International Workshop on QCD at Cosmic Energies III

28 May-1 June, 2007

Lecture Notes
Y. Dokshitzer

Universites Paris VI et Paris VII
LPTHE
Paris, France

Some physics and mathematics of the parton evolution

Yuri Dokshitzer
Paris-Jussieu \& St. Petersburg

Trieste, QCD Cosmic, 1.062007

QCD made simple (?)

We are witnessing explosive progress in analytical and numerical methods and techniques for deriving sophisticated high accuracy pQCD predictions, prompted to a large extent by the LHC needs.

We are witnessing explosive progress in analytical and numerical methods and techniques for deriving sophisticated high accuracy pQCD predictions, prompted to a large extent by the LHC needs.

The aim of this talk is to argue that pure brain effort seems to be still of definite value in the QCD context

We are witnessing explosive progress in analytical and numerical methods and techniques for deriving sophisticated high accuracy PQCD predictions, prompted to a large extent by the LHC needs.

The aim of this talk is to argue that pure brain effort seems to be still of definite value in the QCD context, with evidence growing towards hidden powerful links with "theoretical theory" constructs (SUSY etc)

We are witnessing explosive progress in analytical and numerical methods and techniques for deriving sophisticated high accuracy pQCD predictions, prompted to a large extent by the LHC needs.

The aim of this talk is to argue that pure brain effort seems to be still of definite value in the QCD context, with evidence growing towards hidden powerful links with "theoretical theory" constructs (SUSY etc)

Parton Evolution Revisited:

We are witnessing explosive progress in analytical and numerical methods and techniques for deriving sophisticated high accuracy pQCD predictions, prompted to a large extent by the LHC needs.

The aim of this talk is to argue that pure brain effort seems to be still of definite value in the QCD context, with evidence growing towards hidden powerful links with "theoretical theory" constructs (SUSY etc)

Parton Evolution Revisited:

- Space- and Time-like parton evolution

We are witnessing explosive progress in analytical and numerical methods and techniques for deriving sophisticated high accuracy pQCD predictions, prompted to a large extent by the LHC needs.

The aim of this talk is to argue that pure brain effort seems to be still of definite value in the QCD context, with evidence growing towards hidden powerful links with "theoretical theory" constructs (SUSY etc)

Parton Evolution Revisited:

- Space- and Time-like parton evolution
- Choosing parton evolution time

We are witnessing explosive progress in analytical and numerical methods and techniques for deriving sophisticated high accuracy pQCD predictions, prompted to a large extent by the LHC needs.

The aim of this talk is to argue that pure brain effort seems to be still of definite value in the QCD context, with evidence growing towards hidden powerful links with "theoretical theory" constructs (SUSY etc)

Parton Evolution Revisited:

- Space- and Time-like parton evolution
- Choosing parton evolution time(s)

We are witnessing explosive progress in analytical and numerical methods and techniques for deriving sophisticated high accuracy pQCD predictions, prompted to a large extent by the LHC needs.

The aim of this talk is to argue that pure brain effort seems to be still of definite value in the QCD context, with evidence growing towards hidden powerful links with "theoretical theory" constructs (SUSY etc)

Parton Evolution Revisited:

- Space- and Time-like parton evolution
- Choosing parton evolution time(s)
- New Evolution Equation: "wrong" but smart

We are witnessing explosive progress in analytical and numerical methods and techniques for deriving sophisticated high accuracy pQCD predictions, prompted to a large extent by the LHC needs.

The aim of this talk is to argue that pure brain effort seems to be still of definite value in the QCD context, with evidence growing towards hidden powerful links with "theoretical theory" constructs (SUSY etc)

Parton Evolution Revisited:

- Space- and Time-like parton evolution
- Choosing parton evolution time(s)
- New Evolution Equation: "wrong" but smart
- First check (large x region)

We are witnessing explosive progress in analytical and numerical methods and techniques for deriving sophisticated high accuracy pQCD predictions, prompted to a large extent by the LHC needs.

The aim of this talk is to argue that pure brain effort seems to be still of definite value in the QCD context, with evidence growing towards hidden powerful links with "theoretical theory" constructs (SUSY etc)

Parton Evolution Revisited:

- Space- and Time-like parton evolution
- Choosing parton evolution time(s)
- New Evolution Equation: "wrong" but smart
- First check (large x region)
- Small x : Two Puzzles

We are witnessing explosive progress in analytical and numerical methods and techniques for deriving sophisticated high accuracy pQCD predictions, prompted to a large extent by the LHC needs.

The aim of this talk is to argue that pure brain effort seems to be still of definite value in the QCD context, with evidence growing towards hidden powerful links with "theoretical theory" constructs (SUSY etc)

Parton Evolution Revisited:

- Space- and Time-like parton evolution
- Choosing parton evolution time(s)
- New Evolution Equation: "wrong" but smart
- First check (large x region)
- Small x : Two Puzzles
- $\mathcal{N}=4$ SUSY Yang-Mills as QCD playing ground

We are witnessing explosive progress in analytical and numerical methods and techniques for deriving sophisticated high accuracy pQCD predictions, prompted to a large extent by the LHC needs.

The aim of this talk is to argue that pure brain effort seems to be still of definite value in the QCD context, with evidence growing towards hidden powerful links with "theoretical theory" constructs (SUSY etc)

Parton Evolution Revisited:

- Space- and Time-like parton evolution
- Choosing parton evolution time(s)
- New Evolution Equation: "wrong" but smart
- First check (large x region)
- Small x: Two Puzzles
- $\mathcal{N}=4$ SUSY Yang-Mills as QCD playing ground
- Ambitious programme
S. Moch, J.A.M. Vermaseren and A. Vogt[results March 2004 - 2006 and counting]
The Three-Loop Splitting Functions in QCD:The Non-Singlet Case[03.04]The Singlet Case[04.04]
Higher-Order Corrections in Threshold Resummmation[06.05]
The Quark Form Factor in Higher Orders [07.05]
Three-Loop Results for Quark and Gluon Form Factors [08.05]
Sudakov Resummations at High Energies[11.05]
S. Moch, J.A.M. Vermaseren and A. Vogt[results March 2004 - 2006 and counting]
The Three-Loop Splitting Functions in QCD:
The Non-Singlet Case [03.04]
The Singlet Case [04.04]
Higher-Order Corrections in Threshold Resummmation [06.05]
The Quark Form Factor in Higher Orders [07.05]
Three-Loop Results for Quark and Gluon Form Factors [08.05]
Sudakov Resummations at High Energies [11.05]
A. Mitov, S. Moch, A. Vogt
Next-to-Next-to-Leading Order Evolution of Non-SingletFragmentation Functions[04.06]

