

SMR/1842-3

International Workshop on QCD at Cosmic Energies III

28 May - 1 June, 2007

The Pierre Auger Observatory: Results and Prospects at the Interface of QCD

M. Risse University of Wuppertal Dept. of Physics Wuppertal, Germany

The Pierre Auger Observatory: Results and Prospects at the Interface of QCD

Markus Risse University of Wuppertal

for the Pierre Auger Collaboration

Workshop on QCD at Cosmic Energies - III ICTP Trieste, May 28 – June 1, 2007

- the Observatory (reminder)
- search for photons
- elongation rate
- shower muon content
- (some) prospects

Pierre Auger Observatory – a hybrid detector

- UV fluorescence light
- → longitudinal shower profile
- ground array of water Cherenkov detectors
- → particle lateral distributions

Pierre Auger Observatory – status (May 11, 2007)

- array: 1376 stations deployed (1338 filled), **1201** taking data (finally **1600**)
 - 1.5 km distance, total area 3000 km^2
- telescopes: all 4 sites taking data, 6 telescopes each (30 deg x30 deg each)

Pierre Auger Observatory – impressions

hybrid =

~10% duty cycle

Fluorescence telescopes

- **geometry**: angular-time correlation of triggered PMTs
- **profile**: PMT signal -> light at aperture -> light at shower -> dE/dX at shower
- X_{max} and energy (integrating dE/dX plus -> *missing energy correction*)

Fluorescence reconstruction: missing energy correction

Ground array

- geometry from timing
- lateral distribution => S(1000)
 - sensitive to elmagn and muonic component
- also: 25 ns sampling => signal **risetime**

Disclaimer!

Results shown are PRELIMINARY.

Plots and numbers may differ slightly from those in the ICRC papers submitted this week. **Search for UHE photons**

There are 10²⁰ eV (= 100 EeV) events ! Origin ??

- acceleration models (astrophysics):
 - active galactic nuclei, gamma-ray bursts, ...
 - not easy to reach >100 EeV; no obvious correlations

- non-acceleration models (particle physics):
 - super-heavy dark matter, topological defects
 - hypothetical massive objects produce normal particles
- to avoid GZK cut-off also for distant sources:
 - neutrinos in Z-Burst scenario (cosmology)
 - violation of Lorentz invariance (fundamental physics)

Super Heavy Dark Matter (SHDM)

- produced during inflation; $M_x \sim 10^{23}$ eV, clumped in galactic halo (overdensity ~10⁵)
- lifetime $\sim 10^{20}$ y: decay (SUSY-QCD) => pions => UHE photons (and neutrinos)
- → little processing during propagation: **decay spectrum** at Earth

- → similar shapes for ZB (Weiler 1982, ...) and TD (Hill 1983, ...) models
- → signature for exotics !

Berezinsky, Kachelrieβ 1998; Birkel, Sarkar 1998; Ellis et al. 2005, Aloisio et al. 2006 ...

Can we see the decay products (via SUSY-QCD) of the SHDM ?

The Auger Observatory is well suited to search for UHE photons.

Photon discrimination with X_{max}

- photons vs hadrons: ~200 g cm⁻² difference at 10^{19} eV
- **slope** (ΔX_{max} / per energy decade) is changing !?

Photon showers: high-energy effects

slope ~ 85 g cm⁻² / energy decade (-> toy model: equal energy splitting and λ_{rad})

Photon search using high-quality hybrids (X_{max})

Astropart. Phys. 27 (2007) 155

- data set: 01/2004 02/2006
- anti-bias cuts needed *because of* large X_{max} (e.g. exclude near-vertical events)

Example of observed profile

- calorimetric energy from integration
- 1% **missing energy** correction, suitable for primary photons
 - → energy scale for photons
 - → *underestimates* slightly (~7-14%) energy of hadron primaries
 - conservative photon limit! (data sample slightly *depleted* from hadron primaries)

• event: $X_{max} = 780 \pm 28 \text{ (stat)} \pm 23 \text{ (syst) g cm}^{-2}$

- photons: $\langle X_{max} \rangle = 1000 \text{ g cm}^{-2}$, rms = 71 g cm⁻²
- → observed X_{max} well below expectation for photons

