

SMR/1842-24

International Workshop on QCD at Cosmic Energies III

28 May - 1 June, 2007

Lecture Notes

V. Avati CERN Geneva, Switzerland

Forward Physics at TOTEM

V. Avati (CERN, Case Western Reserve University)

TOTEM

- New Optics (β =90 m)
- Total cross-section measurement
- Study of elastic scattering
- Soft diffraction

CMS/TOTEM

"Prospects for Diffractive and Forward Physics at the LHC" (CERN/LHCC 2006-039/G-124)

International Workshop on QCD at Cosmic Energies III Trieste, May 30, 2007

Physics program

Total cross-section

Elastic pp scattering in the range 10 $^{-3}$ < t = (p θ)² < 10 GeV²

Soft diffraction

- Measurement of leading particles
- Particle and energy flow in the forward direction

Soft and hard diffraction in Single and Double Pomeron Exchange production of jets, W, heavy flavours.....

Central Exclusive Particle production

Low-x Physics

 $\gamma\gamma$ and γp physics

W I T H C M S

Detectors: T1/T2

T1 Telescope 3.1<|η|<4.7 CSC: 5 planes

Fully inclusive trigger inelastic events

Primary vertex reconstruction

T2 Telescope 5.3<|η|<6.5 GEM: 10 "half-"planes

Mechanical frames and CSC detectors in production; tests in progress. 75 % of GEM chambers produced and tested up to a gain of 8 x 10^4 .

Installation schedule not yet defined (deadline April 08 ?)

Roman Pot & Leading Proton Detector

Each pot equipped with 10 planes "edgeless" Silicon detectors (in production)

area

dead

First Roman Pot station successfully installed in the LHC tunnel !!!

pp Total Cross-Section

Current models predict for 14 TeV: 90 – 130 mb

Aim of TOTEM: ~ 1% accuracy First year : ~5%

Luminosity independent method:

Totem Optics

TOTEM needs special/independent short runs at high- β^* and low ϵ for precise measurement of the scattering angles of a few μ rad

As consequence of high β^* : large beam size at IP

 $σ_{\theta^*} = \sqrt{\epsilon/\beta^*} \sim 0.3 \mu rad$ $σ^* = \sqrt{\epsilon} \beta^* \sim 0.4 mm$

Require parallel-to-point focusing: trajectories of proton scattered at the same angle but at different vertex locations ($\Rightarrow y \sim \Theta_v^*$)

Reduced number of bunches (43, 156) to avoid interactions further downstream

Baseline optics $\beta^*=1540$ m: Parallel-to-point focusing in both transverse planes, allows

```
very low-t detection (|t| \sim 2 \ 10^{-3} \ \text{GeV}^2)
requires special injection optics
probably not available at beginning of LHC
```

"Early" optics $\beta^*=90$ m : paralle-to-point focusing only in vertical plane

t detection down to $\sim 2~10^{\text{-2}}\,\text{GeV}^2$ achievable by un-squeezing the standard LHC injection optics

Comparison of High β Optics

Parameters	$\beta^* \beta = 1540 m$ (baseline optics)	$\beta^* \beta = 90 m$ (early optics)
Crossing angle	0.0	0.0
N of bunches	43	156
N of part./bunch	3 · 10 ¹⁰	4 · 10 ¹⁰
Emittance ϵ_n [µm · rad]	1	3.75
RMS beam size at IP [μ m]	450	200
RMS beam divergence [µrad]	0.29	2.3
10 σ beam width at RP220 [mm]	0.8	6.25
Peak luminosity [cm ⁻² s ⁻¹]	1.6 ·10 ²⁸	5 ·10 ²⁹
Injection	special	standard
MD commissioning	more difficult	less difficult

β=**90 m**

- fits into the 2008 run scenario;
- small integrated luminosity loss in 2008
- ideal for training the RP operation due to wide beams;
- helps beam diagnostics
 - luminosity
 - beam position
 - vertex distribution

Proposal submitted to the LHCC and well received.

