martingale with E[I(t)] = 0 when the model is true. When the point process model is �tted to
the data and parameters, �; estimated as,�̂; then the estimated parameters would be substituted into
�(t) = ��(t) to give the estimated conditional intensity �̂ (t) = ��̂(t) from which we can compute the
raw residual process

R(t) = N(t)�
Z t

0
�̂(s)ds

Increments in R(t) are equivalent to the residuals (observed minus �tted) in a regression model
and the adequacy of the �tted model can be examined by checking if R(t) � 0:

Another standard approach is to examine if the estimated conditional intensity function �̂ (t)
delivers a homogeneous Poisson residual process. Suppose we observe a one-dimensional point process
t1; � � �; tn with conditional intensity � (t) on an interval [0; T ]. Papangelou (1974) shows that the
integrated conditional intensity of the process forms a homogeneous Poisson process with a unit rate
on the interval [0; n]. If the estimated intensity �̂ (t) is close to the true conditional intensity, then
the residual process should resemble a unit rate homogenous Poisson process.

Theorem 2 Let N (t) be a simple point process on [0;1). Suppose that N (t) has the intensity
function � (t j Ft) that satis�es: Z 1

0
� (t j Ft) dt =1, (15)

de�ne for 8t; the stopping time � t as the solution to:Z � t

0
� (s j Fs) ds = t, (16)

then, the point process ~N (t) = N (� t) is a homogenous Poisson process with intensity � = 1: Proof
is shown in Bremaud (1981).

The only condition for the above relations to hold is the assumption of a simple point process
where there is zero probability of the occurrence of more than one event at any single point in time.
From the theorem, it can be shown that ~ti�~ti�1 =

R ti
ti�1

� (s j Fs) ds = �(ti�1; ti) ; where
�
~ti
	
i2f1;2;:::g

denotes the time of occurrence for the sequence of points associated with ~N (t). Then it follows that:
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� (ti�1; ti) � i:i:d:Exp(1). (17)

Note that the above transformation is a time-series transformation of a non-homogeneous Poisson
process into a homogenous Poisson process. Moreover, � (ti�1; ti) establishes the link between the
intensity function and the duration until the next occurrence of an event. � (ti�1; ti) can be seen
as the generalized residual and indicates whether the speci�ed intensity function under-predicts
(� (ti�1; ti) < 1) or over-predicts (� (ti�1; ti) > 1) the number of events at any point in time.

6 Data Description

The data is drawn from BrokerTec, an inter-dealer electronic trading platform of secondary wholesale
U.S. treasury bonds that currently has a market share of approximately 60-65% of the active issues.
It functions as a limit order book and operates from 7:00 to 17:30 Eastern Standard Time (EST)
for the 2, 3, 5, 10, and 30-year treasuries. The paper focuses on the on-the-run notes and bonds,
namely 2-year, 5-year notes, and 30-year bond, traded between 7:30 and 17:30 EST. Even though
the on-the-run securities represent just a small fraction of all the outstanding treasury securities,
they account for about 71% of the activity in the interdealer market (Fabozzi and Fleming, 2000).
The three-year note is excluded as the issuance of this security was stopped in 1998. Similarly,
Treasury In�ation-Indexed Securities are also excluded because of limited level of trading activities.
Our sample period is January 18th, 2005 to December 30th, 2005.

Weekends, holidays, and days with unusually low or no trading activity (due to feed failures) are
removed. The time stamp in the dataset is accurate to one thousandth of a second. There are records
of simultaneous trades and such trades are di¤erentiated using a uniform distribution between zero
and one to ensure the assumption of a simple point process holds. The period of estimation is chosen
from7:30 to 17:30 EST as this range of time captures more than 90% of all trading activity. Because
of the time gap between each trading day, the data is concatenated together so that 17:30 on Monday
is followed by 7:30 on Tuesday in a new time line.

Table 1: Preliminary data analysis

Variables 2-year 5-year 30-year
Mean 276.43 69.2 93.26
Standard Deviation 446.18 113.28 138.76
Skewness 4.28 5.61 4.96
Min 0.10 0.10 0.10
Max 8075.01 3510.89 4015.59
Observations 28644 116163 84651

Table 1 shows we have 28644, 116163, and 84651 observations for the 2-year, 5-year notes, and
30-year bond respectively. The average duration between trades with a price change of 1-tick is
276.43 seconds, 69.2 seconds, and 93.26 seconds respectively. The 5-year note is therefore the most
traded security among the three considered. The minimum duration for all securities is 0.1 second
while the maximum duration varies between 3510.886 seconds to 4015.596 seconds. Figures 2-4 show
the histograms of the price durations for each security, which suggests over-dispersion.

