

SMR/1842-15

International Workshop on QCD at Cosmic Energies III

28 May - 1 June, 2007

Lecture Notes

H-J. Drescher Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany Hadron Nucleus collisions in Air Showers

Introduction

- •air shower simulations
- •hh scattering
- hA scattering
- •High density effects at high densities/energies
- •Model comparison/air-shower properties

Why are ultra high energy cosmic rays interesting?

•Origin unclear

- Bottom-up: acceleration
 - Study astrophysical objects,
- Top-down: decay of some heavy object
 - Study exotic physics

•Propagation:

- interaction with CMB
- Interaction with magnetic fields (IGMF, GMF)

Interaction in the atmosphere

- Determine primary
- Learn about high energy physics

Detection of UHECR

Direct detection not possible: Flux very low: E>1e20 eV -> 1 particle/km^2/century

indirect detection via AIR SHOWERS induced by UHECRs

Reconstruct primary from shower properties:

- Energy,
- Arrival direction,
- Particle type

Air shower interactions

Hadrons: hadronic interactions p-Air π -Air,K-Air decays

Electrons/Gammas:

Bremsstrahlung Pair Creation inverse Compton energy-loss photo-nuclear effect LPM Main theoretical uncertainty:

- higher energies
 π induced reactions
 - phase space different from collider experiments
 - •inelastic cross section

Muons: energy loss bremsstrahlung ...

Gribov Regge Theory for pp interaction

Watson Sommerfeld transform of Amplitude A(s,t), (similar to partial wave expansion), has poles at $l = \alpha (t)$

$$A(s,t) = \beta(t)\eta(t)s^{\alpha(t)}$$

Assume one dominating pole for $s \rightarrow \infty$

See Barone, Predazzi

for review

 $\begin{aligned} &\alpha(t) = \alpha(0) + \alpha't & \text{Regge trajectory} \\ &\beta(t) = \beta(0) e^{-B_0 t/2} & \text{residue} \\ &\eta(t) = \frac{-1 + \xi e^{-i\alpha(t)}}{\sin(\pi\alpha(t))} & \text{signature factor} \end{aligned}$

Optical theorem

$$\sigma_{tot} = \frac{1}{s} \operatorname{Im} A(s, t=0) \sim s^{\alpha(0)-1}$$

Reggeon $\alpha(0)$ ~.5

Pomeron for $\alpha(0)>1$ slowly rising cross section

Shrinkage of diffractive peak increase of interaction range

$$\sigma_{tot} \sim s^{\alpha(0)-1}$$

 $\alpha(0) \approx 1.07$

Violation of Froissart bound -> Multiple Pomeron exchange

Eikonal formalism recovers unitarity

$$\begin{split} \sigma_{tot} &= 2 \int d^2 b [1 - e^{-\chi(s,b)}] & \chi(s,b) \\ \sigma_{el} &= \int d^2 b [1 - e^{-\chi(s,b)}]^2 \\ \sigma_{inel} &= \int d^2 b [1 - e^{-2\chi(s,b)}] & \text{Eikonal} \end{split}$$

$$\chi(s,b) \sim \int d^2 q_t e^{-iq_t b} \operatorname{Im}(A(s,q_t)) \\ \sim \frac{g_1 g_2 s^{\alpha(0)-1}}{4 \pi B} e^{-b^2/2B}$$

Poisson distribution:
$$P_n = \frac{(2\chi(s,b))^n}{n!} e^{-2\chi(s,b)}$$

String end distributions

Gribov-Regge only gives number of (cut) Pomerons, nothing about their mass.

Assume following distribution of string ends (or Pomeron ends)

$$f(x) \sim x_1^{\alpha_q} x_2^{\alpha_q} \dots (1 - \sum_i x_i)^{\alpha_{remn}}$$

$$\alpha_q \approx -\frac{1}{2}$$

Momentum fraction distribution of (anti-) quarks

$$\alpha_{remn} \approx \frac{3}{2}$$

Momentum fraction distribution of remnant

Generalization to hadron Nucleus collisions with Glauber Gribov

Projectile interacts coherently with target

String end distributions influence remnant x

more complicated:

- virtual correction (elastic rescattering)

