

SMR/1842-27

International Workshop on QCD at Cosmic Energies III

28 May - 1 June, 2007

Lecture Notes

R. Engel Forschungszentrum Karlsruhe Karlsruhe, Germany Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Open questions in perturbative QCD and their impact on air shower predictions

Ralph Engel (Forschungszentrum Karlsruhe)

Outline

Astroparticle physics and air showers

Knee, ankle, upper end of the spectrumMethods of measuring compositionHeitler-Matthews model of air showersCurrent experimental status and open problems

Perturbative QCD aspects of shower modeling

Sensitivity of showers to hadronic interactions Inclusive jet cross section and low-x physics Impact parameter dependence and elastic/total cross section Multiple interaction scenarios Example of impact on air shower predictions

Astroparticle physics motivation

Primary cosmic ray flux

Cosmic ray composition: knee

Cosmic ray composition: ankle

Predicted composition scenarios

(Allard et al., 2005)

Air showers and composition sensitivity

Heitler model of em. shower

Heitler-Matthews model: muon production

Assumptions:

- neutral pions decay immediately
- charged pions initiate secondary cascades
- cascades stop if $E = E_{dec}$

$$N_{\mu} = \left(\frac{E_0}{E_{\text{dec}}}\right)^{\alpha}$$
 $\alpha = \frac{\ln(n_{\text{ch}})}{\ln(n_{\text{tot}})} \approx 0.9$

(Matthews, Astropart. Phys. 22(2005) 387)

Superposition model

Proton-induced shower

$$N_{\rm max} = E_0/E_c$$

$$X_{\rm max} \sim \lambda_{\rm eff} \ln(E_0)$$

$$N_{\mu} = \left(\frac{E_0}{E_{\rm dec}}\right)^{\alpha} \qquad \alpha \approx 0.9$$

Assumption: nucleus of mass A and energy E_0 corresponds to A nucleons (protons) of energy $E_n = E_0/A$

$$N_{\rm max}^A = A\left(\frac{E_0}{AE_c}\right) = N_{\rm max}$$

$$X_{\text{max}}^{A} \sim \lambda_{\text{eff}} \ln(E_0/A)$$
$$N_{\mu}^{A} = A \left(\frac{E_0}{AE_{\text{dec}}}\right)^{\alpha} = A^{1-\alpha} N_{\mu}$$

Composition: air shower ground arrays

Composition: air shower ground arrays

Composition analysis using shower profiles

Example: event measured by Auger Collab. (ICRC 2003)

- Energy well determined
- Primary particle type: mean and fluctuations of shower depth of maximum

Mean shower depth of maximum

Experimental situation

Karlsruhe, Germany

Area ~ 0.04 km², 252 surface detectors

KASCADE and **KASCADE**-Grande

Composition in Knee region (1)

Composition in Knee region (II)

KASCADE data description: QGSJET 01

QGSJet 01 - result Description of data

forward folding of solution with calculated probabilities, calculation of how the data would look like

comparison between calculated and measured data: χ^2

no. of showers

10

 10^{3}

 10^{2}

10

1

 10^{-1}

5

KASCADE data description: SIBYLL 2.1

Pierre Auger Observatory

Auger: stereo-hybrid event

Event-by-event measurement of muon signal, but lower statistics

 $S_{\mu}(E, \theta) = S(1000) - S_{\rm EM}(E, \theta, X_{\rm max})$

HiRes-MIA hybrid measurement

Current models fail to describe shower data (new physics?)

QCD aspects of modeling hadronic interactions in air showers

Model assumptions

- Gribov-Regge theory (pomeron)
- Minijets (cross section, multiplicity)
- Multiple interactions
- Unitarization of Born amplitudes
- Projectile / target remnants
- Glauber approximation for nuclei
- Many phenomenological model parameters

Examples:

- pQCD pt cutoff (energy-dependence)
- Factorization scale / k-factor
- Energy sharing for hadron remants
- Soft multiple interactions
- Diffraction dissociation

What is the inclusive minijet cross section at ultra-high energy

- Predictions of pert. QCD valid for inclusive quantities (summed over all possible final states)
- Range in energy and transverse momentum
- DGLAP, BFKL,, JIMWLK evolution, collinear vs. kt factorization (or CGC factorization?)
- Leading vs. next-to-leading order, K-factor, factorization scale, energy conservation