The data set: overview

Astropart. Phys. 27 (2007) 155

Event ID	Energy	X_{\max}	$<\!\!X_{\max}^{\gamma}\!\!>$	ΔX_{\max}^{γ}	Δ_{γ}
	$[x10^{18} eV]$	$[g cm^{-2}]$	$[g cm^{-2}]$	$[g cm^{-2}]$	[std. dev.]
668949	17	765	985	71	2.9
673409	12	760	996	82	2.7
705583	11	678	973	77	3.6
737165	202	821	948	27	3.3
828057	13	805	978	68	2.4
829526	12	727	996	85	3.0
850018	54	774	1050	120	2.2
931431	24	723	1022	89	3.2
935108	14	717	992	68	3.8
986990	15	810	1000	87	2.1
1109855	16	819	1019	95	2.0
1171225	15	786	993	74	2.6
1175036	17	780	1001	100	2.1
1257649	10	711	971	76	3.2
1303077	13	709	992	85	3.1
1337921	18	744	1029	93	2.9
1421093	25	831	1028	93	2.0
1535139	15	768	998	77	2.8
1539432	12	787	975	76	2.3
1671524	13	806	978	77	2.1
1683620	20	824	1035	80	2.5
1683856	18	763	981	92	2.3
1684651	12	753	991	79	2.8
1687849	16	780	1001	71	2.9
1736288	10	726	981	71	3.3
1826386	17	747	994	84	2.8
1978675	10	740	978	76	2.9
2035613	11	802	998	90	2.1
2036381	27	782	1057	101	2.6

- probability (29x photons) $<< 10^{-10}$
- → set limit to photon fraction
- → <16% (95% c.l.) above 10¹⁹ eV

Photon search using hybrids: update

- largest $X_{max} \sim 900 \text{ g/cm}^2$: still below average photon X_{max}
- current limit from hybrid X_{max} data: <13% (95% c.l.) above 10¹⁹ eV

Photon search using the ground array: factor ~10 more data!

- **risetime** of signal at 1000 m core distance
- larger X_{max} -> larger risetime
 - path length differences, elmagn dominates
- similar: shower front **curvature** (from timing)
- larger X_{max} -> larger curvature

Photon search using the ground array

- cut in $S_{38}(1000)$ corresponding to photon energies of 10 (20, 40) EeV
- cut in combined observable such that 50% photons were accepted
- count surviving events: zero (2761 / 570 events above 10 EeV photon/hadron energy scale)
 => flux limit to photons (from this also fraction limit => 2% above 10 EeV)

Auger photon limits

- upper limits of 2% (hybrid: 13%), 5%, 31% (95% c.l.) above 1, 2, $4*10^{19}$ eV
- → SHDM (top-down) models strongly disfavoured

High-energy events look hadronic.

X_{max} is a key shower characteristics with sensitivity to inelastic (non-diffractive) cross-section and elasticity.

Here: measurement of *<***X**_{max}**> as fct of energy**

<X_{max}> vs energy: anti-bias cuts

<X_{max}> systematics (preliminary)

- atmospherics (monthly averaged density profiles) $\sim 6 \text{ g/cm}^2$
- profile reconstruction algorithm $<5 \text{ g/cm}^2$
- multiple-scattered light 5 g/cm²
- geometry reconstruction $< 6 \text{ g/cm}^2$
- below 10^{18} eV, acceptance difference proton-iron <10 g/cm²
- total: 11 (15) g/cm² above (below) 10¹⁸ eV

• ~mixed composition at all energies favoured

- not too much room for "exotic" high-energy interactions that influence $\langle X_{max} \rangle$?
- linear fit: El.Rate 52 ± 2 g/cm² per dec., but $\chi^2/n = 29/13$ (P<1%)
- break at 2-3*10¹⁸ eV: $\chi^2/n = 14/11$ (P=24%), El.Rate 68±4, 40±4 g/cm² per dec

- $(68 \pm 4, 40 \pm 4)$ g/cm² per dec
- QGSJET II (solid lines): trend to light at small E, ~ constant at high E
- EPOS (dash-dot): ~constant at small E, trend to heavier at high E

<X_{max}> vs energy: previous experiments

- agreement within systematic uncertainties
 - note: already best statistics -> data also at higher E
- on-going: also X_{max} fluctuation analysis

High-energy events look hadronic between p-Fe.