Parameter Evolution and Rates

All values for nominal emittance, 7TeV and 10m β^* in points 2 and 8

Pa	aramete	ers	Beam	levels	Rates in 1 and 5 Rate		Rates in 2	in 2 (and 8)	
k _b	N	β* 1,5 (m)	I _{beam} proton	E _{beam} (MJ)	Luminosity (cm ⁻² s ⁻¹)	Events/ crossing	Luminosity (cm ⁻² s ⁻¹)	Events/ crossing	
43	4 1010	11	1.7 10 ¹²	2	1.1 10 ³⁰	<< 1	1.2 10 ³⁰	0.15	
43	4 1010	2	1.7 10 ¹²	2	6.1 10 ³⁰	0.76	1.2 10 ³⁰	0.15	
156	4 1010	2	6.2 10 ¹²	7	2.2 10 ³¹	0.76	4.4 10 ³⁰	0.15	
156	9 10 ¹⁰	2	1.4 10 ¹³	16	1.1 10 ³²	3.9	2.2 1031	0.77	
936	4 10 ¹⁰	11	3.7 10 ¹³	42	2.4 10 ³¹	<< 1	2.6 10 ³¹	0.15	
936	4 1010	2	3.7 10 ¹³	42	1.3 10 ³²	0.73	2.6 10 ³¹	0.15	
936	6 10 ¹⁰	2	5.6 10 ¹³	63	2.9 10 ³²	1.6	6.0 10 ³¹	0.34	
936	9 10 ¹⁰	1	8.4 10 ¹³	94	1.2 10 ³³	7	1.3 10 ³²	0.76	
2808	4 1010	11	1.1 1014	126	7.2 10 ³¹	<< 1	7.9 10 ³¹	0.15	
2808	4 1010	2	1.1 1014	126	3.8 10 ³²	0.72	7.9 10 ³¹	0.15	
2808	5 10 ¹⁰	1	1.4 10 ¹⁴	157	1.1 10 ³³	2.1	1.2 10 ³²	0.24	
2808	5 10 ¹⁰	0.55	1.4 10 ¹⁴	157	1.9 10 ³³	3.6	1.2 10 ³²	0.24	

R. Bailey

Optical Functions

t-Acceptance at RP220 for Elastic Scattering

TOTEM

Elastic Scattering

Elastic Scattering at low |t|

$d\sigma/dt = \exp \left[-B(t)\cdot t\right]$

Exponential Slope B(t)

Extrapolation to the Optical Point (t = 0)

(extrapol. - model) / model in $d\sigma/dt|_{t=0}$

Extrapolation uncertainty

Common bias due to beam divergence : -2%

Spread of most of the models: ±1%

Systematic error due to uncertainty of optical functions: $\pm 3\%$

Extrapolation with the Optics $\beta^* = 1540$ m

|t|-acceptance down to 0.0012 GeV² \rightarrow

good lever arm for choosing a suitable fitting function for the extrapolation to t = 0.

Complication: Coulomb/nuclear interference must be included

For most models: extrapolation within \pm 0.2 %.

Islam model needs different treatment; to be distinguished in the visible t-range.

Measurement of the Total Cross section

Inelastic Rate (T1/T2) : Trigger Losses

	σ(mb)	losses	error after
		(mb)	extrapolation (mb)
Minimum bias	58	0.06	0.06
Single Diffractive	14	3	0.6
Double Diffractive	7	0.3	0.1
DPE	1	0.2	0.02
Total Inel.			0.8 mb

Measurement of the Total Cross section

Inelastic Rate (T1/T2) : Trigger Losses

		σ(mb)	losses	error after
			(mb)	extrapolation (mb)
	Minimum bias	58	0.06	0.06
	Single Diffractive	14	3	0.6
	Double Diffractive	7	0.3	0.1
	DPE	1	0.2	0.02
	Total Inel.			0.8 mb
Extrapolation of the elastic cross section to t=0	β=90 (1540) r	n		≤ 4% (0.5%)
Elastic Rate	u			0.6 (0.1) mb

 $\Delta \sigma_{tot}^{} / \sigma_{tot}^{} \approx 5 \% (1 \%)$

Measurement of Beam Parameters

•Luminosity measurement (together with σ_{tot}): ±6%

TOTEM

•Beam profile measurement in x-projection at RP220 (elastic scattering)

==> beam position measurement at RP220 with precision $\sim 1\mu m$ every minute

to be compared with the machine's BPMs.

