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Charles Weibel

Let k be a field and £ a prime number different from char(fc). The Milnor K-theory of

k is defined to be the quotient Kf1(k) of the tensor algebra of the abelian group kx by the

ideal generated by elements of the form {a, 1 — a}, a G k — {0,1}. The Kummer isomorphism

kx/£^^Hlt(k,He) exends to a (graded) norm residue homomorphism

(o.i) fcf(fc)/*—>0/*s(fc,0f»),

and Milnor asked in [5] whether this map is an isomorphism for £ = 2. This is true, as was

proven by Voevodsky in [MC/2].

The same question for £ odd was first formulated by Kazuya Kato in [2, p.608] and is

known as the Bloch-Kato Conjecture. A proof of this was announced in 1998 by Voevodsky,

assuming the existence of what we now call a Rost variety (see Lecture 1). Rost produced

such a variety in 1998 [R-CL], and the proof that (0.1) is an isomorphism appeared in the

2003 preprint [MC/1] — modulo three assertions. One of these, that the Rost variety has

certain properties, was established in [9]. The other two assertions, concerning the motivic

cohomology groups H** (X, Z/£), are still unknown. In these lectures we shall prove the

Bloch-Kato conjecture by establishing parallel assertions concerning the motivic cohomology

groups H**(X,Z).



1 Lecture 1: Overview of the Proof

We begin with a series of reductions.

Lemma 1.1. (Voevodsky [12, 5.2]). IfK™(k)/£ -> H™(k,/ifn) is an isomorphism for all

fields of characteristic 0, then it is an isomorphism for all fields of characteristic ^ £.

Proof. By a standard transfer argument, we may assume that k is perfect. Let R be the

ring of Witt vectors over k and K its field of fractions. Then the specialization maps are

compatible with the norm residue maps in the sense that

commutes. Both specialization maps are known to be split surjections; the result follows. •

Now there is a chain complex Z{i) of etale sheaves and an isomorphism H™t(X, Z/£(i)) =

H£{X,nf) for all n,i>0; see [4, 10.2] or [MC/2, 6.1]. We have a diagram

^ U ? ? > 0

This motivates the following result, whose proof we omit; compare with [11, 7.1].

Theorem 1.2. (Voevodsky [MC/2, 6.10]). Suppose that Hl+l'n(k,Z(n)) = 0 for every field

k of characteristic 0. Then K^(k)/£ = Hl(k,/ifn).

We proceed by induction on n, assuming K^_x{k)jll = HV^1 (k,nfn) for all k.

Proposition 1.3. (Voevodsky [MC/2, p.97]) Suppose that for every field k and every symbol

a = {a,i,... ,an} in K^f(k)/£ there is a field extension K so that a vanishes in K^f(K)/£

and the map H™t
+1 (k, Z(n)) -> H%+1(K,Z(ri)) is an injection. Then H™t

+1 (k, Z(n)) = 0, and

hence K^(k)/£ = H™(k,/ifn), for all k.



Proof. Fix k. By a transfinite process, we can find an extension field L which has K^f(L)/£ =

0, L has no prime-to-€ extensions, and such that i7^+1(fc,Z(n)) embeds in H1^1 (L ,Z(n)).

But for such an L we have Hg+l(L,Z{e)(n)) = 0 by [MC/2, 5.9 and 6.8]. •

Lemma 1.4. (Voevodsky [MC/1, 6.4]) If {a\,... ,an} is a nonzero symbol in K^f(k)/£, its

image is nonzero in H"t(k, /ifn).

Proof. By a standard transfer argument, we may assume k has no prime-to-€ extensions.

For E = A; (7), 7 = •{/a^, we have a diagram

KM_I{E)/£ ^

^ ^ Hg(k,Z/£) > Hg(E,Z/£)

in which the vertical maps are isomorphisms by induction and the bottom row is ex-

act by [MC/2, 5.2]. Since {«!, . . . ,«„} ^ 0, if {«! , . . . ,«„} vanishes in H?t(k,Z/£) then

{ai,..., an-i} is the norm of some s G K^f_1(E)/£. But then {a\,..., an} is the norm of

{s, an} = {s, JY = 0 and hence is zero.

We say that "X splits a" if X is a smooth irreducible projective variety over k such that

a = 0 in K^(k(X))/£. We write C(X) for the simplicial scheme C(X)n = Xn+l

whose face maps are given by projections. By [MC/2, 7.3], Hl(k,

is an isomorphism for all p and q. By [MC/2, 6.9(2)], the motivic H^is(C(X),Z/£(q)) is

i s o m o r p h i c t o H?t(C(X),Z/£(q)) for a l l p , q w i t h p — l<q<n — 1. D

Lemma 1.5. (Voevodsky [MC/1, 6.5]) If X splits a nonzero a G K^f(k)/£, then there is a

nonzero 5 in Hn(C(X),Z/£(n - 1)).



Proof. By induction, the Bloch-Kato conjecture implies (see [11]) that the Leray spectral

sequence for X& —> Xnis degenerates to yield the exact sequence for A = Z/£(n — 1):

5 i—> a i—> 0

0 > H^{C{X),A) > H£{C{X),A) > H°nis(C(X),Hn)

^ into
I N--

Hg(k,A) > Hg(k(X),A).

Here Hn is the sheaf associated to H™t(—, A). Now for any simplicial scheme X,, H°(X.,Hn)

embeds in H°(X0,T-[n). This particular 7in is a homotopy invariant Nisnevich sheaf with

transfers by [4, 6.17 and 22.3], so H°(X,Hn) embeds in Hg(k(X),A) by [4, 11.1]. Via a

diagram chase, a lifts to a nonzero 5 in H™is(C(X), A). •

We will show in Lecture 6 that from the nonzero 5 of Lemma 1.5 we can construct

something we call a "Rost motive" (this will be defined in 3.4). For this we will need to start

with a Rost variety X, which is defined in 3.1 and is a variety splitting a. These varieties were

first constructed by Markus Rost in [R-CL]; a proof that they have the defining properties

of a Rost variety is published in [9].

When £ = 2, the Rost motive is actually the same as the Rost variety, consided as a

motive. Moreover, in that case the Rost variety has a natural interpretation in terms of

quadratic forms. Although we do not consider the case £ = 2 in these lectures, Voevodsky's

proof in [MC/2] that the norm residue map K^f(k)/2 —> H™t(k, Z/2) is an isomorphism (the

"Milnor Conjecture") follows the general lines of our Lectures 1-3.

The goal of Lecture 3 is to use the Rost motive to show that the map _ff^+1(fc,Z(n)) —>

H™^1 (k(X), 'Lin)) is an injection, which we saw in Proposition 1.3 will imply the Bloch-Kato

conjecture. For this, we need several cohomology operations - and that will be the topic of

Lecture 2.