Perturbative processes

 $\alpha_s(Q^2)$ running coupling constant small at large pt **Inclusive** jet cross section:

$$\sigma_{jet} = K \sum_{i,j} \int_{p_t^2 > p_{t,0}^2} dp_t^2 \int dx_1 dx_2 \frac{d\sigma_{i,j}(x_1 x_2 s, p_t^2)}{dp_t^2} \\ \times f_{A,i}(x_1, Q^2) f_{B,j}(x_2, Q^2)$$

K K~2 factor accounts for NLO corrections $d\sigma(\hat{s}, p_t^2)/dp_t^2$ Differential parton-parton cross section $f_{A,i}(x_{1,}Q^2)$ Parton distribution function Multiple jet production if a single event

·Inclusive jet cross section $\sigma_{jet} > \sigma_{tot}$ ·Multiple jets

Define hard eikonal:
$$\chi_{hard}(s,b) = \frac{1}{2} \sigma_{jet} A(s,b)$$

A(s,b) Overlap function of hadrons

Total inelastic cross-section: $\sigma_{inel} = \int d^2 b \left[1 - e^{-2x_{soft}(s,b) - 2x_{hard}(s,b)} \right]$

Matching soft and hard scattering with the semihard Pomeron

Soft pre-evolution: string ends for hard partons

Used in QGSJet, Nexus, Epos

String ends for hard scatterings

No information from pQCD how to match hard partons to soft strings.

Another argument for soft pre-evolution: $\frac{\overline{\Omega}}{\Omega}$

Bleicher et al.,

Phys.Rev.Lett.88:202501,2002.

Fragmentation of partons into hadrons

Pomeron = Cylinder ---> cut ---> 2 Strings

Inspired from QCD-flux tube between color charges

string dynamics governed by Nambu-Goto Lagrangian

Fragmentation via fragmentation function or area law (Atrtu-Menessier)

Break probability determines multiplicity

hard partons (gluons) are mapped onto string as kinks". Scattering on a dense target

At high energies, dense systems the independent interaction picture is not valid any more. Partons overlap - re-interact

How to deal with rescattering? Many approaches :

string fusion enhanced diagrams s-dependent pt-cutoff Black Disk/CGC effective treatment shadowing of PDF (DPMJET,Armesto,Ranft) (QGSJet-II S.Ostapchenko) (Sibyll, R.Engel) (BBL,HJD,Dumitru Strikman) (Epos, K.Werner) (Hijing)

Pajares, EPJC43 (05) 9 (hep-ph/0501125); Armesto et al., PRL77 (96) 3736 (hep-ph/9607239)

String fusion

•String fusion takes place when the parent partons overlap

- •Only fusion of pairs is allowed, only soft strings
- •Implements non-linear effects on the string level (a posteriori)

Consequences of string fusion

- reduction of multiplicity
 enhanced strangeness
 enhanced baryon production
 enhanced correlations
 - backward/forward

But: Effects are small for Air showers e.g. no Xmax change

Enhanced Diagrams

Ostapchenko Nucl.Phys.Proc.Suppl.B151(2006)143

Non-linear effects by interaction between soft Pomerons resummation of all orders

Reduces cross section, multiplicity, enhances inelasticity

Total cross section and SF $F_2(x, Q^2)$ with (without) enhanced graphs:

Energy dependent pt cutoff

PQCD cross section diverges for low pt cutoff needed, but energy dependent.

mb/GeV²

e.g. Sibyll uses:

$$p_{t,min} = 1 + 0.065 e^{0.9 \sqrt{\ln s}}$$

Saturation momentum Qs(s) can be associated with pt-cutoff

But:

 Independent of centrality independent of A Many others have pt-cutoff like Pythia, Herwig, a.s.o.

Empirical treatment of high parton density in EPOS

Ansatz for parton density in target/projectile:

$$\begin{split} Z_T(j) &= \sum_i Z_T(i,j) \\ Z_T(i,j) &= z_0 \exp(-b_{ij}^2/2b_0^2) \\ &+ \sum_{\text{target nucleons } j' \neq j} z'_0 \exp(-b_{ij'}^2/2b_0^2), \quad \text{Additional split} \\ &\quad \text{ladders} \end{split}$$

$$b_0 &= w_B \sqrt{\sigma_{\text{inel } pp}/\pi} \\ z_0 &= w_Z \ln s/s_M, \\ z'_0 &= w_Z \sqrt{(\ln s/s_M)^2 + w_M^2}, \quad \text{Coefficients for density depend} \\ &\text{on log(s)} \end{split}$$

Treat high density effects (enhanced diagrams) effectively instead of explicitly K.Werner, T.Pierog, F.Liu

Phys.Rev.C74:044902,2006.