The sizable di¤erences between the means and standard deviations also suggest that the durations
are not conditionally exponentially distributed and this is con�rmed in Table 2 where a Kolmogorov
Smirnov test is reported. This also con�rms the �nding of Garbade and Lieber (1977) that a
homogenous Poisson process is not appropriate for modelling trade arrivals.

Since, the Hawkes model is proposed as a time-deformation model for temporally dependent
trades, we need to examine the temporal dependence in the duration between price-changing trades

10
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Figure 2: Histogram of the price duration for 2-year notes.
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Figure 3: Histogram of the price duration for 5-year notes
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Figure 4: Histogram of the price duration for 30-year notes

Table 2: Kolmogorov-Smirnov test for price duration

Maturity 2-year 5-year 30-year
Kolmogorov-Smirnov test ~Exp

Asymptotic Statistics 146.86 229.37 211.96
P-value 0.001 0.001 0.001
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for potential clustering of trades. The real time autocorrelations in Table 3 are all signi�cantly
positive. The Ljung-Box statistic of no autocorrelation is a �215 variable with a 5% critical value
of 25 and the null of no autocorrelation is therefore easily rejected for all three securities. So, as in
Engle and Russell (1997), we �nd a clear pattern of temporal dependence in price changing trades
in the U.S. treasury market.

Table 3: Duration autocorrelation

Duration 2-year 5-year 30-year
Lag 1 0.19 0.26 0.26
Lag 2 0.19 0.25 0.22
Lag 3 0.18 0.24 0.22
Lag 4 0.16 0.23 0.21
Lag 5 0.15 0.22 0.19
Lag 6 0.14 0.20 0.18
Lag 7 0.12 0.18 0.17
Lag 8 0.12 0.19 0.16
Lag 9 0.12 0.18 0.15
Lag 10 0.10 0.18 0.14
Lag 11 0.09 0.17 0.14
Lag 12 0.09 0.17 0.13
Lag 13 0.08 0.16 0.13
Lag 14 0.08 0.14 0.12
Lag 15 0.07 0.13 0.11
L.B (15) 8943.34 9986.76 9910.23

7 Empirical Results

We start our analysis by estimating univariate Hawkes models for each maturity independently as
shown in Table 4 , where � is the impact factor of the self-excitation component, � is the decay rate
of the self-excitation e¤ect, and � is the baseline intensity which can be seen as the deterministic
component of the non-homogenous Poisson process.

It is not surprising that the 5-year note shows the highest baseline intensity since it is the most
heavily traded among the three securities. All three securities exhibit strong autodependence as
shown by the relevant estimated ��s with half-lives of 5.12, 4.48, and 5.40 minutes for the 2-year,
5-year, and 30-year treasury securities respectively, which con�rms the preliminary indication of
strong autocorrelation found in Table 3 above. The models for all three securities appear relatively
well speci�ed as the residual durations show a mean of 1 and a standard deviation that is close
to 1, signalling that all three residuals are Poisson (1) processes with time-transformed durations
that are Exponentially (1) distributed. However, the test for independence using Ljung-Box test
rejects the null-hypothesis that these residuals are independently distributed suggesting the need for
a multi-variate model.

The multivariate Hawkes model is estimated by taking into account the interaction between
trading activities at each maturity. Doing so allows us to investigate a much richer picture behind
the forces driving the di¤erent parts of the yield curve and to investigate the market segmentation
hypothesis directly.10 The model allows us to study the co-dependence or cross excitation of trading

10The estimation routine was written in C++ using OPT++ as the optimizing package. The log likelihood function
is maximized using quasi-newton non-linear optimization. The C++ algorithm written for the calculation of the
log likelihood has been tested against a simulated multivariate Poisson process. Empirical tests of the consistency
of estimates have been successfully carried out . All estimated parameters attain convergence against the gradient
tolerance of 1E-5 and the standard error is estimated using the inversion of the negative Hessian matrix. All the time
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Table 4: Univariate Hawkes estimation