==> horizontal vertex position determination: $x=v_x x^*$

==> vertex distribution (shape and width)
==> assuming round beams: luminosity from beam parameters

its momentum loss (low β)

its transverse momentum (high β)

Diffractive protons

Summary (I)

TOTEM will be ready for data-taking at the LHC start:

Measure total pp cross-section (and luminosity) with a precision of 5 % ($\beta^* = 90 \text{ m}$) [Ultimate precision : 1%]

Measure elastic scattering in the range $10^{-3} < t < 10$ GeV ²

Soft Diffraction (SD, DPE)

Studies of forward particle production

Forward Physics at CMS/TOTEM

Prospects for Diffractive and Forward Physics at the LHC

CERN/LHCC 2006-039/G-124 CMS Note-2007/002 TOTEM Note 06-5

Author List

M. Albrow^{**1}, G. Antchev^{**3}, M. Arneodo^{**2}, V. Avati^{**3,**4}, P. Bartalini^{**5}, V. Berardi^{**6}, U. Bottigli^{**24}, M. Bozzo"7, E. Brücken"8, V. Burtovoy"9, A. Buzzo"7, M. Calicchio"6, F. Capurro"7, M.G. Catanesi"6, P. Catastini"24, M.A. Ciocci"24, R. Croft"10, K. Datsko"9, M. Deile"3, J. De Favereau De Jeneret"11, D. De Jesus Damiao"12, E. Robutti"7, A. De Roeck"3, D. D'Enterria"3, E.A. De Wolf"13, K. Eggert"3, R. Engel"14, S. Erhan"15, F. Ferro"7, F. Garcia Fuentes"8, W. Geist"16, M. Grothe"17, "18, "a, J.P. Guillaud"19, J. Heino"8, A. Hees"3, "b, T. Hilden"8, J. Kalliopuska"8, J. Kaspar"20, P. Katsas"21, V. Kim^{*22}, V. Klyukhin^{*3, *23}, V. Kundrat^{*20}, K. Kurvinen^{*8}, A. Kuznetsov^{*9}, S. Lami^{*24}, J. Lamsa^{*8}, G. Latino"24, R. Lauhakangas"8, E. Lippmaa"25, J. Lippmaa"8, Y. Liu"11, "c, A. Loginov"3, "26, "d, M. Lokajicek^{*20}, M. Lo Vetere^{*7}, F. Lucas Rodriguez^{*3}, M. Macri^{*7}, T. Mäki^{*8}, M. Meucci^{*24}, S. Minutoli^{*7}, J. Mnich^{**27}, I. Moussienko^{**28}, M. Murray^{**29}, H. Niewiadomski^{**3}, E. Noschis^{**8}, G. Notarnicola"6, S. Ochesanu"13, K. Österberg"8, E. Oliveri"24, F. Oljemark"8, R. Orava"8, "30, M. Oriunno"3, M. Ottela"8, S. Ovyn"11, P. Palazzi"3, A.D. Panagiotou"21, R. Paoletti"24, V. Popov"26, V. Petrov"9, T. Pierzchala"11, K. Piotrzkowski"11, E. Radermacher"3, E. Radicioni"6, G. Rella"6, S. Reucroft^{**28}, L. Ropelewski^{**3}, X. Rouby^{**11}, G. Ruggiero^{**3}, A. Rummel^{**25}, M. Ruspa^{**2}, R. Ryutin^{**9}, H. Saarikko"8, G. Sanguinetti"24, A. Santoro"12, A. Santroni"7, E. Sarkisyan-Grinbaum"31, "e, L. Sarycheva^{**23}, F.P. Schilling^{**3}, P. Schlein^{**15}, A. Scribano Memoria^{**24}, G. Sette^{**7}, W. Snoeys^{**3} G.R. Snow"32, A. Sobol"32, "f, A. Solano"17, F. Spinella"24, P. Squillacioti"24, J. Swain"28, A. Sznajder"12, M. Tasevsky^{*13,**g}, C.C. Taylor^{**4}, F. Torp^{**33}, A. Trummal^{**25}, N. Turini^{**24}, M. Van Der Donckt^{**11}, P. Van Mechelen^{*13}, N. Van Remortel^{**8}, A. Vilela Pereira^{*12}, J. Whitmore^{*33}, D. Zaborov^{**26}