Quantities that depend on Z:

Amplitude changes due to the density

elastic screening: parameterized Amplitide: $\alpha(x_1)^{\beta}(x_2)^{\beta} \rightarrow \alpha(x_1)^{\beta}(x_2)^{\beta+\epsilon}$ $\epsilon = \alpha_s \beta_s Z$

collective fragmentation:

absorb into remnant change hadronization parameters as a function of Z

$$p_B \rightarrow p_B - \alpha_B Z$$

 $p_D \rightarrow p_D (1 + \alpha_D Z)$

Reduces small-x contributions as a function of Z

Approach of the black disk limit

Gluon structure function rises fast at small x

A hadron hitting a dense target $x_2 = 4 p_t^2 / (x_1 s)$ interaction probability of quarks interacting inelastically reaches unity

scattering incoming quarks off dense target, projectile breaks up -> no leading particle effect

importance for air showers: reduced forward scattering faster absorption if atmosphere (lower Xmax)

Color Glass Condensate

Low energy dilute parton gas

Gluon density grows rapidly with smaller x

partons saturate at $\rho \sim 1/\alpha_s$

typical Momentum is Qs(x)

High energy saturated color field

alpha(Qs)<<1 McLerran-Venugopalan (MV Model)

Forward quark-Nucleus scattering:

$$\frac{d\sigma^{qA}}{dq^{-}d^{2}q_{t}d^{2}b} = \delta(q^{-}-p^{-}) C(q_{t})$$
PRL 89 (2002)

$$C(q_{t}) = \int \frac{d^{2}r_{t}}{(2\pi)^{2}} e^{iq_{t}r_{t}} \left\{ \exp\left[-2Q_{s}^{2}\int_{\Lambda}\frac{d^{2}p_{t}}{(2\pi)^{2}}\frac{1}{p_{t}^{4}}\left(1-e^{ip_{t}r_{t}}\right)\right] -2\exp\left[-Q_{s}^{2}\int_{\Lambda}\frac{d^{2}p_{t}}{(2\pi)^{2}}\frac{1}{p_{t}^{4}}\right] +1 \right\}$$
--->

$$d\sigma^{\mathrm{el}}/d^{2}b = \left[1-e^{-Q_{s}^{2}/4\pi\Lambda^{2}}\right]^{2} , \quad d\sigma^{\mathrm{tot}}/d^{2}b = 2\left[1-e^{-Q_{s}^{2}/4\pi\Lambda^{2}}\right]$$

Limits for qA cross section :

$$C(q_t) = q_t \gg Q_s : \qquad \frac{1}{2\pi^2} \frac{Q_s^2}{q_t^4} \left[1 + \frac{4}{\pi} \frac{Q_s^2}{q_t^2} \log \frac{q_t}{\Lambda} + \mathcal{O}\left(\frac{Q_s^2}{q_t^2}\right) \right]$$
$$q_t \lesssim Q_s : \qquad \frac{1}{Q_s^2 \log Q_s / \Lambda} \exp\left(-\frac{\pi q_t^2}{Q_s^2 \log Q_s / \Lambda}\right)$$

If one assumes indep. fragm. of scattered partons :

$$x_F \frac{d\sigma^{pA \to hX}}{dx_F d^2 k_t d^2 b} = \int_{x_F}^{1} dx \, \frac{x}{x_F} \, f_{q/p}(x, Q_s^2) \, D_{h/q}(\frac{x_F}{x}, Q_s^2) \, \frac{d\sigma^{qA}}{d^2 q_t d^2 b}$$

Shattering the proton

Probability for quark to be scattered to qt~0 (with color exchange !) :

$$\int_{0}^{\Lambda} \mathrm{d}^{2} q_{t} \frac{\mathrm{d}\sigma^{\mathrm{in}}}{\mathrm{d}^{2} b \mathrm{d}^{2} q_{t}} \simeq 1 - \exp\left(-\frac{\pi \Lambda^{2}}{Q_{s}^{2} \log Q_{s}/\Lambda}\right) \simeq \frac{\pi \Lambda^{2}}{Q_{s}^{2} \log Q_{s}/\Lambda}$$

--> suppression of "beam-jet remnants" (soft physics) in the BBL

All partons resolved at scale Qs, coherence of proton destroyed completely.