$$
\begin{aligned}
& P_{\mathrm{ns}}^{(2)+}(x)=16 C_{A} C_{F} n_{f}\left(\frac { 1 } { 6 } p _ { \mathrm { qq } } (x) \left[\frac{10}{3} \zeta_{2}-\frac{209}{36}-9 \zeta_{3}-\frac{167}{18} \mathrm{H}_{0}+2 \mathrm{H}_{0} \zeta_{2}-7 \mathrm{H}_{0}\right.\right. \\
& \left.+3 \mathrm{H}_{1,0,0}-\mathrm{H}_{3}\right]+\frac{1}{3} p_{\mathrm{qq}}(-x)\left[\frac{3}{2} \zeta_{3}-\frac{5}{3} \zeta_{2}-\mathrm{H}_{-2,0}-2 \mathrm{H}_{-1} \zeta_{2}-\frac{10}{3} \mathrm{H}_{-1,0}-\mathrm{H}_{-}\right. \\
& \left.+2 \mathrm{H}_{-1,2}+\frac{1}{2} \mathrm{H}_{0} \zeta_{2}+\frac{5}{3} \mathrm{H}_{0,0}+\mathrm{H}_{0,0,0}-\mathrm{H}_{3}\right]+(1-x)\left[\frac{1}{6} \zeta_{2}-\frac{257}{54}-\frac{43}{18} \mathrm{H}_{0}-\vdots\right. \\
& -(1+x)\left[\frac{2}{3} \mathrm{H}_{-1,0}+\frac{1}{2} \mathrm{H}_{2}\right]+\frac{1}{3} \zeta_{2}+\mathrm{H}_{0}+\frac{1}{6} \mathrm{H}_{0,0}+\delta(1-x)\left[\frac{5}{4}-\frac{167}{54} \zeta_{2}+\frac{1}{20} \zeta_{2}\right. \\
& +16 C_{A} C_{F}^{2}\left(p _ { \mathrm { qq } } (x) \left[\frac{5}{6} \zeta_{3}-\frac{69}{20} \zeta_{2}^{2}-\mathrm{H}_{-3,0}-3 \mathrm{H}_{-2} \zeta_{2}-14 \mathrm{H}_{-2,-1,0}+3 \mathrm{H}_{-2,0}\right.\right. \\
& -4 \mathrm{H}_{-2,2}-\frac{151}{48} \mathrm{H}_{0}+\frac{41}{12} \mathrm{H}_{0} \zeta_{2}-\frac{17}{2} \mathrm{H}_{0} \zeta_{3}-\frac{13}{4} \mathrm{H}_{0,0}-4 \mathrm{H}_{0,0} \zeta_{2}-\frac{23}{12} \mathrm{H}_{0,0,0}+5 \mathrm{~F} \\
& -24 \mathrm{H}_{1} \zeta_{3}-16 \mathrm{H}_{1,-2,0}+\frac{67}{9} \mathrm{H}_{1,0}-2 \mathrm{H}_{1,0} \zeta_{2}+\frac{31}{3} \mathrm{H}_{1,0,0}+11 \mathrm{H}_{1,0,0,0}+8 \mathrm{H}_{1,1,0,0}
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\frac{67}{9} \mathrm{H}_{2}-2 \mathrm{H}_{2} \zeta_{2}+\frac{11}{3} \mathrm{H}_{2,0}+5 \mathrm{H}_{2,0,0}+\mathrm{H}_{3,0}\right]+p_{\mathrm{qq}}(-x)\left[\frac{1}{4} \zeta_{2}{ }^{2}-\frac{67}{9} \zeta_{2}+\frac{31}{4} \zeta_{:}\right. \\
& -32 \mathrm{H}_{-2} \zeta_{2}-4 \mathrm{H}_{-2,-1,0}-\frac{31}{6} \mathrm{H}_{-2,0}+21 \mathrm{H}_{-2,0,0}+30 \mathrm{H}_{-2,2}-\frac{31}{3} \mathrm{H}_{-1} \zeta_{2}-42 \mathrm{H} \\
& -4 \mathrm{H}_{-1,-2,0}+56 \mathrm{H}_{-1,-1} \zeta_{2}-36 \mathrm{H}_{-1,-1,0,0}-56 \mathrm{H}_{-1,-1,2}-\frac{134}{9} \mathrm{H}_{-1,0}-42 \mathrm{H}_{-1} \\
& +32 \mathrm{H}_{-1,3}-\frac{31}{6} \mathrm{H}_{-1,0,0}+17 \mathrm{H}_{-1,0,0,0}+\frac{31}{3} \mathrm{H}_{-1,2}+2 \mathrm{H}_{-1,2,0}+\frac{13}{12} \mathrm{H}_{0} \zeta_{2}+\frac{29}{2} \mathrm{H} \\
& \left.+13 \mathrm{H}_{0,0} \zeta_{2}+\frac{89}{12} \mathrm{H}_{0,0,0}-5 \mathrm{H}_{0,0,0,0}-7 \mathrm{H}_{2} \zeta_{2}-\frac{31}{6} \mathrm{H}_{3}-10 \mathrm{H}_{4}\right]+(1-x)\left[\frac{133}{36}+\right. \\
& -\frac{167}{4} \zeta_{3}-2 \mathrm{H}_{0} \zeta_{3}-2 \mathrm{H}_{-3,0}+\mathrm{H}_{-2} \zeta_{2}+2 \mathrm{H}_{-2,-1,0}-3 \mathrm{H}_{-2,0,0}+\frac{77}{4} \mathrm{H}_{0,0,0}-\frac{20}{6} \\
& \left.+4 \mathrm{H}_{1,0,0}+\frac{14}{3} \mathrm{H}_{1,0}\right]+(1+x)\left[\frac{43}{2} \zeta_{2}-3 \zeta_{2}^{2}+\frac{25}{2} \mathrm{H}_{-2,0}-31 \mathrm{H}_{-1} \zeta_{2}-14 \mathrm{H}_{-1,-}\right. \\
& +24 \mathrm{H}_{-1,2}+23 \mathrm{H}_{-1,0,0}+\frac{55}{2} \mathrm{H}_{0} \zeta_{2}+5 \mathrm{H}_{0,0} \zeta_{2}+\frac{1457}{48} \mathrm{H}_{0}-\frac{1025}{36} \mathrm{H}_{0,0}-\frac{155}{6_{\rho}} \mathrm{H}_{2}
\end{aligned}
$$

$$
\left.+2 \mathrm{H}_{2,0,0}-3 \mathrm{H}_{4}\right]-5 \zeta_{2}-\frac{1}{2} \zeta_{2}^{2}+50 \zeta_{3}-2 \mathrm{H}_{-3,0}-7 \mathrm{H}_{-2,0}-\mathrm{H}_{0} \zeta_{3}-\frac{37}{2} \mathrm{H}_{0} \zeta_{2} .
$$

$$
-2 \mathrm{H}_{0,0} \zeta_{2}+\frac{185}{6} \mathrm{H}_{0,0}-22 \mathrm{H}_{0,0,0}-4 \mathrm{H}_{0,0,0,0}+\frac{28}{3} \mathrm{H}_{2}+6 \mathrm{H}_{3}+\delta(1-x)\left[\frac{151}{64}+\right.
$$

$$
\left.\left.-\frac{247}{60} \zeta_{2}^{2}+\frac{211}{12} \zeta_{3}+\frac{15}{2} \zeta_{5}\right]\right)+16 C_{A}^{2} C_{F}\left(p _ { \mathrm { qq } } (x) \left[\frac{245}{48}-\frac{67}{18} \zeta_{2}+\frac{12}{5} \zeta_{2}^{2}+\frac{1}{2} \zeta\right.\right.
$$

$$
+\mathrm{H}_{-3,0}+4 \mathrm{H}_{-2,-1,0}-\frac{3}{2} \mathrm{H}_{-2,0}-\mathrm{H}_{-2,0,0}+2 \mathrm{H}_{-2,2}-\frac{31}{12} \mathrm{H}_{0} \zeta_{2}+4 \mathrm{H}_{0} \zeta_{3}+\frac{389}{72}
$$

$$
-\mathrm{H}_{0,0,0,0}+9 \mathrm{H}_{1} \zeta_{3}+6 \mathrm{H}_{1,-2,0}-\mathrm{H}_{1,0} \zeta_{2}-\frac{11}{4} \mathrm{H}_{1,0,0}-3 \mathrm{H}_{1,0,0,0}-4 \mathrm{H}_{1,1,0,0}+4 \mathrm{H}
$$

$$
\left.+\frac{11}{12} \mathrm{H}_{3}+\mathrm{H}_{4}\right]+p_{\mathrm{qq}}(-x)\left[\frac{67}{18} \zeta_{2}-\zeta_{2}^{2}-\frac{11}{4} \zeta_{3}-\mathrm{H}_{-3,0}+8 \mathrm{H}_{-2} \zeta_{2}+\frac{11}{6} \mathrm{H}_{-2,0}\right.
$$

$$
-3 \mathrm{H}_{-1,0,0,0}+\frac{11}{3} \mathrm{H}_{-1} \zeta_{2}+12 \mathrm{H}_{-1} \zeta_{3}-16 \mathrm{H}_{-1,-1} \zeta_{2}+8 \mathrm{H}_{-1,-1,0,0}+16 \mathrm{H}_{-1,-1,2}
$$

$$
-8 \mathrm{H}_{-2,2}+11 \mathrm{H}_{-1,0} \zeta_{2}+\frac{11}{6} \mathrm{H}_{-1,0,0}-\frac{11}{3} \mathrm{H}_{-1,2}-8 \mathrm{H}_{-1,3}-\frac{3}{4} \mathrm{H}_{0}-\frac{1}{6} \mathrm{H}_{0} \zeta_{2}-4
$$