Variables 2-year 5-year 30-year
Panel A. Coe¢ cient Estimates

� 0.089 0.13 0.10
S.E. (1.20E-5) (3.24E-6) (5.45E-6)
� 0.129 0.154 0.12
S.E. (2.00E-5) (4.19E-6) (7.28E-6)
� 0.066 0.134 0.104
S.E. (8.99E-6) (6.15E-6) (1.04E-5)

Panel B. Diagnostics
LogLikelihood -72408.80 -132731.70 -121999.30
Observations 28644.00 116163.00 84651.00
Mean residual duration 0.9953 1.00 0.997
S.D. residual duration 0.96 0.976 0.956
L.B. test (20 lags) 284.60 106.45 56.14

activity between treasury securities across time alongside the self-excitation that will be re�ected to
some degree in the autocorrelation patterns reported above. Table 5 shows the estimated parameters
for the multivariate Hawkes model as well as the satisfaction of the stationarity condtion.

The columns denote the e¤ect each column security has on the row security and the diagonal
shows the self-excitation components. For example, the cross-excitation e¤ect of a 5-year note price
changing trade on a 2-year note trade intensity is 0.001746. This suggests that the conditional
probability of the trade occurrence of a 2-year note is increased by 0.001746 on top of the baseline
0.0602 and self-excitation 0.08939 e¤ects. This increase in the probability of occurrence of a price
changing trade is, however, decaying at the speed of 0.6 units per minute.

The estimated parameters from the multivariate model show self-excitation e¤ects that are very
similar to those found in the univariate Hawkes model, but the standard errors of the estimated para-
meters suggest a signi�cant in�uence of cross-trade e¤ects in this multivariate framework. However,
it is clear that the majority of the trade intensity is self -excited for all maturities. For instance, the
cross-excitation terms in the 2-year note suggest that price movements are driven by trades occurring
in the 5-year and 30-year markets but these e¤ects (while signi�cant) are relatively much short lived
and the cross impact e¤ects much smaller. In each case, the decay pattern is much slower for the
own-market event compared to the cross-market e¤ects. However we can also see that each market
is di¤erent as the trade intensity is primarily driven by self-excitation e¤ect and the coe¢ cients of
all impact and decay rates are signi�cantly di¤erent from each-other. This does suggest that the
markets are segmented to a degree and hence responding to di¤erent information, or there is more
than one source of information that is driving the price process for each security. From the time
deformation point of view,this also indicates that there are di¤erent time scales in each market and
that the multivariate Hawkes model serves to coordinate activity between the di¤erent maturities.
The estimated parameters also highlight that the long end of the yield curve has a signi�cant impact
on the shorter end and vice-versa. One can also observe that the all-weather 5-year note is a security
that is the least a¤ected by movements in other parts of the yield curve.

In brief, the markets do appear to be segmented to a considerable degree but not totally and
there seem to be di¤erent �operational clocks�or time scales at work in the treasury market. We now
need to systematically test for the presence of a single market time scale using the likelihood ratio
test and carry out various speci�cation tests which we turn to in the next section.

of occurrence of price-changing trades is scaled in terms of minutes for numerical e¢ ciency reasons. The multivariate
Hawkes model is also linearised mathematically to improve on computational time. For more details, see Sohrmann
and Tham (2006).
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Table 5: Multivariate Hawkes estimation
Variables 2-year 5-year 30-year

Panel A. 2-year bond
� 0.08939 0.001746 0.003673
S.E. (1.25E-05) (3.81E-06) (5.06E-06)
� 0.1296 0.6 0.6397
S.E. (2.10E-05) (4.25E-06) (4.29E-06)
� 0.0602
S.E. (1.02E-05)
Stationarity Condition �

� < 1 0.69 0.003 0.006
Panel B. 5-year bond

� 0.0003386 0.1309 0.0003843
S.E. (1.08E-05) (9.47E-06) (9.61E-06)
� 0.639 0.1549 0.5800
S.E. (4.21E-06) (1.23E-05) (4.22E-06)
� 0.1341
S.E. (1.80E-05)
Stationarity Condition �

� < 1 0.003 0.22 0.0006
Panel C. 30-year note

� 0.007165 0.0007342 0.1003
S.E. (7.48E-06) (6.29E-06) (7.77E-06)
� 0.6392 0.6200 0.1201
S.E. (4.26E-06) (4.21E-06) (9.79E-06)
� 0.1007
S.E. (1.67E-05)
Stationarity Condition �

� < 1 0.011 0.0012 0.84
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7.1 Diagnostic Tests and Tests for Time Deformation

As a �rst diagnostic check we can examine if the estimated generalised residuals de�ned above which
follow from the martingale condition de�ned above in section (5.2) have a zero mean. A simple plot
shows two lines that are indistinquishable given the number of residual observations we have and a
formal test of a zero mean yields a p value of one for each residual series, univariate and multivariate
at each maturity. The residuals process will show no further structure if they are a homogeneous
Poisson processes and we examine this, again as described in Section (5.2) using tests for an Exp(1)
distribution in Table 7 below.