Monte Carlo implementation

• Choose model as function of density, energy

$$Q_s(b, x_F = 0.001) > 1 \,\text{GeV}$$

→ BBL

else

- → Sibyll (standard pQCD EG, $p_t(s)$ cut-off)
- Generate leading partons according to PDF
- Generate gluons from kt-factorization formula
- Valence quarks and gluons form strings with kinks:
 - Collinear g absorbed (low q_t)
 - \bullet Low invariant mass of quarks forms diquark recovers leading particle effect for low Q_s

 $\phi_A(x_1, k_t^2)$ Unintegrated gluon distribution function use numerical integration instead of approximations

Saturation scale

$$\begin{split} Q_s^2(x) &= 2 \, \mathrm{GeV}^2 \big(\frac{n_{part}}{1.53} \big) \big(\frac{0.01}{x} \big)^{\lambda} & \text{Fixed coupling} \\ \text{evolution} \\ n_{npart,A} &= A \, T_A \big(1 - \big(1 - \sigma \, T_B \big)^B \big) \text{ From Glauber model} \\ \lambda &= 0.2 - 0.3: \text{ determines} \\ \text{growth with energy} \\ n_{part} \text{ depends on properties} \\ \text{of both nuclei} \rightarrow \text{saturation} \\ \text{scale not universal } ?? \\ O_s^2(x) &= \Lambda^2 \exp(\log(Q_0^2/\Lambda^2) \sqrt{1 + 2c \, \alpha \, y})^{\text{rapidity y}} y = \log(1/x_3)^2 \end{split}$$

kt Factorization results

Good description of Multiplicity at mid rapidity for all centralities 200 and 130 GeV

Pb-Pb at 5500 GeV, b=2.4 fm

Iron Air: total multiplicities

Central Fe-N collisions (running coupling)

total multiplicity as function of Elab/A

Uncertainty due to $\lambda = 0.2-0.3$

Generation of leading guarks and strings in BBL

x-distribution: $P_i(x) = f_i(Q_s^2(x), x)$ f_i(Q²,x): GRV98 parton distribution functions

 p_t distribution given by $C(p_t) = p_t \approx Q_s^2(x)$

Gluons ordered in rapidity (x)

No energy loss of partons (L.Frankfurt, yesterday) would make effect even stronger

Diquark recombination at low transverse momentum

- Check invariant mass between two quarks
 - if $M_{diquark} < m_{\rho}=0.77 \text{ GeV}$

Recombine quarks to diquark recovers leading particle effect

Diquark recombination: central pN

Baryon to meson ratio for forward direction central pN at LHC energies

Ratio of baryon to meson production in forward region

Green: QGSJet-II Red: BBL w.o. recombination Black: BBL w recombination

Without recombination: leading baryon completely suppressed

Event shape

Multiplicity

Inelasticity

X_{max} plot for fixed and running coupling

Xmax sensitive to evolution scenario

H.D, Dumitru, Strikman Phys.Rev.Lett.94:231801,2005 Model comparisons show density effects in observables relevant for Air Showers:

•QGSJet 01 versus QGSJet-II•Sibyll versus Sibyll/BBL•Epos

X_{max} of models

Xmax of models for same inelastic cross section from QGSJet01 particle production even more different Inelasticity QGSJET01 – QGSJet- II

Inelasticity BBL – Sibyll-2.1

Inelasticity $K_{0.01}$ of all models

$$K_{0.01} = 1 - \int_{0.01}^{1} x_F \frac{dn}{dx_F} dx_F$$

More Muons from Epos due to enhanced production of baryons

Produce more particles which stay in the hadronic channel of an air shower (p/n instead of pi0)

Conclusion

 hadron Nucleus collisions main uncertainty for Air-shower simulations

•many approaches for high density/small x

•leading particle suppression in black disk limit

•checking models thoroughly with data is good (Epos)

• extrapolation to high energies still unclear