$$
\begin{aligned}
& \left.-3 \mathrm{H}_{0,0} \zeta_{2}-\frac{31}{12} \mathrm{H}_{0,0,0}+\mathrm{H}_{0,0,0,0}+2 \mathrm{H}_{2} \zeta_{2}+\frac{11}{6} \mathrm{H}_{3}+2 \mathrm{H}_{4}\right]+(1-x)\left[\frac{1883}{108}-\frac{1}{2}\right. \\
& -\mathrm{H}_{-2,-1,0}+\frac{1}{2} \mathrm{H}_{-3,0}-\frac{1}{2} \mathrm{H}_{-2} \zeta_{2}+\frac{1}{2} \mathrm{H}_{-2,0,0}+\frac{523}{36} \mathrm{H}_{0}+\mathrm{H}_{0} \zeta_{3}-\frac{13}{3} \mathrm{H}_{0,0}-\frac{5}{2} \mathrm{H} \\
& \left.-2 \mathrm{H}_{1,0,0}\right]+(1+x)\left[8 \mathrm{H}_{-1} \zeta_{2}+4 \mathrm{H}_{-1,-1,0}+\frac{8}{3} \mathrm{H}_{-1,0}-5 \mathrm{H}_{-1,0,0}-6 \mathrm{H}_{-1,2}-\frac{1 \xi}{3}\right. \\
& -\frac{43}{4} \zeta_{3}-\frac{5}{2} \mathrm{H}_{-2,0}-\frac{11}{2} \mathrm{H}_{0} \zeta_{2}-\frac{1}{2} \mathrm{H}_{2} \zeta_{2}-\frac{5}{4} \mathrm{H}_{0,0} \zeta_{2}+7 \mathrm{H}_{2}-\frac{1}{4} \mathrm{H}_{2,0,0}+3 \mathrm{H}_{3}+\frac{3}{4} \\
& +\frac{1}{4} \zeta_{2}^{2}-\frac{8}{3} \zeta_{2}+\frac{17}{2} \zeta_{3}+\mathrm{H}_{-2,0}-\frac{19}{2} \mathrm{H}_{0}+\frac{5}{2} \mathrm{H}_{0} \zeta_{2}-\mathrm{H}_{0} \zeta_{3}+\frac{13}{3} \mathrm{H}_{0,0}+\frac{5}{2} \mathrm{H}_{0,0,0}- \\
& \left.-\delta(1-x)\left[\frac{1657}{576}-\frac{281}{27} \zeta_{2}+\frac{1}{8} \zeta_{2}^{2}+\frac{97}{9} \zeta_{3}-\frac{5}{2} \zeta_{5}\right]\right)+16 C_{F} n_{f}^{2}\left(\frac { 1 } { 1 8 } p _ { \mathrm { qq } } (x) \left[\mathrm{H}_{0,1}\right.\right. \\
& \left.+(1-x)\left[\frac{13}{54}+\frac{1}{9} \mathrm{H}_{0}\right]-\delta(1-x)\left[\frac{17}{144}-\frac{5}{27} \zeta_{2}+\frac{1}{9} \zeta_{3}\right]\right)+16 C_{F}^{2} n_{f}\left(\frac{1}{3} p_{\mathrm{qq}}(x)\right.
\end{aligned}
$$

$$
\left.-\frac{55}{16}+\frac{5}{8} \mathrm{H}_{0}+\mathrm{H}_{0} \zeta_{2}+\frac{3}{2} \mathrm{H}_{0,0}-\mathrm{H}_{0,0,0}-\frac{10}{3} \mathrm{H}_{1,0}-\frac{10}{3} \mathrm{H}_{2}-2 \mathrm{H}_{2,0}-2 \mathrm{H}_{3}\right]+\frac{2}{3}
$$

$$
-\frac{3}{2} \zeta_{3}+\mathrm{H}_{-2,0}+2 \mathrm{H}_{-1} \zeta_{2}+\frac{10}{3} \mathrm{H}_{-1,0}+\mathrm{H}_{-1,0,0}-2 \mathrm{H}_{-1,2}-\frac{1}{2} \mathrm{H}_{0} \zeta_{2}-\frac{5}{3} \mathrm{H}_{0,0}-
$$

$$
-(1-x)\left[\frac{10}{9}+\frac{19}{18} \mathrm{H}_{0,0}-\frac{4}{3} \mathrm{H}_{1}+\frac{2}{3} \mathrm{H}_{1,0}+\frac{4}{3} \mathrm{H}_{2}\right]+(1+x)\left[\frac{4}{3} \mathrm{H}_{-1,0}-\frac{25}{24} \mathrm{H}_{0}+\right.
$$

$$
\left.+\frac{7}{9} \mathrm{H}_{0,0}+\frac{4}{3} \mathrm{H}_{2}-\delta(1-x)\left[\frac{23}{16}-\frac{5}{12} \zeta_{2}-\frac{29}{30} \zeta_{2}^{2}+\frac{17}{6} \zeta_{3}\right]\right)+16 C_{F}^{3}\left(p_{\mathrm{qq}}(x)[.\right.
$$

$$
+6 \mathrm{H}_{-2} \zeta_{2}+12 \mathrm{H}_{-2,-1,0}-6 \mathrm{H}_{-2,0,0}-\frac{3}{16} \mathrm{H}_{0}-\frac{3}{2} \mathrm{H}_{0} \zeta_{2}+\mathrm{H}_{0} \zeta_{3}+\frac{13}{8} \mathrm{H}_{0,0}-2 \mathrm{H}_{0}
$$

$$
+12 \mathrm{H}_{1} \zeta_{3}+8 \mathrm{H}_{1,-2,0}-6 \mathrm{H}_{1,0,0}-4 \mathrm{H}_{1,0,0,0}+4 \mathrm{H}_{1,2,0}-3 \mathrm{H}_{2,0}+2 \mathrm{H}_{2,0,0}+4 \mathrm{H}_{2,1}
$$

$$
\left.+4 \mathrm{H}_{3,0}+4 \mathrm{H}_{3,1}+2 \mathrm{H}_{4}\right]+p_{\mathrm{qq}}(-x)\left[\frac{7}{2} \zeta_{2}^{2}-\frac{9}{2} \zeta_{3}-6 \mathrm{H}_{-3,0}+32 \mathrm{H}_{-2} \zeta_{2}+8 \mathrm{H}_{-2}\right.
$$

$$
\left.-26 \mathrm{H}_{-2,0,0}-28 \mathrm{H}_{-2,2}+6 \mathrm{H}_{-1} \zeta_{2}+36 \mathrm{H}_{-1} \zeta_{3}+8 \mathrm{H}_{-1,-2,0}-48 \mathrm{H}_{-1,-1} \zeta_{2}+40\right]
$$

$$
\begin{aligned}
& +48 \mathrm{H}_{-1,-1,2}+40 \mathrm{H}_{-1,0} \zeta_{2}+3 \mathrm{H}_{-1,0,0}-22 \mathrm{H}_{-1,0,0,0}-6 \mathrm{H}_{-1,2}-4 \mathrm{H}_{-1,2,0}-32 \\
& -\frac{3}{2} \mathrm{H}_{0} \zeta_{2}-13 \mathrm{H}_{0} \zeta_{3}-14 \mathrm{H}_{0,0} \zeta_{2}-\frac{9}{2} \mathrm{H}_{0,0,0}+6 \mathrm{H}_{0,0,0,0}+6 \mathrm{H}_{2} \zeta_{2}+3 \mathrm{H}_{3}+2 \mathrm{H}_{3,0}- \\
& +(1-x)\left[2 \mathrm{H}_{-3,0}-\frac{31}{8}+4 \mathrm{H}_{-2,0,0}+\mathrm{H}_{0,0} \zeta_{2}-3 \mathrm{H}_{0,0,0,0}+35 \mathrm{H}_{1}+6 \mathrm{H}_{1} \zeta_{2}-\mathrm{H}_{1}\right. \\
& +(1+x)\left[\frac{37}{10} \zeta_{2}^{2}-\frac{93}{4} \zeta_{2}-\frac{81}{2} \zeta_{3}-15 \mathrm{H}_{-2,0}+30 \mathrm{H}_{-1} \zeta_{2}+12 \mathrm{H}_{-1,-1,0}-2 \mathrm{H}_{-1, \mathrm{C}}\right. \\
& -24 \mathrm{H}_{-1,2}-\frac{539}{16} \mathrm{H}_{0}-28 \mathrm{H}_{0} \zeta_{2}+\frac{191}{8} \mathrm{H}_{0,0}+20 \mathrm{H}_{0,0,0}+\frac{85}{4} \mathrm{H}_{2}-3 \mathrm{H}_{2,0,0}-2 \mathrm{H}_{3} \\
& \left.-\mathrm{H}_{4}\right]+4 \zeta_{2}+33 \zeta_{3}+4 \mathrm{H}_{-3,0}+10 \mathrm{H}_{-2,0}+\frac{67}{2} \mathrm{H}_{0}+6 \mathrm{H}_{0} \zeta_{3}+19 \mathrm{H}_{0} \zeta_{2}-25 \mathrm{H}_{0,0} \\
& \left.-2 \mathrm{H}_{2}-\mathrm{H}_{2,0}-4 \mathrm{H}_{3}+\delta(1-x)\left[\frac{29}{32}-2 \zeta_{2} \zeta_{3}+\frac{9}{8} \zeta_{2}+\frac{18}{5} \zeta_{2}^{2}+\frac{17}{4} \zeta_{3}-15 \zeta_{5}\right]\right)
\end{aligned}
$$