A further important issue is to examine the presence of time deformation in the original trading
process and the most intuitive way of examining this is simply to plot

R t
0 �

dp
�
t;F2t

�
against clock

time ,t, and see if it is linear and increases proportionately.
Figures (5), (6), (7), (8), (9) and (10), show price intensities and prices for each maturity across

time on 30th June 2005; a day with an FOMC meeting and a 2-year note monthly auction where
we can see the Preferred Habitat Theory at work. There was an increase on the base interest rate
of 25 basis points announced at 8.30 and a reduction of the size of the auction for 2-year note held
between 2.00pm and 4.00pm. The market had expected the base rate to rise by 25 basis points
according to a market survey from Informa Global Markets�monthly report and it is interesting
to see that prices fell immediately and then rebounded to a higher level after the annoucement of
the base rate rise. The inital downward jump is congruent with the increase in the base rate and
the upward movement afterwards might suggest that expectation hypothesis is at work re�ecting
the market sentiment that further interest rate rises were unlikely. However, prices become more
volatile during the auction period where the bid-to-cover ratio, a measure of demand, stood at 2.23,
above the 2.10 average of the previous ten 2-year note sales. The government awarded $20 billion of
two-year notes at a yield of 3.65%, reducing the size from the previous auction of $22 billion. Indirect
bidders, who include foreign central banks and large institutional investors, bought only 28%, down
from 37% in the previous auction, in May. The price of the 2-year note stablised at a lower level after
4pm, suggesting a possible shift of investor interest to the 5-year note and 30-year bond where prices
continued to rise after the 2 year auction supporting the presence of Preferred Habitat behaviour in
the treasury market.

The �gures also indicate, taking account of the di¤erent scales, the relative impact that the two
year auction had on trading activity at the two other maturities. There is clearly a much greater
time deformation impact on the two year note itself as the steepness of the time deformation functon
is much greater during the auction which also suggests that the volatility is driven by the reduction
in supply which has spilled over to the 5-year and 30-year securities as investors substitute 2-year
notes with the 5-year and 30-year bond. The sudden increase in the slope of the integrated intensity,
our measurement of trading activty, from 2-4pm also coincides with the period of high volatility.
These �gures strengthen our claim that trade intensity provides a suitable operational clock.

In order to test the time-deformation hypothesis more formally we can also carry out explicit
parameter restriction tests on the estimated multivariate Hawkes model. Using Likelihood ratio (LR)
tests we can test the following four hypotheses

1. All three maturities have the same impact e¤ects through the restriction that H0 : �11 = �22 =
�33, �12 = �13 = �21 = �23 = �31 = �32

2. All three maturities have the same decay characteristics through the restriction that: H0 :
�11 = �22 = �33, �12 = �13 = �21 = �23 = �31 = �32

3. That each process a homogeneous Poisson Process: H0 : �11 = �22 = �33 = �12 = �13 =
�21 = �23 = �31 = �32 = 0

4. That the Mulivariate Hawkes model does not dominate the univariate Hawkes models: H0 :
�12 = �13 = �21 = �23 = �31 = �32 = 0

Table 6 reports the relevant Likelihood Ratio Statistics for each hypothesis.
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Figure 5: Price of 2-year note vs clock time on 30th June 2005
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Figure 6: Integrated Intensity of 2-year Notes vs time on 30th June 2005
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Figure 7: Price of 5-year Notes vs time on 30th June 2005
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Figure 8: Integrated Intensity of 5-year Notes Vs time on 30th June 2005

17



Price Vs Time
(30th June 2005)

116.5

117

117.5

118

118.5

119

08:09:36 09:21:36 10:33:36 11:45:36 12:57:36 14:09:36 15:21:36 16:33:36 17:45:36

Time

P
ri

ce

30Year Bond

Figure 9: Price of 30-year Bond Vs time on 30th June 2005
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Figure 10: Integrated Intensity of 30-year Bond Vs time on 30th June 2005
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Table 6: Diagnostic and Likelihood ratio tests

