

SMR/1842-14

International Workshop on QCD at Cosmic Energies III

28 May - 1 June, 2007

Lecture Notes

A. Drago Universita' di Ferrara, Italy

Astrophysical limits on quark matter

Alessandro Drago University of Ferrara

- Theory of matter at large densities
- Limits on masses and radii
- Cooling curves
- Millisecond pulsars
- Other observations (glitches, QPO in soft gamma repeaters)
- Implications for explosive phenomena (SNs and GRBs)
- Connection with lab experiments
- Conclusions

Phase diagram of high density matter

NJL model Ruster et al. 2005

Constituent masses and gaps in NJL Buballa 2004

Phase diagram of neutral quark matter: effect of neutrino trapping Ruster et al. PRD73 (2006) 034025

Formation of color superconducting quark matter from normal quark matter takes place through a first order transition.

The energy released in the second transition is larger than in the first!

Open questions in theory of high density matter

- Which phases between NQ and CFL? NQ? 2SC? Gapless 2SC? Gapless CFL? Crystalline phases?...
- Discrepancy between MIT-like and NJL calculations due to large m_s in NJL: in NJL it is difficult to produce strange quark matter
- Large density repulsion: gluon exchange? Vector mesons? Which parameter values?

Composition of high density matter: hyperons and quarks

Masses and radii: effect of hyperons and quarks

How many quark stars? (if any...)

If quark stars exist are quark stars (Madsen, Olinto et al.)

But...

- Quark nugget contamination maybe overestimated
- Mechanism providing the formation of quark matter unclear

Maybe quark and neutron stars can both exist!

Masses Lattimer and Prakash 2007

Limits on masses and radii Ozel 2006

Limits on masses and radii Alford et al. 2007

Various limits on masses and radii Klahn et al. 2006

Thermal radii (obsolete...)

Cooling curves: minimal model vs data Page et al. 2005

Cooling curves in a hadronic scenario Grigorian et al. 2005

Cooling curves for a hybrid star Grigorian et al. 2005

Maximum mass and direct Urca threshold Klahn et al. 2006

Extrapolated limits on pressure from lab experiments

Summary of constraints from masses, radii, cooling and lab experiments Klahn et al 2006

Model	$M_{\rm max} \ge 1.9 \ M_{\odot}$	$M_{\rm max} \ge 1.6~M_{\odot}$	$M_{DU} \ge 1.5 \ M_{\odot}$	$M_{DU} \ge 1.35 \ M_{\odot}$	4U 1636-536 (u)	$4U \ 1636-536 \ (1)$	RX J1856 (A)	RX J1856 (B)	J0737 (no loss)	$J0737 \ (loss \ 1\% \ M_{\odot})$	SIS+AGS flow constr.	SIS flow+ K ⁺ constr.	No. of passed tests	(out of 6)
$\mathrm{NL}\rho$	_	+	_	-	_	_	_	_	_	_	+	+	1	2
$\mathrm{NL} ho\delta$	_	+	_	_	-	_	-	_	-	_	+	+	1	2
DBHF	+	+	-	_	+	+	-	+	-	+	-	+	2	5
DD	+	+	+	+	+	+	-	+	-	_	-	_	3	4
$\mathrm{D}^{3}\mathrm{C}$	+	+	+	+	+	+	-	+	-	_	-	_	3	4
KVR	0	+	+	+	_	0	_	_	-	+	+	+	3	5
KVOR	+	+	+	+	_	+	_	_	-	0	+	+	3	5
DD-F	+	+	+	+	_	+	_	_	_	+	+	+	3	5

Evidence of a 1122Hz pulsation in a transient of a LMXB Kaaret et al. 2006

Stability of a 1122 Hz rotator Beiger et al. 2007

R-mode instabilities

Discovered by Andersson and Friedman&Morsink in 1998

Rapidly drain angular momentum from a rotating compact star

Suppressed by bulk and shear viscosity

$$\dot{\alpha} = -\alpha \left[\frac{1}{t_g} + \left(1 - \frac{3\alpha^2 \tilde{J}}{2\tilde{I}} \right) \left(\frac{1}{t_s} + \frac{1}{t_b} \right) + \frac{\dot{M}}{2\tilde{I}\Omega} \left(\frac{G}{MR^3} \right)^{1/2} \right] (23)$$
$$\dot{\Omega} = \frac{\dot{M}}{\tilde{I}} \left(\frac{G}{MR^3} \right)^{1/2} - \frac{\dot{M}\Omega}{M} - 3\Omega\alpha^2 \frac{\tilde{J}}{\tilde{I}} \left(\frac{1}{t_{\rm sv}} + \frac{1}{t_{\rm bv}} \right)$$
(24)
$$\dot{D} = \dot{D} = \dot{D} = \dot{D}$$

 $\dot{E}_{\rm thermal} = \dot{E}_{\rm accretion} + \dot{E}_{\rm viscosity} - \dot{E}_{\rm neutrino}$

Stability windows due to r-modes adapted from Andersson et al.

Time evolution of rotational frequency Drago et al. 2007

R-mode amplitudes Drago et al. 2007

Other limits

- Glitches (temporary speeding-up of neutron stars). Crystalline phases in compact stars: can exist also in stars containing deconfined quark matter
- QPO in soft gamma repeaters: indication of frequencies of thoroidal modes of the crust of the star. Incompatible with pure quark star surfaces (Watts and Reddy 2006)

Fate of massive stars Fryer et al. 2003

Fate of massive stars: SN types Fryer et al. 2003

Fate of massive stars: GRB and collapsars Fryer et al. 2003

Hypernova model (Collapsars)

Rotating massive stars, whose central region collapses to a black hole surrounded by an accretion disk.

Outflows are collimated by passing through the stellar mantle.

Detailed numerical analysis of jet formation.

Fits naturally in a general scheme describing collapse of massive stars.

Large angular momentum needed.

SN – GRB time delay: less then 100 s.

Hadronic Stars \rightarrow Hybrid or Quark Stars

Z.Berezhiani, I.Bombaci, A.D., F.Frontera, A.Lavagno, ApJ586(2003)1250

Metastability due to delayed production of Quark Matter.

- 1) conversion to Quark Matter (it is NOT a detonation)
- 2) cooling (neutrino emission)
- 3) neutrino antineutrino annihilation

4)(possible) beaming due to strong magnetic field and star rotation

Fits naturally into a scheme describing QM production. Energy and duration of the GRB are OK.

No calculation of beam formation, yet.

SN – GRB time delay: minutes → years depending on mass accretion rate Softening at intermediate energies in heavy ion scattering? Russkikh and Ivanov 2006

Bulk modulus in a mixed phase of quarks and hadrons with two conserved charges Bonanno et al. 2007

Conclusions

Good news!

- X-ray satellites are providing lot of new data
- Analysis of lab experiments can provide important information
- Explosive phenomena suggest new problems and possibilities

Bad news!

- Data analysis is often complicated and model dependent
- Data are often contradictory (or seem to be)
- The connection between matter tested in labs and in stars is rather weak

Also bad "news"

Still extremely difficult to interact with most of the astrophysical community! (at least in the case of explosive phenomena...)