2×2 anomalous dimension matrix occupies
1 st loop: 1/10 page
2×2 anomalous dimension matrix occupies
1 st loop: $1 / 10$ page
2 nd loop: 1 page
2×2 anomalous dimension matrix occupies
1 st loop: $1 / 10$ page
2 nd loop: 1 page
3 rd loop: 100 pages (200 K asci)
Moch, Vermaseren and Vogt
[waterfall of results launched
March 2004, and counting]
2×2 anomalous dimension matrix occupies
1 st loop: $1 / 10$ page
2 nd loop: 1 page
3 rd loop: 100 pages (200 K asci)
Moch, Vermaseren and Vogt
[waterfall of results launched
March 2004, and counting]
$V \sim\left\{\begin{array}{l}10^{\frac{N(N-1)}{2}-1} \\ 10^{2 N^{-1}-2}\end{array}\right.$
2×2 anomalous dimension matrix occupies
1 st loop: $1 / 10$ page
2 nd loop: 1 page
3 rd loop: 100 pages (200 K asci)
Moch, Vermaseren and Vogt
[waterfall of results launched March 2004, and counting]

$$
V \sim\left\{\begin{array}{l}
10^{\frac{N(N-1)}{2}-1} \\
10^{0^{N-1}-2}
\end{array}\right.
$$

not too encouraging a trend ...

More importantly, without understanding the essence of the series - the "physics" that underlines the appearance of this or that structure one may not hope to improve the perturbative expansion.

More importantly, without understanding the essence of the series - the "physics" that underlines the appearance of this or that structure one may not hope to improve the perturbative expansion. What for ?

Numerically, α_{s} is not such a magnificent expansion parameter ... Therefore, it is mandatory to apply as much grey substance as we possibly could to re-arrange the perturbative series to ensure better convergence

Parton splitting functions $P\left(x, \alpha_{s}\right)$ are routinely equated with the (Mellin transformed) anomalous dimensions $\gamma_{N}\left(\alpha_{s}\right)$.
Scheme dependence enters beyond the LLA (1 loop).
$\overline{M S}$ - a well formulated and convenient renormalization scheme, BUT Among known troubles:

Parton splitting functions $P\left(x, \alpha_{s}\right)$ are routinely equated with the (Mellin transformed) anomalous dimensions $\gamma_{N}\left(\alpha_{s}\right)$. Scheme dependence enters beyond the LLA (1 loop).
$\overline{M S}$ - a well formulated and convenient renormalization scheme, BUT Among known troubles:

Parton splitting functions $P\left(x, \alpha_{s}\right)$ are routinely equated with the (Mellin transformed) anomalous dimensions $\gamma_{N}\left(\alpha_{s}\right)$. Scheme dependence enters beyond the LLA (1 loop).
$\overline{M S}$ - a well formulated and convenient renormalization scheme, BUT. Among known troubles:

- $P^{(k)}(x)$ singular at $x \rightarrow 1\left[\right.$ as $\left.P^{(1)}(x)\right]$
$\rightarrow \alpha_{\overline{\mathrm{MS}}}$ an unphysical expansion parameter

Parton splitting functions $P\left(x, \alpha_{s}\right)$ are routinely equated with the (Mellin transformed) anomalous dimensions $\gamma_{N}\left(\alpha_{s}\right)$. Scheme dependence enters beyond the LLA (1 loop).
$\overline{M S}$ - a well formulated and convenient renormalization scheme, BUT... Among known troubles:

- $P^{(k)}(x)$ singular at $x \rightarrow 1$ [as $\left.P^{(1)}(x)\right]$
- $\alpha_{\overline{\mathrm{MS}}}$ an unphysical expansion parameter
- no respect to deep symmetries (SUSY)

Parton splitting functions $P\left(x, \alpha_{s}\right)$ are routinely equated with the (Mellin transformed) anomalous dimensions $\gamma_{N}\left(\alpha_{s}\right)$. Scheme dependence enters beyond the LLA (1 loop). $\overline{M S}$ - a well formulated and convenient renormalization scheme, BUT... Among known troubles:

- $P^{(k)}(x)$ singular at $x \rightarrow 1$ [as $\left.P^{(1)}(x)\right]$
- $\alpha_{\overline{\mathrm{MS}}}$ an unphysical expansion parameter
- no respect to deep symmetries (SUSY)

Parton splitting functions $P\left(x, \alpha_{s}\right)$ are routinely equated with the (Mellin transformed) anomalous dimensions $\gamma_{N}\left(\alpha_{s}\right)$. Scheme dependence enters beyond the LLA (1 loop).
$\overline{M S}$ - a well formulated and convenient renormalization scheme, BUT... Among known troubles:

- $P^{(k)}(x)$ singular at $x \rightarrow 1$ [as $\left.P^{(1)}(x)\right]$
- $\alpha_{\overline{\mathrm{MS}}}$ an unphysical expansion parameter
- no respect to deep symmetries (SUSY)

Parton splitting functions $P\left(x, \alpha_{\mathrm{s}}\right)$ are routinely equated with the (Mellin transformed) anomalous dimensions $\gamma_{N}\left(\alpha_{s}\right)$. Scheme dependence enters beyond the LLA (1 loop).
$\overline{M S}$ - a well formulated and convenient renormalization scheme, BUT... Among known troubles:

- $P^{(k)}(x)$ singular at $x \rightarrow 1$ [as $\left.P^{(1)}(x)\right]$
- $\alpha_{\overline{\mathrm{MS}}}$ an unphysical expansion parameter
- no respect to deep symmetries (SUSY)

Parton splitting functions $P\left(x, \alpha_{\mathrm{s}}\right)$ are routinely equated with the (Mellin transformed) anomalous dimensions $\gamma_{N}\left(\alpha_{s}\right)$. Scheme dependence enters beyond the LLA (1 loop).
$\overline{M S}$ - a well formulated and convenient renormalization scheme, BUT... Among known troubles:

- $P^{(k)}(x)$ singular at $x \rightarrow 1$ [as $\left.P^{(1)}(x)\right]$
- $\alpha_{\overline{\mathrm{MS}}}$ an unphysical expansion parameter
- no respect to deep symmetries (SUSY)
- Be smart with soft gluons (Low theorem)

Another [hidden] symmetry -- Dimensional regularization \longrightarrow Dimensional Reduction

Parton splitting functions $P\left(x, \alpha_{s}\right)$ are routinely equated with the (Mellin transformed) anomalous dimensions $\gamma_{N}\left(\alpha_{s}\right)$. Scheme dependence enters beyond the LLA (1 loop).
$\overline{M S}$ - a well formulated and convenient renormalization scheme, BUT... Among known troubles:

Way out:

- $P^{(k)}(x)$ singular at $x \rightarrow 1$ [as $\left.P^{(1)}(x)\right]$
- $\alpha_{\overline{\mathrm{MS}}}$ an unphysical expansion parameter
- no respect to deep symmetries (SUSY)
- Be smart with soft gluons (Low theorem)
- Dimensional regularization \rightarrow Dimensional Reduction

Another [hidden] symmetry -inter-relation between DIS and annihilation channels.