Variables 2-year 5-year 30-year
Panel A. Diagnostics

Observations 28644 116163 84651
Mean residual duration 1.00 1.00 1.00
S.D. residuals duration 0.97 0.98 0.96
L.B. test 201.06 78.55 28.87

Panel B. Likelihood Ratio Tests
Total Log Likelihood of Multivariate Hawkes -282717
H0 : �11 = �22 = �33, �12 = �13 = �21 = �23 = �31 = �32 6868
H0 : �11 = �22 = �33, �12 = �13 = �21 = �23 = �31 = �32 112
H0 : Joint Homogeneous Poisson Process 92728
H0 : Independent Univariate Hawkes Models 22

All the Likelihood Ratio statistics shown on the right hand side of Panel B reject the associated
null hypothesis, in favour of our time deformation model. The second row of Panel B shows that the
null of the same impact e¤ects for each maturity is strongly rejected. Similarly the third row indicates
that the null hypothesis that the decay rate are the same is also rejected. The null of a homogenous
Poisson process is also strongly rejected with a Likelihood Ratio of 92728 indicating the importance of
the clustering e¤ects of trade arrival and information �ow. Finally when the restrictions are imposed
to allow the multivariate Hawkes model to become three independent univariate Hawkes models at
each maturity the null is again rejected indicating the importance of the cross market e¤ects but
only with a much weaker signi�cance level on this occasion. However, Panel A also shows that again
we have residual autocorrelation indicating that a richer dynamic model is called for than we have
been able to capture in our Multivariate Hawkes model.

This impression is also supported with the results presented in Table 7 where we report formal
tests of the model speci�cation by applying the Engle Russell over-dispersion test for the generalized
residuals which has a limiting Normal distribution along with a simple �2 test for mean and standard
deviation equivalence. The 5% critical value for the Engle Russell test is 1.645 and the null of an
Exp(1) distribution appears to be rejected for all maturities for both the univariate and multivariate
generalized residual durations. The simple �2 test indicates acceptance however and so we report in
Panel C a speci�c Information Matrix based test for the Exp(1) distribution given by Acosta and
Rojas (2007) which clearly indicates acceptance of the Null of correct speci�cation for both univariate
and multivariate Hawkes models .
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Table 7: Overdispersion tests
Maturity 2-year 5-year 30-year
Panel A. Engle and Russell excess dispersion test

Univariate Hawkes
Statistics -2.37 -4.77 -8.06

Multivariate Hawkes
Statistics -3.54 -5.76 -8.72

Panel B. �2 test
D 0.94 0.95 0.92
Statistics 27033.32 110612.80 77694.36
P-value 1.00 1.00 1.00
Panel C. Information Matrix test

Univariate Hawkes
Statistics 3938.81 14164.28 10726.34
P-value 1.00 1.00 1.00

Multivariate Hawkes
Statistics 3951.78 14167.1 10715.41
P-value 1.00 1.00 1.00

In the next section we turn to consider two robustness checks of the time deformation model by
comparing the structural intensity-based volatility with the model-free realized volatility and then
examining the distribution of bond returns standardized by the estimated instantaneous volatility.

7.2 Robustness Checks

7.2.1 Realized Vs Intensity-based Volatility

The daily realized volatility is computed simply as the sum of the intra-day 30-minute returns. The
intensity-based volatility is calculated using equations (3)-(5) above so that the daily intensity based
volatility is the integrated instantaneous volatility across everyday, using the integrated intensity
multiplied by the price changes at di¤erent points in time. Figures (11), (12) and (13) show the high
co-dependence between the two volatilities supporting the hypothesis of using trade-intensity as a
directing process.