CMS/TOTEM common physics program

Largest coverage in pseudorapidity & proton detection on both sides

Physics menu

Low Luminosity ($\leq 10^{32}$ cm⁻²s⁻¹): low & high β^*

- Measure inclusive SD and DPE cross sections:
 - t, M_x dependence
 - Study of topology e.g. rapidity gap
- Measure semi-hard SD and DPE:
 - Onset of jet activity
- Muller-Navelet dijets
- Forward Drell-Yan
- Validation of Cosmic Ray generators

High Luminosity (> 10^{32} cm⁻²s⁻¹) : low β^*

Measure SD and DPE in presence of hard scales (dijets, vector bosons, heavy quarks): dPDF, GPD

 $\mathbf{e} \gamma \gamma$ and γp phyics

High Luminosity (> 10^{33} cm⁻²s⁻¹) : low β^*

Discovery physics in central exclusive production
 SM or MSSM Higgs, other exotic processes

Contents of the common document

Includes important experimental issues in measuring forward and diffractive physics but not an exhaustive physics study

- Detailed studies of acceptance & resolution of the forward proton detectors
- Trigger
- Background
- Reconstruction of kinematic variables

Several exemplary processes are studied in detail

Ch 1: Introduction
Ch 2: Experimental Set-up
Ch 3: Measurement of Forward Protons
Ch 4: Machine induced background
Ch 5: Diffraction at low and medium luminosity
Ch 6: Triggering on Diffractive Processes

at High Luminosity

Ch 7: Hard diffraction at High Luminosity
Ch 8: Photon-photon and photon-proton physics
Ch 9: Low-x QCD physics
Ch 10: Validation of Hadronic Shower Models

used in cosmic ray physics

X=anything : dominated by soft physics

- Measure fundamental quantities of soft QCD: SD and DPE inclusive cross sections, their s, t, M_x dependences are fundamental parameters of non-perturbative QCD.
- Contributes to the pile up.

X includes jets, W's, Z's, Higgs (!): hard processes calculable in pQCD

• Give info on proton structure (dPDFs and GPDs), QCD at high parton densities, multi-parton interactions, discovery physics

The accessible physics depends on : luminosity

β* (different proton acceptance)

ξ=∆p/p

Measurement of Forward Protons: momentum resolution (low β)

Studies available also for β =1540, 90, all RP stations

Measurement of Forward Protons: momentum resolution

ξ

Diffraction at low luminosity (<10³² cm⁻² s⁻¹): soft diffraction

Single Diffraction

Double Pomeron Exchange Inclusive cross sections and their t, M_x dependence

Topology of the events

Measure $\boldsymbol{\xi}$ and central Mass via:

- proton(s)
- rapidity gap relation $\Delta \eta = -\ln \xi$
- calorimeters $\xi = \sum_{i} E_{T}^{i} \exp(\mp \eta_{i})/\sqrt{s}$

Wide range t, ξ acceptance with special optics

These processes contribute to the pile-up at high luminosity

Diffraction at low luminosity: soft diffraction (DPE)

Number of event collected in a few days

β=90m ∫Ldt = 0.3 (pb⁻¹) :

1<M<2000 GeV N ~ 6x10⁷

 $\beta = 2m \int Ldt = 10(pb^{-1})$:

M>300 GeV N ~ 10^8

Diffraction at low luminosity: DPE Central Mass Resolution

Diffraction at low luminosity: DPE Central Mass Resolution

Diffraction at low luminosity: rapidity gaps

Measure ξ via rapidity gap: $\Delta \eta = -\ln \xi$

Achieved precision: $\sigma(\xi)/\xi \sim 80\%$

Diffraction at low luminosity: semi-hard diffraction

Measure the cross sections and their t, $M_{x_r} p_{\tau}^{jet}$ dependence

Topology of the events: for example exclusive vs inclusive jet production

In addition to the previous methods, ξ and central mass can be determined from calorimeter information:

 $\xi = \sum_{i} E^{i}_{\tau} e^{\mp \eta i} / \sqrt{s} \qquad \sigma(\xi) / \xi \sim 40\%$

Diffraction at low luminosity: semi-hard diffraction

N event collected [acceptance included]