Parton splitting functions $P\left(x, \alpha_{s}\right)$ are routinely equated with the (Mellin transformed) anomalous dimensions $\gamma_{N}\left(\alpha_{s}\right)$. Scheme dependence enters beyond the LLA (1 loop).
$\overline{M S}$ - a well formulated and convenient renormalization scheme, BUT... Among known troubles: Way out:

- $P^{(k)}(x)$ singular at $x \rightarrow 1$ [as $\left.P^{(1)}(x)\right]$
- $\alpha_{\overline{\mathrm{MS}}}$ an unphysical expansion parameter
- no respect to deep symmetries (SUSY)
- Be smart with soft gluons (Low theorem)
- Dimensional regularization \rightarrow Dimensional Reduction

Another [hidden] symmetry -inter-relation between DIS and annihilation channels.

$$
\begin{aligned}
A= & \sum_{1}^{\infty}\left(\frac{\alpha_{s}}{4 \pi}\right)^{n} A_{n}, \quad \frac{A^{(g)}}{C_{A}}=\frac{A^{(q)}}{C_{F}} \quad P_{a \rightarrow a[x]+g}(x)=\frac{A\left(\alpha_{\mathrm{s}}\right)}{1-x}+ \\
\frac{A_{1}}{C}= & 4 \\
\frac{A_{2}}{C}= & 8\left[\left(\frac{67}{18}-\zeta_{2}\right) C_{A}-\frac{5}{9} n_{f}\right] \\
\frac{A_{3}}{C}= & 16 C_{A}^{2}\left(\frac{245}{24}-\frac{67}{9} \zeta_{2}+\frac{11}{6} \zeta_{3}+\frac{11}{5} \zeta_{2}^{2}\right) \\
& +16 C_{F} n_{f}\left(-\frac{55}{24}+2 \zeta_{3}\right) \\
& +16 C_{A} n_{f}\left(-\frac{209}{108}+\frac{10}{9} \zeta_{2}-\frac{7}{3} \zeta_{3}\right)+16 n_{f}^{2}\left(-\frac{1}{27}\right)
\end{aligned}
$$

$$
\begin{aligned}
A= & \sum_{1}^{\infty}\left(\frac{\alpha_{s}}{4 \pi}\right)^{n} A_{n}, \quad \frac{A^{(g)}}{C_{A}}=\frac{A^{(q)}}{C_{F}} \quad P_{a \rightarrow a[x]+g}(x)=\frac{A\left(\alpha_{\mathrm{s}}\right)}{1-x}+ \\
\frac{A_{1}}{C}= & 4 \\
\frac{A_{2}}{C}= & 8\left[\left(\frac{67}{18}-\zeta_{2}\right) C_{A}-\frac{5}{9} n_{f}\right] \\
\frac{A_{3}}{C}= & 16 C_{A}^{2}\left(\frac{245}{24}-\frac{67}{9} \zeta_{2}+\frac{11}{6} \zeta_{3}+\frac{11}{5} \zeta_{2}^{2}\right) \\
& +16 C_{F} n_{f}\left(-\frac{55}{24}+2 \zeta_{3}\right) \\
& +16 C_{A} n_{f}\left(-\frac{209}{108}+\frac{10}{9} \zeta_{2}-\frac{7}{3} \zeta_{3}\right)+16 n_{f}^{2}\left(-\frac{1}{27}\right)
\end{aligned}
$$

$$
\begin{aligned}
& A=\sum_{1}^{\infty}\left(\frac{\alpha_{s}}{4 \pi}\right)^{n} A_{n}, \quad \frac{A^{(g)}}{C_{A}}=\frac{A^{(q)}}{C_{F}} \quad P_{a \rightarrow a[x]+g}(x)=\frac{A\left(\alpha_{s}\right)}{1-x} x+\mathcal{O}(1-x) \\
& \frac{A_{1}}{C}= 4 \\
& \frac{A_{2}}{C}= 8\left[\left(\frac{67}{18}-\zeta_{2}\right) C_{A}-\frac{5}{9} n_{f}\right] \\
& \frac{A_{3}}{C}= 16 C_{A}^{2}\left(\frac{245}{24}-\frac{67}{9} \zeta_{2}+\frac{11}{6} \zeta_{3}+\frac{11}{5} \zeta_{2}^{2}\right) \\
&+16 C_{F} n_{f}\left(-\frac{55}{24}+2 \zeta_{3}\right) \\
&+16 C_{A} n_{f}\left(-\frac{209}{108}+\frac{10}{9} \zeta_{2}-\frac{7}{3} \zeta_{3}\right)+16 n_{f}^{2}\left(-\frac{1}{27}\right) .
\end{aligned}
$$

$=$ universal magnitude of double-log enhanced contributions.

Enters in

large- N asymptotics of anomalous dimensions and coefficient functions,
Sudakov quark and gluon form factors,
quark and gluon Regge trajectories,
threshold resummation,
singular $(x \rightarrow 1)$ part of the Drell-Yan K-factor,
distributions of jet event shapes in the near-to-two-jet kinematics,
heavy quark fragmentation functions,
non-perturbative power suppressed effects in jet shapes and elsewhere,
—made simple?
$=$ universal magnitude of double-log enhanced contributions.

Enters in :

large- N asymptotics of anomalous dimensions and coefficient functions,
Sudakov quark and gluon form factors,
quark and gluon Regge trajectories,
threshold resummation,
singular $(x \rightarrow 1)$ part of the Drell-Yan K-factor, distributions of jet event shapes in the near-to-two-jet kinematics, heavy quark fragmentation functions, non-perturbative power suppressed effects in jet shapes and elsewhere,
$=$ universal magnitude of double-log enhanced contributions.

Enters in :

large- N asymptotics of anomalous dimensions and coefficient functions,
Sudakov quark and gluon form factors,
quark and gluon Regge trajectories,
threshold resummation,
singular $(x \rightarrow 1)$ part of the Drell-Yan K-factor, distributions of jet event shapes in the near-to-two-jet kinematics, heavy quark fragmentation functions, non-perturbative power suppressed effects in jet shapes and elsewhere,
$=$ universal magnitude of double-log enhanced contributions.

Enters in :

large- N asymptotics of anomalous dimensions and coefficient functions,
Sudakov quark and gluon form factors,
quark and gluon Regge trajectories,
threshold resummation,
singular $(x \rightarrow 1)$ part of the Drell-Yan K-factor, distributions of jet event shapes in the near-to-two-jet kinematics, heavy quark fragmentation functions, non-perturbative power suppressed effects in jet shapes and elsewhere,
$=$ universal magnitude of double-log enhanced contributions.

Enters in :

large- N asymptotics of anomalous dimensions and coefficient functions,
Sudakov quark and gluon form factors,
quark and gluon Regge trajectories,
threshold resummation, singular $(x \rightarrow 1)$ part of the Drell-Yan K-factor, distributions of jet event shapes in the near-to-two-jet kinematics, heavy quark fragmentation functions, non-perturbative power suppressed effects in jet shapes and elsewhere,
$=$ universal magnitude of double-log enhanced contributions.

Enters in :

large- N asymptotics of anomalous dimensions and coefficient functions,
Sudakov quark and gluon form factors,
quark and gluon Regge trajectories,
threshold resummation,
singular ($x \rightarrow 1$) part of the Drell-Yan K-factor, distributions of jet event shapes in the near-to-two-jet kinematics, heavy quark fragmentation functions,
non-perturbative power suppressed effects in jet shapes and elsewhere,

How to reduce complexity?

How to reduce complexity ?

Guidelines

How to reduce complexity?

Guidelines

exploit internal properties:

- Drell-Levy-Yan relation
- Gribov-Lipatov reciprocity

How to reduce complexity?

Guidelines

exploit internal properties:

- Drell-Levy-Yan relation
- Gribov-Lipatov reciprocity

How to reduce complexity?

Guidelines

\checkmark exploit internal properties:

- Drell-Levy-Yan relation
- Gribov-Lipatov reciprocity
\checkmark separate classical \& quantum effects in the gluon sector

How to reduce complexity ?

Guidelines

\checkmark exploit internal properties:

- Drell-Levy-Yan relation
- Gribov-Lipatov reciprocity
\checkmark separate classical \& quantum effects in the gluon sector

An essential part of gluon dynamics is Classical.

How to reduce complexity ?

Guidelines

\checkmark exploit internal properties:

- Drell-Levy-Yan relation
- Gribov-Lipatov reciprocity
\checkmark separate classical \& quantum effects in the gluon sector

An essential part of gluon dynamics is Classical.
However, it has a good chance to be Exactly Solvable.

How to reduce complexity ?

Guidelines

\checkmark exploit internal properties:

- Drell-Levy-Yan relation
- Gribov-Lipatov reciprocity
\checkmark separate classical \& quantum effects in the gluon sector

An essential part of gluon dynamics is Classical. "Classical" does not mean "Simple".
However, it has a good chance to be Exactly Solvable.

How to reduce complexity?

Guidelines

\checkmark exploit internal properties:

- Drell-Levy-Yan relation
- Gribov-Lipatov reciprocity
\checkmark separate classical \& quantum effects in the gluon sector

An essential part of gluon dynamics is Classical. "Classical" does not mean "Simple".
However, it has a good chance to be Exactly Solvable.
\rightarrow A playing ground for theoretical theory: SUSY, AdS/CFT, ...