Table 8: Realized Vs Intensity-based Volatility

2year 5year 30year
Correlation 0.8569 0.7954 0.4943

Table 8 indicates a relatively high degree of linear dependence between the two series at least
for the 2 year and 5 year bonds. The realized volatility estimates are based on 20 daily observa-
tions whereas the intensity based measure is based on approximately 100. The di¤erence between
the structural Hawkes-based and the model free realized volatility estimates are interesting and po-
tentially important. The Hawkes model allows for further structural factors to be included in the
model but as it stand it can be used to forecast without any assumption of a linear autoregressive
information arrival rate which is implicit in time series models frequently used to predict realized
volatility.
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Figure 11: Realized Volatility Vs Intensity-Based Volatility - 2-year Note
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Figure 12: Realized Volatility Vs Intensity-Based Volatility - 5-year Note
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Figure 13: Realized Volatility Vs Intensity-Based Volatility - 30-year Bond

7.2.2 Gaussianity tests

Following Clark(1973), we can also examine the adequacy of our time deformation model by condi-
tioning the observed bond returns on the estimated instantaneous volatility from the Hawkes model.
We do this, as does Clark, by standardizing the bond returns with the estimated instantaneous stan-
dard deviation. Table 9 provides in Panel A the p values of various normality tests on the normalized
bond returns and we can observe clear rejection of Gaussianity with Leptokurtosis strongly particu-
larly in the 2 year and 5 year bonds. Panel B reports the same test statistics for the normalized bond
returns and consistent with the theoretical basis the use of our intensity-based measure of volatility
through time deformation has returned a conditional Gaussian distribution in each case although
there is relatively little e¤ect on the 30 year returns.

8 Conclusion

The paper approaches the modeling of the yield curve from a stochastic volatility perspective based
on time deformation. The way in which we model time deformation is new and di¤ers from alter-
natives that currently exist in the literature and is based on market microstructure theory of the
impact of information �ow on a market. We model the stochastic volatility process by modeling
the instantaneous volatility as a function of price intensity. One contribution of the paper therefore
lies with the introduction of a new transaction level approach to the econometric modelling of Yield
Curve stochastic volatility in a multivariate framework exploiting intensity-based point processes
previously used by Bowsher (2003), Hall and Haustch (2003). We �nd that the individual yields of
U.S. treasury notes and bonds appear to be driven by di¤erent �operational�clocks as suggested by
the market segmentation theory of the Term Structure but these are related to each other through a
multivariate Hawkes model which e¤ectively coordinates activity along the yield curve. The results
o¤er some support to the Market Segmentation or Preferred Habitat models as the univariate Hawkes
models we have found at each maturity are statistically signi�cantly di¤erent from each other and
the major impact on each maturity is activity at that maturity. However there are �ows between the
di¤erent maturities that die away relatively quickly which indicate that the markets are not com-
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Table 9: Normality test for daily returns and time-transformed returns

Panel A. Daily Log-Returns

Variables 2-year 5-year 30-year
Kurtosis 13.19 13.4 2.45
Skewness 1.99 1.71 -0.28

Shapiro-Wilk 0.00 0.00 0.03
Kolmogorov-Smirnov 0.01 0.01 0.15
Cramer-von Mises 0.01 0.01 0.07
Anderson-Darling 0.01 0.01 0.05

Bootstrapped Anderson-Darling 0.00 0.00 0.078
Bootstrapped Jarque-Bera 0.00 0.00 0.28

Panel B. Daily Transformed Returns Log�Returns
Intensity�based V olatity

Variables 2-year 5-year 30-year
Kurtosis 2.77 2.47 2.23
Skewness -0.02 0.03 -0.10

Shapiro-Wilk 0.65 0.37 0.03
Kolmogorov-Smirnov 0.15 0.15 0.13
Cramer-von Mises 0.21 0.25 0.07
Anderson-Darling 0.25 0.25 0.05

Bootstrapped Anderson-Darling 0.14 0.18 0.079
Bootstrapped Jarque-Bera 0.46 0.385 0.27

pletely segmented. Diagnostic tests show that the point process models are relatively well speci�ed
and a robustness comparison with realized volatility indicates the close relationship between the two
estimators of integrated volatility but also some di¤erences between the structural intensity model
and the model free realized volatility. We have also shown that bond returns standardized by the
instantaneous volatility estimated from our Hawkes model are Gaussian which is consistent with the
theory of time deformation for security prices quite generally.

The model can be easily extended by the inclusion of liquidity factors, bid-ask spread and depth
as further inputs into the operational or market time scale. The use of a dataset containing the
shorter end of the yield curve to study the trade intensity dependence among the di¤erent yield-
to-maturity would also be valuable as it provides a better understanding to the �missing�factors or
driving force behind the dynamics of the yield curve. Leverage e¤ects can also be included in our
model by modelling the conditional intensity of price-changing trade as a function of the backward
recurrence time of the buy and sell trade to capture the di¤erent self and cross-excitations of trades.
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