Shower muons are tracers of high-energy hadron interactions: secondary particle production.

The Auger ground array (of water Cherenkov detectors) is sensitive also to muons.

Aim: disentangle muon component

- measured $S(1000) = S_{em} + S_{mu}$
- simulations: after X_{max}, EM component behaves "universal",
 i.e. little dependence on composition (~13%) and model (~5%)

• subtract S_{em} to obtain S_{mu} which can be compared to simulations

→ here: 2 independent ways to subtract S_{em}

Shower muons using hybrids

- FD => E_{FD} , X_{max} => calculate ground signal S_{em}
- S_{mu} exceeds by factor 1.92 ± 0.08 QGSJETII proton simulations (at ~10 EeV)

Shower muons using hybrids

- FD => E_{FD} , X_{max} => calculate ground signal S_{em}
- → S_{mu} exceeds by factor 1.92 ± 0.08 QGSJETII proton simulations (at ~10 EeV)
- caveat: ~24% systematics in E_{FD} (~15% from fluor. yield)
- factor 1.55 ± 0.06 for shifted energy scale $E = 1.28 E_{FD}$ (see plot)
- composition >Fe contradicts X_{max} data => too few muons in simulations ?

Shower muons using the array alone

- EM component is absorbed faster => ratio S_{mu}/S_{EM} changes with zenith
 - moreover, shapes of muon curves are similar for p-Fe; normalisation differs

Shower muons using the array alone

- EM component is absorbed faster => ratio S_{mu}/S_{EM} changes with zenith
 - moreover, shapes of muon curves are similar for p-Fe; normalisation differs

- isotropic flux => number of events (above minimum E) vs $\sin^2(\theta)$ should be flat
- $S_{MC} <-> E$ from MC: if wrong, not flat! $\frac{dN_{ev}}{d\sin^2\theta}\Big|_{S(1000)>S_{MC}(E,\theta,\langle X_{max}\rangle,N_{\mu}^{rel})} = const.$ • to make distribution flat, adjust muon normalisation

Shower muons using the array alone

• adjust muon normalisation such that distribution gets flat = factor ~ 1.63

measured <Xmax> used as input => correction from fluctuations

→

→ note: then, array energy scale $E \sim 1.28 E_{FD}$ (allowed within systematics!)

Shower muons: summary

- consistent description of data possible for $E \sim 1.28 E_{FD}$
- factor ~1.5 more muons compared to QGSJETII-protons (at 10 EeV)
- more muons in simulations might give also consistent description of $\langle X_{max} \rangle$

EPOS and number of muons

EPOS: more baryon-antibaryon production; more re-interaction -> more muons. Confirmed by artificial increase of b-ab production in SIBYLL.

- more data (helps also to reduce systematics)
- X_{max} fluctuation analysis (fluctuations less model dependent?)
- methods of direct muon counting (muons: early, larger signal)
- → consistent description of data the challenge for models

- more data (helps also to reduce systematics)
- X_{max} fluctuation analysis (fluctuations less model dependent?)
- methods of direct muon counting (muons: early, larger signal)
- → consistent description of data the challenge for models
- if source identification such that protons seem most likely primary (because higher Z particles were deflected larger)
- compare measured proton shower features to proton simulations
- → "top-down" calibration of models

- more data (helps also to reduce systematics)
- X_{max} fluctuation analysis (fluctuations less model dependent?)
- methods of direct muon counting (muons: early, larger signal)
- → consistent description of data the challenge for models
- if source identification such that protons seem most likely primary (because higher Z particles were deflected larger)
- compare measured proton shower features to proton simulations
- → "top-down" calibration of models
- if photon observation => handle on photonuclear cross-section