β=90 ∫Ldt = 0.3 (pb⁻¹) SD: pT>20 GeV 6x10⁴ DPE: " 2000

β=2 ∫Ldt = 100 (pb⁻¹)

SD:	pT>50 GeV	5x10⁵
DPE:	Ш	3x10 ⁴

Experimental issues in selecting diffractive events at High Luminosity

- Trigger is a major limiting factor for selecting diffractive events
- Background from non-diffractive events that mimic diffractive events because of protons from pile-up events

Trigger

- CMS trigger thresholds (jets) for nominal LHC running too high for diffractive events
- Use information of forward detectors to lower CMS jet trigger thresholds
- The CMS trigger menus now foresee a dedicated diffractive trigger stream with 1% of the total bandwidth on L1 and HLT (1 kHz and 1 Hz)

Lumi	# Pile-up	L1 2-jet rate	Total	Reduction when requiring track in RP detectors			
nosity	events	[kHz] for	reduc				
$[{ m cm}^{-2}{ m s}^{-1}]$	per bunch	$E_T > 40 \text{GeV}$	tion	at	220 m	single-sided	
	crossing	per jet	needed		$\xi < 0.1$	- without and with	
1×10^{32}	0	2.6	2	370		cut on ξ	
1×10^{33}	3.5	26	20	7	15		
2×10^{33}	7	52	40	4	10		

Achievable total reduction: (single-sided 220m) x 2 (jet iso) x 2 (2 jets same hemisphere as p)

L1 conditions on RP detectors provides a rate reduction sufficient to lower the 2-jet threshold to 40 GeV per jet AND being compatible with the CMS L1 bandwidth limits for luminosities up to $2x \ 10^{33} \text{ cm}^{-1} \text{ s}^{-1}$

Much less of a problem is triggering with muons, where L1 threshold for 2-muons is 3 GeV

Trigger: Higgs

Central exclusive production pp->pHp with H (120GeV)->bb

- In non-diffractive production hopeless, signal swamped with QCD dijet background
- Selection rule in CEP (central system is J^{PC} = 0⁺⁺ to good approx) improves S/B for SM Higgs dramatically
- In certain MSSM scenarios the signal cross section is three order of magnitude higher than for the SM case

Level-1:

~12% efficiency with 2-jets (E_T >40GeV) & single-sided 220 m condition

HLT: Jet trigger efficiency ~7% To stay within 1 Hz output rate, needs to either prescale b-tag or add 420 m detectors in trigger

Additional ~10% efficiency by introducing a 1 jet & $1\mu(40GeV, 3GeV)$ trigger condition

lumi	$\langle N^{PU} \rangle$	420+420	220+220	220+420	Total
$1 \cdot 10^{33}$	3.5	0.003	0.019	0.014	0.032
$2 \cdot 10^{33}$	7.0	0.008	0.052	0.037	0.084

Eg at $2x \ 10^{33} \text{ cm}^{-2}\text{s}^{-1}$ -> fake DPE signature =10% -> independent of the type of signal.

Depends critically on the leading proton spectrum at the LHC which in turn depends on size of soft rescattering effects (rapidity gap survival factor) !

Pile-up background

Can be reduced by:

Requiring correlation between

 ξ , M measured in the central detector and ξ , M measured by the near-beam detectors

Fast timing detectors that can determine whether the protons seen in the near-beam detector came from the same vertex as the hard scatter (currently R&D project)

CEP of **H(120 GeV)** → **b bbar:**

Possible to retain O(10%) of signal up to 2×10^{33} cm² s¹ in a special forward detectors trigger stream

S/B in excess of unity for a SM Higgs and up to 1000 for a MSSM Higgs appears achievable

Forward Physics

Forward particle & energy flows

Production cross sections of neutral particles

Validation of hadronic air shower models

New phenomena (DCC...?)