In the standard approach,

- parton splitting functions are equated with anomalous dimensions;
- they are different for DIS and $e^{+} e^{-}$evolution;
- "clever evolution variables" are different too

In the new approach,

- splitting functions are disconnected from the anomalous dimensions;
- the evolution kernel is identical for space- and time-like cascades (Gribov-Lipatov reciprocity relation true in all orders);
- unique evolution variable - parton fluctuation time

In the new approach,

- splitting functions are disconnected from the anomalous dimensions;
- the evolution kernel is identical for space- and time-like cascades (Gribov-Lipatov reciprocity relation true in all orders);
- unique evolution variable - parton fluctuation time

In the new approach,

- splitting functions are disconnected from the anomalous dimensions;
- the evolution kernel is identical for space- and time-like cascades (Gribov-Lipatov reciprocity relation true in all orders);
- unique evolution variable - parton fluctuation time

So long as probability of one extra parton emission is large, one has to consider and treat arbitrary number of parton splittings

Perturbative QCD (17/71)
LInnovative Bookkeeping

$$
\frac{P}{\mu^{2}} \gg t_{1} \gg t_{2} \gg t_{3} \gg t_{4} \gg t_{5} \gg \frac{P}{Q^{2}}
$$

$$
\frac{P}{\mu^{2}} \gg t_{1} \gg t_{2} \gg t_{3} \gg t_{4} \gg t_{5} \gg \frac{P}{Q^{2}}
$$

Four basic splitting processes :

$$
\frac{P}{\mu^{2}} \gg t_{1} \gg t_{2} \gg t_{3} \gg t_{4} \gg t_{5} \gg \frac{P}{Q^{2}}
$$

Four basic splitting processes :

$$
q \rightarrow q(z)+g \quad z=k_{5} / k_{4}
$$

$$
P_{q}^{q}(z)=C_{F} \cdot \frac{1+z^{2}}{1-z},
$$

$$
\frac{P}{\mu^{2}} \gg t_{1} \gg t_{2} \gg t_{3} \gg t_{4} \gg t_{5} \gg \frac{P}{Q^{2}}
$$

Four basic splitting processes :

$$
\begin{array}{rl}
q \rightarrow g(z)+q & z=k_{2} / k_{1} \\
& P_{q}^{q}(z) \\
=C_{F} \cdot \frac{1+z^{2}}{1-z}, \\
P_{q}^{g}(z) & =C_{F} \cdot \frac{1+(1-z)^{2}}{z},
\end{array}
$$

$$
\frac{P}{\mu^{2}} \gg t_{1} \gg t_{2} \gg t_{3} \gg t_{4} \gg t_{5} \gg \frac{P}{Q^{2}}
$$

Four basic splitting processes :

$$
g \rightarrow q(z)+\bar{q} \quad z=k_{4} / k_{3}
$$

$$
\begin{aligned}
P_{q}^{q}(z) & =C_{F} \cdot \frac{1+z^{2}}{1-z} \\
P_{q}^{g}(z) & =C_{F} \cdot \frac{1+(1-z)^{2}}{z} \\
P_{g}^{q}(z) & =T_{R} \cdot\left[z^{2}+(1-z)^{2}\right]
\end{aligned}
$$

$$
\frac{P}{\mu^{2}} \gg t_{1} \gg t_{2} \gg t_{3} \gg t_{4} \gg t_{5} \gg \frac{P}{Q^{2}}
$$

Four basic splitting processes :

$$
g \rightarrow g(z)+g \quad z=k_{3} / k_{2}
$$

$$
\begin{aligned}
P_{q}^{q}(z) & =C_{F} \cdot \frac{1+z^{2}}{1-z} \\
P_{q}^{g}(z) & =C_{F} \cdot \frac{1+(1-z)^{2}}{z} \\
P_{g}^{q}(z) & =T_{R} \cdot\left[z^{2}+(1-z)^{2}\right] \\
P_{g}^{g}(z) & =N_{c} \cdot \frac{1+z^{4}+(1-z)^{4}}{z(1-z)}
\end{aligned}
$$

quark-gluon cascades

$$
\mu^{2} \ll k_{1 \perp}^{2} \ll k_{2 \perp}^{2} \ll k_{3 \perp}^{2} \ll k_{4 \perp}^{2} \ll k_{5 \perp}^{2} \ll Q^{2}
$$

Four basic splitting processes :
"Hamiltonian" for parton cascades

$$
\begin{aligned}
P_{q}^{q}(z) & =C_{F} \cdot \frac{1+z^{2}}{1-z}, \\
P_{G}^{g}(z) & =C_{F} \cdot \frac{1+(1-z)^{2}}{z}, \\
P_{g}^{q}(z) & =T_{R} \cdot\left[z^{2}+(1-z)^{2}\right], \\
P_{g}^{g}(z) & =N_{C} \cdot \frac{1+z^{4}+(1-z)^{4}}{z(1-z)}
\end{aligned}
$$

Logarithmic "evolution time" $\quad d \xi=\frac{d s}{2 \pi} \frac{d k_{1}^{2}}{k_{1}^{2}}$

Nowadays we cannot predict, from the first principles, parton content (B) of a hadron (h). However, perturbative QCD tells us how it changes with the resolution of the DIS process - momentum transfer Q^{2}.

Nowadays we cannot predict, from the first principles, parton content (B) of a hadron (h). However, perturbative QCD tells us how it changes with the resolution of the DIS process - momentum transfer Q^{2}. Evolution of parton distribution reminds the Schrödinger equation:

$$
\frac{d}{d \ln Q^{2}} D_{h}^{B}\left(x, Q^{2}\right)=\frac{\alpha_{s}\left(Q^{2}\right)}{2 \pi} \sum_{A=q, \bar{q}, g} \int_{x}^{1} \frac{d z}{z} P_{A}^{B}(z) \cdot D_{h}^{A}\left(\frac{x}{z}, Q^{2}\right)
$$

Relating parton splittings

Nowadays we cannot predict, from the first principles, parton content (B) of a hadron (h). However, perturbative QCD tells us how it changes with the resolution of the DIS process - momentum transfer Q^{2}. Evolution of parton distribution reminds the Schrödinger equation:

$$
\frac{d}{d \ln Q^{2}} D_{h}^{B}\left(x, Q^{2}\right)=\frac{\alpha_{s}\left(Q^{2}\right)}{2 \pi} \sum_{A=q, \bar{q}, g} \int_{x}^{1} \frac{d z}{z} P_{A}^{B}(z) \cdot D_{h}^{A}\left(\frac{x}{z}, Q^{2}\right)
$$

"wave function"

Relating parton splittings

Nowadays we cannot predict, from the first principles, parton content (B) of a hadron (h). However, perturbative QCD tells us how it changes with the resolution of the DIS process - momentum transfer Q^{2}. Evolution of parton distribution reminds the Schrödinger equation:

$$
\frac{d}{d \ln Q^{2}} D_{h}^{B}\left(x, Q^{2}\right)=\frac{\alpha_{s}\left(Q^{2}\right)}{2 \pi} \sum_{A=q, \bar{q}, g} \int_{x}^{1} \frac{d z}{z} P_{A}^{B}(z) \cdot D_{h}^{A}\left(\frac{x}{z}, Q^{2}\right)
$$

"time derivative"

Relating parton splittings

Nowadays we cannot predict, from the first principles, parton content (B) of a hadron (h). However, perturbative QCD tells us how it changes with the resolution of the DIS process - momentum transfer Q^{2}. Evolution of parton distribution reminds the Schrödinger equation:

$$
\frac{d}{d \ln Q^{2}} D_{h}^{B}\left(x, Q^{2}\right)=\frac{\alpha_{s}\left(Q^{2}\right)}{2 \pi} \sum_{A=q, \bar{q}, g} \int_{x}^{1} \frac{d z}{z} P_{A}^{B}(z) \cdot D_{h}^{A}\left(\frac{x}{z}, Q^{2}\right)
$$

"Hamiltonian"

Relating parton splittings

Nowadays we cannot predict, from the first principles, parton content (B) of a hadron (h). However, perturbative QCD tells us how it changes with the resolution of the DIS process - momentum transfer Q^{2}. Evolution of parton distribution reminds the Schrödinger equation:

$$
\frac{d}{d \ln Q^{2}} D_{h}^{B}\left(x, Q^{2}\right)=\frac{\alpha_{s}\left(Q^{2}\right)}{2 \pi} \sum_{A=q, \bar{q}, g} \int_{x}^{1} \frac{d z}{z} P_{A}^{B}(z) \cdot D_{h}^{A}\left(\frac{x}{z}, Q^{2}\right)
$$

Parton Dynamics turned out to be extremely simple.
Have a deeper look at parton splitting probabilities