- σ^{DL} theoretically disfavored (=> σ^{RS} !) (*Roger & Strikman 2006*)
- $\sigma^{\text{DL}} => \text{ factor } \sim 1.8 \text{ more muons and } 30...>100 \text{ g/cm}^2 \text{ smaller } X_{\text{max}}$ compared to σ^{PDG} (*MR et al. 2005*)
- if photon observation "as expected" => upper limit to cross-section

Photons in acceleration models: GZK photons

• $N\gamma_{2,7} \rightarrow \Delta \rightarrow N\pi \rightarrow UHE$ ("GZK") photons (and neutrinos)

• benchmark: 0.1%

→ photons/year (>10 EeV): ~2 (Auger South), ~10 (North plus South)

Auger Observatory & QCD: conclusions

• search for photons

- upper limits constrain top-down models (unfortunately no SUSY-QCD seen)
- photon observations could constrain photonuclear cross-section

• <X_{max}> vs energy

- shower look hadronic (between proton and iron)
- seems no "exotic" inelastic cross-section and elasticity

• shower muons

- there seems to be a muon deficit in the simulations at high energy

• prospects

- this is just the beginning ...

Models vs shower data: cross-section

(Ulrich, Aspen 2007)

Sensitivity study: which cross-section?

- sensitivity to non-diffractive (ND) part of inelastic cross-section
 - see also KASCADE Collab. 2001: trigger vs hadron rates

\mathbf{X}_{\max} and fluctuations

• width of X_{max} distribution is

Ostapchenko (2007)

- good indicator of composition
- less model dependent!

Models vs shower data: X_{max}

from [1]

Plots

MR & Homola 2007

X_{max} uncertainty

• here: conservative estimate used for all 29 selected events

 $\Delta X_{\rm max}^{\rm syst} [{\rm g \ cm}^{-2}]$ $\Delta X_{\rm max}^{\rm stat} [{\rm g \ cm^{-2}}]$ Data Astropart. Phys. 2007 Profile fit 2010 Atmosphere 12 8 Geometry reconstruction 105Others 10 5 energy (input for Simulation photon simulation): Reconstructed energy of event 513 ~25% syst. unc. Photo-nuclear cross-section 10 a big advantage Hadron generator 5 _ of this analysis! Total 2823

- → well below photon shower fluctuations (~80 g cm⁻²)
- analysis not limited by measurement uncertainty

Auger Collab.

Statistical treatment

- account for events statistics, shower fluctuations and shower properties changing with primary energy and arrival direction (-> MR et al., PRL 2005)
- chance probability for hypothetical F_{γ} to get χ^2 values \geq than found in data:

$$P(F_{\gamma}) = \sum_{\substack{n_{\gamma}=0\\n_{\gamma}=0}}^{n_{m}} q(F_{\gamma}, n_{\gamma}, n_{m}) \cdot p_{\gamma}(n_{\gamma}) \cdot p_{\overline{\gamma}}(n_{m} - n_{\gamma})$$
probability that ...
$$\dots n_{\gamma}$$
 "photons"
$$\sum_{\substack{n_{\gamma}=0\\ \text{contains } n_{\gamma}\\ \text{photons}}} \sum_{\substack{n_{\gamma}=0\\ \text{contains } n_{\gamma}\\ \text{photons}}}} \sum_{\substack{n_{\gamma}=0\\ \text{contains}}} \sum_{\substack{$$

 $p_{\gamma}(n_{\gamma})$: take n_{γ} most photon-like looking events => $\sum_{i=1}^{n_{\gamma}} \chi_{k_i}^2$ is minimal; determine $p_{\gamma}(\chi^2 \ge \sum_{i=1}^{n_{\gamma}} \chi_{k_i}^2)$ with MC technique (non-Gaussian fluct.)

→ with confidence 1-P(F_{γ}), photon fractions $\geq F_{\gamma}/\epsilon$ can be rejected ϵ =0.80: efficiency correction from photon acceptance (conservative: minimum ratio)