Low-x QCD

Proton structure at low-x, Multi-parton scattering, Parton saturation, Colour Transparency

Study of the underlying event at the LHC

(crf P. Bartalini talk) Multiple parton-parton interactions and rescattering effects accompanying a hard scatter Closely related to gap survival and factorization breaking in hard diffraction

Photon-photon and photon-proton physics

Forward particle & energy flow

Measure:

Rapidity distribution (charged, neutral)

Energy distribution

Multiplicity & correlations

study long-range rapidity correlations and fluctuations of multiplicity

observe exotic phenomena? (DCC,....)

min bias physics

relevant for Cosmic Ray interpretation

Forward particles & energy flow

 10^{0}

10-7

10⁻⁶

10⁻⁵

10⁻⁴

10⁻³

х

10⁻²

10⁻¹

10⁰

Quark and gluon density (PDF) at small $x_{_{Bi}}$ (parton fractional momentum) 109 $x_{1,2} = (M/14 \text{ TeV}) \exp(\pm y)$ Pioneered by HERA, at LHC extend to lower x 10^{8} Q = MM = 10 TeV10⁷ Y = In 1/x Saturation $\ln Q_s^2(Y) = \lambda Y$ 10^{6} M = 1 TeV105 (GeV^2) LHC Dilute system M = 100 GeV 10^{4} Q_2 BFKL 10^{3} 2 0 2 4 6 DGLAP 10^{2} = 10 GeV \mathbf{M} $\ln \Lambda^2_{_{QCD}}$ $\ln Q^2$ fixed 10^{1} HERA target

Direct information on PDF structure and evolution provided by:

- jets (sensitive to gluon density)
- Drell-Yan pairs (sensitive to quark density)

Forward Drell-Yan

Sensitive to low- x_{BJ} quarks density in proton in case of large imbalance of fractional momenta $x_{1,2}$ of leptons, which are then boosted to large rapidities

 $M^{2}(\text{lepton pair}) = sx_{1}x_{2}$ $x_{1,2}^{2} = M/\sqrt{s} \exp(\mp y)$

Castor/T2 down to $x_{BJ} \sim 10^{-6}$ Measure angle of electrons with T2

Inclusive forward "low- E_{T} " jet ($p_{T} \sim 20-100 \text{ GeV}$) production: $p + p \rightarrow jet1 + jet2 + X$ Jets in HF sensitive to x $\sim 10^{-4}$ Jets in Castor x $\sim 10^{-6}$ E_T (GeV) PYTHIA 6.4: $p+p \rightarrow jet_1+jet_2$, $\sqrt{s} = 14 \text{ TeV}_2$ 0.1 $jet_{1.2}$ in 3.0 < $|\eta|$ < 5.0 0.08 10² 0.06 0.04 0.02 -2 -3 -1 -6 log₁₀(x_{1,2})

51

Colour transparency

Single Diffraction pp→p+3jets

Estimated cross-section

Provide information about the short distance quark structure Partons inside the quarks or outside?

$$\sigma_{3jets} \approx \left(\frac{5 \text{GeV}}{p_{Tmin}}\right)^8 (10 \div 100) \, nb$$

Example 3 jets at 10 GeV: polar angle of jets ~ 4.3 mrad $\Diamond \eta=6.1$ jet separation ~ 7mrad $\Diamond 10$ cm in T2/Castor jet width ~ 0.3-3 mrad $\Diamond 0.4$ - 4 cm in T2/Castor

proton $\xi(=\Delta p/p) \sim 10^{-6}$

Detect the proton (@ high β) + jets : 10 – 100 events in 0.3 pb⁻¹

Summary

Important experimental issues have been addressed in the common document:

Detailed studies of acceptance & resolution of the forward proton detectors for all scenarios

Machine induced background

Trigger of diffractive events

Pile-up

Summary

Low Luminosity ($\leq 10^{32}$ cm⁻²s⁻¹): low & high β^*

- Measure inclusive SD and DPE cross sections:
 - t, M_x dependence
 - Study of topology e.g. rapidity gap
- Measure semi-hard SD and DPE:
 - Onset of jet activity
- Inclusive Forward jets, Muller-Navelet dijets
- Forward Drell-Yan
- Validation of Cosmic Ray generators

High Luminosity (> 10^{32} cm⁻²s⁻¹) : low β^*

Measure SD and DPE in presence of hard scales (dijets, vector bosons, heavy quarks): dPDF, GPD

γγ and γp phyics

High Luminosity (> 10^{33} cm⁻²s⁻¹) : low β^*

Discovery physics in central exclusive production
 SM or MSSM Higgs, other exotic processes

Running with TOTEM optics: large proton acceptance

No pile-up

Trigger limiting factor

Pile-up not negligible: important source of background

Need additional forward proton detector