- our evolution Hamiltonian -
to fully appreciate the power of the probabilistic interpretation of parton cascades

$$
=T_{R} \cdot\left[z^{2}+(1-z)^{2}\right]
$$

$$
=C_{F} \cdot \frac{1+(1-z)^{2}}{z}
$$

$$
=N_{c} \cdot \frac{1+z^{4}+(1-z)^{4}}{z(1-z)}
$$

Four "parton splitting functions"

$$
{ }_{q}^{q[g]}(z), \quad{ }_{q}^{g[q]}(z), \quad{ }_{g}^{q[\bar{q}]}(z), \quad{\underset{g}{g}}_{g[g]}(z)
$$

$$
=C_{F} \cdot \frac{1+(1-z)^{2}}{z}
$$

$$
=N_{c} \cdot \frac{1+z^{4}+(1-z)^{4}}{z(1-z)}
$$

- Exchange the decay products : $z \rightarrow 1-z$

$$
{ }_{q}^{q[g]}(z) \quad{ }_{q}^{g[q]}(z) \quad{ }_{g}^{q[\overline{q]}}(z) \quad{ }_{g}^{g[g]}(z)
$$

Perturbative QCD (19/71)
LInnovative Bookkeeping
LParton dynamics

Apparent and Hidden symmetries

$$
=T_{R} \cdot\left[z^{2}+(1-z)^{2}\right]
$$

$$
=N_{c} \cdot \frac{1+z^{4}+(1-z)^{4}}{z(1-z)}
$$

- Exchange the decay products : $z \rightarrow 1-z$
- Exchange the parent and the offspring : $z \rightarrow 1 / z$
${ }_{q}^{q[g]}(z) \quad{\underset{q}{g}[q]}^{q}(z), \quad g_{g}^{q[\bar{q}]}(z) \quad{ }_{g}^{g[g]}(z)$

$$
=T_{R} \cdot\left[z^{2}+(1-z)^{2}\right]
$$

$$
=N_{c} \cdot \frac{1+z^{4}+(1-z)^{4}}{z(1-z)}
$$

- Exchange the decay products : $z \rightarrow 1-z$
- Exchange the parent and the offspring : $z \rightarrow 1 / z$

Three (QED) "kernels" are inter-related; gluon self-interaction stays put :

$$
\begin{array}{ll}
q[g] \\
q
\end{array}(z), \quad g_{q}^{[q]}(z), \quad \begin{aligned}
& g^{[\bar{q}]}(Z)
\end{aligned}
$$

Perturbative QCD (19/71)
LInnovative Bookkeeping
—Parton dynamics

Apparent and Hidden symmetries

$$
=T_{R} \cdot\left[z^{2}+(1-z)^{2}\right]
$$

$$
=N_{c} \cdot \frac{1+z^{4}+(1-z)^{4}}{z(1-z)}
$$

- Exchange the decay products : $z \rightarrow 1-z$
- Exchange the parent and the offspring : $z \rightarrow 1 / z$
- The story continues, however :

All four are related !

$$
w_{q}(z)={\underset{q}{q[g]}(z)+{ }_{q}^{g[q]}(z)={ }_{g}^{q[\bar{q}]}(z)+\underbrace{g[g]}_{g}(z)}_{g^{[g]}}=w_{g}(z)
$$

Perturbative QCD (19/71)
LInnovative Bookkeeping

- Parton dynamics

Apparent and Hidden symmetries

$$
=T_{R} \cdot\left[z^{2}+(1-z)^{2}\right]
$$

$$
=N_{c} \cdot \frac{1+z^{4}+(1-z)^{4}}{z(1-z)}
$$

- Exchange the decay products : $z \rightarrow 1-z$
- Exchange the parent and the offspring : $z \rightarrow 1 / z$
- The story continues, however :

$$
C_{F}=T_{R}=N_{c}: \text { Super-Symmetry }
$$

All four are related!

$$
=C_{F} \cdot \frac{1+(1-z)^{2}}{z}
$$

$$
=N_{c} \cdot \frac{1+z^{4}+(1-z)^{4}}{z(1-z)}
$$

- Exchange the decay products : $z \rightarrow 1-z$
- Exchange the parent and the offspring : $z \rightarrow 1 / z$
- The story continues, however:

$$
C_{F}=T_{R}=N_{c}: \text { Super-Symmetry }
$$

All four are related! (over-constrained system [+ conformal symm. etc])

Perturbative QCD (20/71)
LInnovative Bookkeeping
LFluctuation time ordering

Long-living partons fluctuations

Kinematics of the parton splitting $A \rightarrow B+C$

Perturbative QCD (20/71)
LInnovative Bookkeeping
LFluctuation time ordering

Long-living partons fluctuations

Kinematics of the parton splitting $A \rightarrow B+C$

$$
k_{B} \simeq x \cdot P, \quad k_{A} \simeq \frac{x}{z} \cdot P
$$

Perturbative QCD (20/71)
LInnovative Bookkeeping
LFluctuation time ordering

Long-living partons fluctuations

Kinematics of the parton splitting $A \rightarrow B+C$

$$
k_{B} \simeq x \cdot P, \quad k_{A} \simeq \frac{x}{z} \cdot P
$$

Perturbative QCD (20/71)
LInnovative Bookkeeping
LFluctuation time ordering

Long-living partons fluctuations

Kinematics of the parton splitting $A \rightarrow B+C$

$$
k_{B} \simeq z k_{A}, \quad k_{C} \simeq(1-z) k_{A}
$$

Kinematics of the parton splitting $A \rightarrow B+C$

$$
\begin{aligned}
k_{B} & \simeq z k_{A}, \quad k_{C} \simeq(1-z) k_{A} \\
\frac{\left|k_{B}^{2}\right|}{z} & =\frac{\left|k_{A}^{2}\right|}{1}+\frac{k_{C}^{2}}{1-z}+\frac{k_{\perp}^{2}}{z(1-z)}
\end{aligned}
$$

Long-living partons fluctuations

-Fluctuation time ordering
Kinematics of the parton splitting $A \rightarrow B+C$

$$
\begin{gathered}
k_{B} \simeq z k_{A}, \quad k_{C} \simeq(1-z) k_{A} \\
\frac{\left|k_{B}^{2}\right|}{z}=\frac{\left|k_{A}^{2}\right|}{1}+\frac{k_{C}^{2}}{1-z}+\frac{k_{\perp}^{2}}{z(1-z)}
\end{gathered}
$$

Probability of the splitting process:

$$
d w \propto \frac{\alpha_{s}}{\pi} \frac{d k_{\perp}^{2} k_{\perp}^{2}}{\left(k_{B}^{2}\right)^{2}}
$$

Long-living partons fluctuations

—Fluctuation time ordering
Kinematics of the parton splitting $A \rightarrow B+C$

$$
\begin{aligned}
& k_{B} \simeq z k_{A}, \quad k_{C} \simeq(1-z) k_{A} \\
& \frac{\left|k_{B}^{2}\right|}{z}=\frac{\left|k_{A}^{2}\right|}{1}+\frac{k_{C}^{2}}{1-z}+\frac{k_{\perp}^{2}}{z(1-z)}
\end{aligned}
$$

Probability of the splitting process:

$$
d w \propto \frac{\alpha_{s}}{\pi} \frac{d k_{\perp}^{2} k_{\perp}^{2}}{\left(k_{B}^{2}\right)^{2}} \propto \frac{\alpha_{s}}{\pi} \frac{d k_{\perp}^{2}}{k_{\perp}^{2}},
$$

Kinematics of the parton splitting $A \rightarrow B+C$

$$
\begin{aligned}
& k_{B} \simeq z k_{A}, \quad k_{C} \simeq(1-z) k_{A} \\
& \frac{\left|k_{B}^{2}\right|}{z}=\frac{\left|k_{A}^{2}\right|}{1}+\frac{k_{C}^{2}}{1-z}+\frac{k_{\perp}^{2}}{z(1-z)}
\end{aligned}
$$

Probability of the splitting process:

$$
\begin{gathered}
d w \propto \frac{\alpha_{s}}{\pi} \frac{d k_{1}^{2} k^{2}}{\left(k_{B}^{2}\right)^{2}} \propto \frac{\alpha_{s}}{\pi} \frac{d k^{2}}{k_{\perp}^{2}} \\
\frac{\left|k_{B}^{2}\right|}{z} \simeq \frac{k_{\perp}^{2}}{z(1-z)} \gg \frac{\left|k_{A}^{2}\right|}{1}\left(\text { as well as } \frac{k_{C}^{2}}{1-z}\right) .
\end{gathered}
$$

Kinematics of the parton splitting $A \rightarrow B+C$

$$
\begin{gathered}
k_{B} \simeq z k_{A}, \quad k_{C} \simeq(1-z) k_{A} \\
\frac{\left|k_{B}^{2}\right|}{z}=\frac{\left|k_{A}^{2}\right|}{1}+\frac{k_{C}^{2}}{1-z}+\frac{k_{\perp}^{2}}{z(1-z)}
\end{gathered}
$$