QCD parton model: minijets

$$\sigma_{\text{QCD}} = \sum_{i,j,k,l} \frac{1}{1 + \delta_{kl}} \int dx_1 dx_2 \int_{p_{\perp}^{\text{cutoff}}} d^2 p_{\perp} f_i(x_1, Q^2) f_j(x_2, Q^2) \frac{d\sigma_{i,j \to k,l}}{d^2 p_{\perp}}$$

Cutoff dependence and x values

Parton density fits to HERA data

(HERA data, from review by Chekelian 2005)

DGLAP phenomenology very successful

DGLAP evolution and collinear factorization:

- Calculation of inelastic graphs
- Straight-forward interpretation
- Energy conservation
- Initial- and final state radiation (parton showers)
- Not expected to be applicable at very low x !
- Optimum transverse momentum cutoff for data description varies with energy and considered process

Conceptual problem: matching soft/hard

High parton densities

SIBYLL: simple geometrical criterion

$$\pi R_0^2 \simeq \frac{\alpha_s(Q_s^2)}{Q_s^2} \cdot xg(x,Q_s^2)$$

$$xg(x,Q^2) \sim \exp\left[\frac{48}{11 - \frac{2}{3}n_f} \ln \frac{\ln \frac{Q^2}{\Lambda^2}}{\ln \frac{Q^2}{\Lambda^2}} \ln \frac{1}{x}\right]^{\frac{1}{2}}$$

No dependence on impact parameter !

SIBYLL:
$$p_{\perp}(s) = p_{\perp}^{0} + 0.065 \text{GeV} \exp \left\{ 0.9 \sqrt{\ln s} \right\}$$

DPMJET: $p_{\perp}(s) = p_{\perp}^{0} + 0.12 \text{GeV} \left(\log_{10} \frac{\sqrt{s}}{50 \text{GeV}} \right)^{3}$

QGSJET: high parton density effects

Re-summation of enhanced pomeron graphs

EPOS: high parton density effects (i)

(Werner et al., PRC 2006)

EPOS: high parton density effects (ii)

Coeficient	Correspondi vag iable	Value
S _M	Minimumsquarestreeningegy	(25GeV) ²
W _M	Definesminimumforz _o	6.000
W _Z	GlobaZ coefficient	0.080
W _B	Impacparametwidthoefficient	1.160
as	Softscreeniexponent	2.000
a _H	Hardscreeningponent	1.000
a_{T}	Transersecomentumtransport	0.025
a _B	Breakparameter	0.070
a_{D}	Diquarkreakrobability	0.110
as	Strangereaprobability	0.140
$a_{\rm P}$	Averag b reaktran s rsmomentum	0.150

$$b_{0} = w_{B} \frac{z_{0} = w_{Z} \log s/s_{M},}{z_{0} = w_{Z} \frac{(\log s/s_{M})^{2} + w_{M}^{2}}{(\log s/s_{M})^{2} + w_{M}^{2}},}$$

(Werner et al., PRC 2006)

Construction of exclusive final states

- Distribution of (multiple) interactions
- Parton configurations, color connection

Multiple hard interactions

$$P_n = \frac{\langle n(\vec{b}) \rangle^n}{n!} \exp\left(-\langle n(\vec{b}) \rangle\right)$$

$$\int \sigma_{\text{ine}} = \int d^2 \vec{b} \sum_{n=1}^{\infty} P_n = \int d^2 \vec{b} \left(1 - \exp\{-\sigma_{\text{QCD}} A(s, \vec{b})\} \right)$$

Profile functions in SIBYLL

Fourier transform of em. form factor

$$F_p(q^2) = \left(1 + \frac{q_\perp^2}{\nu^2}\right)^{-2}$$
$$F_\pi(q^2) = \left(1 + \frac{q_\perp^2}{\mu^2}\right)^{-1}$$

