

Cathode Catalyst Layers in PEFC: The Major Competitive Ground

Kourosh Malek, Jianfeng Liu, Michael Eikerling

Conference on Physics of Fuel Cells	
	_

ICTP Trieste, May 21-25, 2007

Funding: BC FINNOVATION COUNCIL MITACS

NISSAN Motor Corp.

I. Why focus on catalyst layer?

"Go for the messes - that's where the action is!"

- S. Weinberg, *Scientist: Four golden lessons*, Nature 426, 389, 2003.
- □ Price and abundance of Pt: feasibility of PEFC
- Given Series Constraints and Series Key Importance for operation, performance, and design
- Randomness at multiple scales
- Lack in systematic understanding & controversial issues
- □ Modeling: percolation, agglomerates, macrohom. approach
- → From optimizing randomness towards rational design!
- → High electrocatalytic activity with minimal amount of Pt

III. Main Results					
Composite					
porous structure	Role of bimodal psd: controls distinct functions				
	□ small pores: active area → hydrophilic				
Effective	□ large pores: mass transport & water balance → hydrophobic				
properties	affects uniformity of reaction rate distribution				
Operating	Interplay between oxygen transport and water accumulation				
conditions	distinct signatures of CCL and GDL				
	Critical conditions in CCL: bistability in I-V curves				
Performance.	a main parameters: $X_{M}, X_{p}, \theta, p^{g}$				
water balance					

IV. Outlook

- □ Theoretical understanding: water accumulation vs. mass transport
- □ More detailed characterization of wetting properties
- □ Water distribution and structure (surface bulk, ionomer pores)
- □ Validate and refine parameterization of effective properties
- **Coupling to water balance in other components**
- □ Evaluate CCL design options
 - improvement of current design?
 - radically new design?
 - don't forget about porous structure and water balance
- Linking the scales: from structure formation to performance

Reference Parameters Used in Calculations				
		r		
L,µm		10	Thickness of CCL	
L_{PTL}, μ	т	125	Thickness of PTL	
X _{ptc}		0.3	Volume fraction of Solid phase	
X _{el}		0.33	Volume fraction of electrolyte	
$X_p = 1$	$-X_{ptc} - X_{el}$	0.37	Volume fraction of void space	
Psd#2	X_{μ}	0.124	Volume fraction of primary pores	
1 bun 2	X _M	0.246	Volume fraction of secondary pores	
T,°C	•	60	Temperature	
p ^g ,atn	n	3.0	Total gas pressure	
p _{GDL} ,a	tm	0.63	Oxygen pressure	
θ,deg		88	Contact angle of pore and water system	
D ^{res} , Cl	m²/s	2.0×10 ⁻⁶	Residual gas diffusivity	