SMR/1840-9

School and Conference on Algebraic K-Theory and its Applications

14 May - 1 June, 2007

Overview of the Proof

Charles Weibel
Rutgers University, Piscataway, USA

2007 Trieste Lectures on

The Proof of the Bloch-Kato Conjecture

Charles Weibel

Let k be a field and ℓ a prime number different from $\operatorname{char}(k)$. The Milnor K-theory of k is defined to be the quotient $K_{*}^{M}(k)$ of the tensor algebra of the abelian group k^{\times}by the ideal generated by elements of the form $\{a, 1-a\}, a \in k-\{0,1\}$. The Kummer isomorphism $k^{\times} / \ell \xrightarrow{\sim} H_{\text {ett }}^{1}\left(k, \mu_{\ell}\right)$ exends to a (graded) norm residue homomorphism

$$
\begin{equation*}
k_{*}^{M}(k) / \ell \longrightarrow \oplus H_{\mathrm{et}}^{n}\left(k, \mu_{\ell}^{\otimes n}\right), \tag{0.1}
\end{equation*}
$$

and Milnor asked in [5] whether this map is an isomorphism for $\ell=2$. This is true, as was proven by Voevodsky in [MC/2].

The same question for ℓ odd was first formulated by Kazuya Kato in [2, p.608] and is known as the Bloch-Kato Conjecture. A proof of this was announced in 1998 by Voevodsky, assuming the existence of what we now call a Rost variety (see Lecture 1). Rost produced such a variety in 1998 [R-CL], and the proof that (0.1) is an isomorphism appeared in the 2003 preprint [MC/l] - modulo three assertions. One of these, that the Rost variety has certain properties, was established in [9]. The other two assertions, concerning the motivic cohomology groups $H^{* *}(X, \mathbb{Z} / \ell)$, are still unknown. In these lectures we shall prove the Bloch-Kato conjecture by establishing parallel assertions concerning the motivic cohomology groups $H^{* *}(X, \mathbb{Z})$.

1 Lecture 1: Overview of the Proof

We begin with a series of reductions.
Lemma 1.1. (Voevodsky [12, 5.2]). If $K_{n}^{M}(k) / \ell \rightarrow H_{\epsilon t}^{n}\left(k, \mu_{\ell}^{\otimes n}\right)$ is an isomorphism for all fields of characteristic 0 , then it is an isomorphism for all fields of characteristic $\neq \ell$.

Proof. By a standard transfer argument, we may assume that k is perfect. Let R be the ring of Witt vectors over k and K its field of fractions. Then the specialization maps are compatible with the norm residue maps in the sense that

commutes. Both specialization maps are known to be split surjections; the result follows.
Now there is a chain complex $\mathbb{Z}(i)$ of étale sheaves and an isomorphism $H_{\text {et }}^{n}(X, \mathbb{Z} / \ell(i)) \cong$ $H_{\text {êt }}^{n}\left(X, \mu_{\ell}^{\otimes i}\right)$ for all $n, i \geq 0$; see [4, 10.2] or [MC/2, 6.1]. We have a diagram

This motivates the following result, whose proof we omit; compare with [11, 7.1].
Theorem 1.2. (Voevodsky $[\mathrm{MC} / 2,6.10])$. Suppose that $H_{e t}^{n+1, n}(k, \mathbb{Z}(n))=0$ for every field k of characteristic 0 . Then $K_{n}^{M}(k) / \ell \cong H_{e t}^{n}\left(k, \mu_{\ell}^{\otimes n}\right)$.

We proceed by induction on n, assuming $K_{n-1}^{M}(k) / \ell \cong H_{\text {et }}^{n-1}\left(k, \mu_{\ell}^{\otimes n}\right)$ for all k.
Proposition 1.3. (Voevodsky [MC/2, p.97]) Suppose that for every field k and every symbol $\underline{a}=\left\{a_{1}, \ldots, a_{n}\right\}$ in $K_{n}^{M}(k) / \ell$ there is a field extension K so that \underline{a} vanishes in $K_{n}^{M}(K) / \ell$ and the map $H_{\epsilon t}^{n+1}(k, \mathbb{Z}(n)) \rightarrow H_{\epsilon t}^{n+1}(K, \mathbb{Z}(n))$ is an injection. Then $H_{\epsilon t}^{n+1}(k, \mathbb{Z}(n))=0$, and hence $K_{n}^{M}(k) / \ell \cong H_{\epsilon t}^{n}\left(k, \mu_{\ell}^{\otimes n}\right)$, for all k.

Proof. Fix k. By a transfinite process, we can find an extension field L which has $K_{n}^{M}(L) / \ell=$ $0, L$ has no prime-to- ℓ extensions, and such that $H_{\mathrm{ett}}^{n+1}(k, \mathbb{Z}(n))$ embeds in $H_{\mathrm{ett}}^{n+1}(L, \mathbb{Z}(n))$. But for such an L we have $H_{\text {ett }}^{n+1}\left(L, \mathbb{Z}_{(\ell)}(n)\right)=0$ by [MC/2, 5.9 and 6.8].