Point-like hard interaction

$$A_{pp}^{\text{hard}}(\mathbf{v}_p, \vec{b}) = \int A_p(\mathbf{v}_p, \vec{b}_1) A_p(\mathbf{v}_p, \vec{b}_2) \, \boldsymbol{\delta}^{(2)}(\vec{b}_1 - \vec{b}_2 - \vec{b}) \, d^2 \vec{b}_1 \, d^2 \vec{b}_2$$

$$A_{pp}^{\text{hard}}(\mathbf{v}_{p},\vec{b}) = \frac{\mathbf{v}_{p}^{2}}{96\pi} (\mathbf{v}_{p}|\vec{b}|)^{3} K_{3}(\mathbf{v}_{p}|\vec{b}|)$$
$$A_{\pi p}^{\text{hard}}(\mathbf{v},\mu,\vec{b}) = \frac{1}{4\pi} \frac{\mathbf{v}^{2} \mu^{2}}{\mu^{2} - \mathbf{v}^{2}} \left((\mathbf{v}|\vec{b}|) K_{1}(\mathbf{v}|\vec{b}|) - \frac{2\mathbf{v}^{2}}{\mu^{2} - \mathbf{v}^{2}} \left[K_{0}(\mathbf{v}|\vec{b}|) - K_{0}(\mu|\vec{b}|) \right] \right)$$

Profile functions in QGSJET and EPOS

Fourier transform of exponential

$$A_{\text{soft}}(s,\vec{b}) = \frac{1}{4\pi B_s(s)} \exp\left\{-\frac{\vec{b}^2}{4B_s(s)}\right\}$$
$$B_s(s) = B_0 + \alpha'_{\text{pom}}(0) \ln\left(\frac{s}{s_0}\right)$$

$$A_{pp}^{\text{pom}}(x_1, x_2, s, \vec{b}) = \int A_{\text{soft}}(s_1, \vec{b}_1) A_{\text{soft}}(s_2, \vec{b}_2) A_{\text{hard}}(x_1 x_2 s, \vec{b}_3) \,\delta^{(2)}(\vec{b}_1 - \vec{b}_2 + \vec{b}_3 - \vec{b}) \,d^2\vec{b}_1 \,d^2\vec{b}_2 \,d^2\vec{b}_3$$

$$A_{pp}^{\text{pom}}(x_1, x_2, s, \vec{b}) = \frac{1}{4\pi B_{\text{eff}}} \exp\left\{-\frac{\vec{b}^2}{4B_{\text{eff}}}\right\}$$

Transverse size depends on kinematics

 $B_{\rm eff} = B_s(s_1) + B_s(s_2) + B_h(x_1x_2s)$

Impact parameter diffusion

Correlation of hard cross section and impact parameter profile

Example: proton-air cross section

DPMJET: moderate cross section increase (Gaussian profile, energy-dep. cutoff)

SIBYLL: fast increase of cross section with energy (form factor profile)

Two-gluon scattering: SIBYLL & DPMJET II

Kinematics etc. given by parton densities and perturbative QCD Two strings stretched between quark pairs from gluon fragmentation

Two-gluon scattering: QGSJET

Sea quark pairs form end of strings, generated from model distribution

Two-gluon scattering: EPOS

Independent sea quarks form string ends for color neutral building block

Sensitivity to physics of first interaction

Muon production:

$$N_{\mu} = \left(\frac{E_0}{E_{\text{dec}}}\right)^{\alpha} \qquad \alpha = \frac{\ln(n_{\text{ch}})}{\ln(n_{\text{tot}})} \approx 0.9$$

Electromagnetic component: much higher sensitivity

Importance of hard cross section

Fit of SIBYLL 2.1 with different energy dependence of transverse momentum cutoff

$$p_{\perp}(s) = p_{\perp}^0 + 0.065 \text{GeV} \exp\left\{0.9\sqrt{\ln s}\right\}$$

(see also talk by H.-J. Drescher)

Air shower predictions

Change: up to 65 g/cm²

Change: <15%

Conclusions

- Discovery age of astroparticle physics
- Strong dependence of composition analysis on air shower modeling
- Data quality very high: constraints on interaction models
 - hybrid measurements
 - distribution edges
 - energy regions with almost mono-elemental composition
- Many open questions in pert. QCD lead to considerable uncertainty of model extrapolation to high energy
 - inclusive cross section (evolution equations, saturation, factorization, ...)
 - multiple interaction (profile function, unitarization, correlations, ...)
 - combination with non-perturbative concepts (strings, regge theory, ...)