Lemma 1.4. (Voevodsky [MC/l, 6.4]) If $\left\{a_{1}, \ldots, a_{n}\right\}$ is a nonzero symbol in $K_{n}^{M}(k) / \ell$, its image is nonzero in $H_{\epsilon t}^{n}\left(k, \mu_{\ell}^{\otimes n}\right)$.

Proof. By a standard transfer argument, we may assume k has no prime-to- ℓ extensions. For $E=k(\gamma), \gamma=\sqrt[\ell]{a_{n}}$, we have a diagram

in which the vertical maps are isomorphisms by induction and the bottom row is exact by $[\mathrm{MC} / 2,5.2]$. Since $\left\{a_{1}, \ldots, a_{n}\right\} \neq 0$, if $\left\{a_{1}, \ldots, a_{n}\right\}$ vanishes in $H_{\text {et }}^{n}(k, \mathbb{Z} / \ell)$ then $\left\{a_{1}, \ldots, a_{n-1}\right\}$ is the norm of some $s \in K_{n-1}^{M}(E) / \ell$. But then $\left\{a_{1}, \ldots, a_{n}\right\}$ is the norm of $\left\{s, a_{n}\right\}=\{s, \gamma\}^{\ell}=0$ and hence is zero.

We say that " X splits \underline{a} " if X is a smooth irreducible projective variety over k such that $\underline{a}=0$ in $K_{n}^{M}(k(X)) / \ell$. We write $\check{C}(X)$ for the simplicial scheme $\check{C}(X)_{n}=X^{n+1}$

$$
X \leftleftarrows X \times X \leftleftarrows X^{3} \leftleftarrows X^{4} \cdots,
$$

whose face maps are given by projections. By $[\mathrm{MC} / 2,7.3], H_{\text {et }}^{p}(k, \mathbb{Z}(q)) \xrightarrow{\sim} H_{\mathrm{ett}}^{p}(\check{C}(X), \mathbb{Z}(q))$ is an isomorphism for all p and q. By $[\mathrm{MC} / 2,6.9(2)]$, the motivic $H_{\mathrm{nis}}^{p}(\check{C}(X), \mathbb{Z} / \ell(q))$ is isomorphic to $H_{\text {ett }}^{p}(\check{C}(X), \mathbb{Z} / \ell(q))$ for all p, q with $p-1 \leq q \leq n-1$.

Lemma 1.5. (Voevodsky [MC/l, 6.5]) If X splits a nonzero $\underline{a} \in K_{n}^{M}(k) / \ell$, then there is a nonzero δ in $H^{n}(\check{C}(X), \mathbb{Z} / \ell(n-1))$.

Proof. By induction, the Bloch-Kato conjecture implies (see [11]) that the Leray spectral sequence for $X_{\text {ét }} \rightarrow X_{\text {nis }}$ degenerates to yield the exact sequence for $A=\mathbb{Z} / \ell(n-1)$:

$$
\left.\begin{array}{cccc}
\delta & \mapsto & \underline{a} & \mapsto
\end{array}\right)
$$

Here \mathcal{H}^{n} is the sheaf associated to $H_{\text {et }}^{n}(-, A)$. Now for any simplicial scheme $X_{\mathbf{0}}, H^{0}\left(X_{\bullet}, \mathcal{H}^{n}\right)$ embeds in $H^{0}\left(X_{0}, \mathcal{H}^{n}\right)$. This particular \mathcal{H}^{n} is a homotopy invariant Nisnevich sheaf with transfers by [4, 6.17 and 22.3], so $H^{0}\left(X, \mathcal{H}^{n}\right)$ embeds in $H_{\text {et }}^{n}(k(X), A)$ by [4, 11.1]. Via a diagram chase, \underline{a} lifts to a nonzero δ in $H_{\mathrm{nis}}^{n}(\check{C}(X), A)$.

We will show in Lecture 6 that from the nonzero δ of Lemma 1.5 we can construct something we call a "Rost motive" (this will be defined in 3.4). For this we will need to start with a Rost variety X, which is defined in 3.1 and is a variety splitting \underline{a}. These varieties were first constructed by Markus Rost in [R-CL]; a proof that they have the defining properties of a Rost variety is published in [9].

When $\ell=2$, the Rost motive is actually the same as the Rost variety, consided as a motive. Moreover, in that case the Rost variety has a natural interpretation in terms of quadratic forms. Although we do not consider the case $\ell=2$ in these lectures, Voevodsky's proof in $[\mathrm{MC} / 2]$ that the norm residue map $K_{n}^{M}(k) / 2 \rightarrow H_{\mathrm{et}}^{n}(k, \mathbb{Z} / 2)$ is an isomorphism (the "Milnor Conjecture") follows the general lines of our Lectures 1-3.

The goal of Lecture 3 is to use the Rost motive to show that the map $H_{\mathrm{et}}^{n+1}(k, \mathbb{Z}(n)) \rightarrow$ $H_{\text {et }}^{n+1}(k(X), \mathbb{Z}(n))$ is an injection, which we saw in Proposition 1.3 will imply the Bloch-Kato conjecture. For this, we need several cohomology operations - and that will be the topic of Lecture 2.