Probability of the splitting process:

$$
d w \propto \frac{\alpha_{s}}{\pi} \frac{d k_{\perp}^{2} k_{\perp}^{2}}{\left(k_{B}^{2}\right)^{2}} \propto \frac{\alpha_{s}}{\pi} \frac{d k_{\perp}^{2}}{k_{\perp}^{2}}
$$

This inequality has a transparent physical meaning:

$$
\frac{\left|k_{B}^{2}\right|}{z} \simeq \frac{k_{\perp}^{2}}{z(1-z)} \gg \frac{\left|k_{A}^{2}\right|}{1}\left(\text { as well as } \frac{k_{C}^{2}}{1-z}\right)
$$

$$
\frac{z \cdot E_{A}}{\left|k_{B}^{2}\right|} \ll \frac{E_{A}}{\left|k_{A}^{2}\right|}
$$

Kinematics of the parton splitting $A \rightarrow B+C$

$$
\begin{aligned}
& k_{B} \simeq z k_{A}, \quad k_{C} \simeq(1-z) k_{A} \\
& \frac{\left|k_{B}^{2}\right|}{z}=\frac{\left|k_{A}^{2}\right|}{1}+\frac{k_{C}^{2}}{1-z}+\frac{k_{1}^{2}}{z(1-z)}
\end{aligned}
$$

Probability of the splitting process:

$$
d w \propto \frac{\alpha_{s}}{\pi} \frac{d k_{\perp}^{2} k_{\perp}^{2}}{\left(k_{B}^{2}\right)^{2}} \propto \frac{\alpha_{s}}{\pi} \frac{d k_{\perp}^{2}}{k_{\perp}^{2}}
$$

$$
\frac{\left|k_{B}^{2}\right|}{z} \simeq \frac{k_{\perp}^{2}}{z(1-z)} \gg \frac{\left|k_{A}^{2}\right|}{1}\left(\text { as well as } \frac{k_{C}^{2}}{1-z}\right)
$$

This inequality has a transparent physical meaning:

$$
\frac{E_{B}}{\left|k_{B}^{2}\right|}=\frac{z \cdot E_{A}}{\left|k_{B}^{2}\right|} \ll \frac{E_{A}}{\left|k_{A}^{2}\right|}
$$

Kinematics of the parton splitting $A \rightarrow B+C$

$$
\begin{gathered}
k_{B} \simeq z k_{A}, \quad k_{C} \simeq(1-z) k_{A} \\
\frac{\left|k_{B}^{2}\right|}{z}=\frac{\left|k_{A}^{2}\right|}{1}+\frac{k_{C}^{2}}{1-z}+\frac{k_{\perp}^{2}}{z(1-z)}
\end{gathered}
$$

Probability of the splitting process:

$$
d w \propto \frac{\alpha_{s}}{\pi} \frac{d k_{\perp}^{2} k_{\perp}^{2}}{\left(k_{B}^{2}\right)^{2}} \propto \frac{\alpha_{s}}{\pi} \frac{d k_{\perp}^{2}}{k_{\perp}^{2}}
$$

$$
\frac{\left|k_{B}^{2}\right|}{z} \simeq \frac{k_{\perp}^{2}}{z(1-z)} \gg \frac{\left|k_{A}^{2}\right|}{1}\left(\text { as well as } \frac{k_{C}^{2}}{1-z}\right) .
$$

This inequality has a transparent physical meaning:

$$
t_{B} \equiv \frac{E_{B}}{\left|k_{B}^{2}\right|}=\frac{z \cdot E_{A}}{\left|k_{B}^{2}\right|} \ll \frac{E_{A}}{\left|k_{A}^{2}\right|} \equiv t_{A}
$$

Kinematics of the parton splitting $A \rightarrow B+C$

$$
\begin{gathered}
k_{B} \simeq z k_{A}, \quad k_{C} \simeq(1-z) k_{A} \\
\frac{\left|k_{B}^{2}\right|}{z}=\frac{\left|k_{A}^{2}\right|}{1}+\frac{k_{C}^{2}}{1-z}+\frac{k_{\perp}^{2}}{z(1-z)}
\end{gathered}
$$

Probability of the splitting process:

$$
d w \propto \frac{\alpha_{s}}{\pi} \frac{d k_{\perp}^{2} k_{\perp}^{2}}{\left(k_{B}^{2}\right)^{2}} \propto \frac{\alpha_{s}}{\pi} \frac{d k_{\perp}^{2}}{k_{\perp}^{2}}
$$

$$
\frac{\left|k_{B}^{2}\right|}{z} \simeq \frac{k_{\perp}^{2}}{z(1-z)} \gg \frac{\left|k_{A}^{2}\right|}{1}\left(\text { as well as } \frac{k_{C}^{2}}{1-z}\right) .
$$

This inequality has a transparent physical meaning:

$$
t_{B} \equiv \frac{E_{B}}{\left|k_{B}^{2}\right|}=\frac{z \cdot E_{A}}{\left|k_{B}^{2}\right|} \ll \frac{E_{A}}{\left|k_{A}^{2}\right|} \equiv t_{A}
$$

strongly ordered lifetimes of successive parton fluctuations !

Beyond the 1st loop, it starts to matter how does one order successive parton splittings that is, what one chooses for "parton evolution time". The "clever choices" had been established quite some time ago:

Beyond the 1st loop, it starts to matter how does one order successive parton splittings that is, what one chooses for "parton evolution time". The "clever choices" had been established quite some time ago:

$$
d \xi=d \ln \frac{k_{\perp}^{2}}{1} \quad(\text { space-like }), \quad d \xi=d \ln \frac{k_{\perp}^{2}}{z^{2}} \quad(\text { time-like })
$$

Transverse momentum ordering vs. angular ordering.

Beyond the 1st loop, it starts to matter how does one order successive parton splittings that is, what one chooses for "parton evolution time". The "clever choices" had been established quite some time ago:

$$
d \xi=d \ln \frac{k_{\perp}^{2}}{1} \quad(\text { space-like }), \quad d \xi=d \ln \frac{k_{\perp}^{2}}{z^{2}} \quad(\text { time-like })
$$

Transverse momentum ordering vs. angular ordering.

Beyond the 1st loop, it starts to matter how does one order successive parton splittings that is, what one chooses for "parton evolution time". The "clever choices" had been established quite some time ago:

$$
d \xi=d \ln \frac{k_{\perp}^{2}}{1} \quad(\text { space-like }), \quad d \xi=d \ln \frac{k_{\perp}^{2}}{z^{2}} \quad(\text { time-like })
$$

Transverse momentum ordering vs. angular ordering.

Beyond the 1st loop, it starts to matter how does one order successive parton splittings that is, what one chooses for "parton evolution time". The "clever choices" had been established quite some time ago:

$$
d \xi=d \ln \frac{k_{\perp}^{2}}{1} \quad(\text { space-like }), \quad d \xi=d \ln \frac{k_{\perp}^{2}}{z^{2}} \quad(\text { time-like })
$$

Transverse momentum ordering vs. angular ordering. Each of these two clever choices - consequence of taking into full consideration soft gluon coherence in order to prevent explosively large terms $\left(\alpha_{s} \ln ^{2} x\right)^{n}$ from appearing in higher loop anomalous dimensions.

Beyond the 1st loop, it starts to matter how does one order successive parton splittings that is, what one chooses for "parton evolution time". The "clever choices" had been established quite some time ago:

$$
d \xi=d \ln \frac{k_{\perp}^{2}}{1} \quad(\text { space-like }), \quad d \xi=d \ln \frac{k_{\perp}^{2}}{z^{2}} \quad(\text { time-like })
$$

Transverse momentum ordering vs. angular ordering. Each of these two clever choices - consequence of taking into full consideration soft gluon coherence in order to prevent explosively large terms $\left(\alpha_{s} \ln ^{2} x\right)^{n}$ from appearing in higher loop anomalous dimensions.
A good dynamical move.

Beyond the 1st loop, it starts to matter how does one order successive parton splittings that is, what one chooses for "parton evolution time". The "clever choices" had been established quite some time ago:

$$
d \xi=d \ln \frac{k_{\perp}^{2}}{1} \quad(\text { space-like }), \quad d \xi=d \ln \frac{k_{\perp}^{2}}{z^{2}} \quad(\text { time-like })
$$

Transverse momentum ordering vs. angular ordering. Each of these two clever choices - consequence of taking into full consideration soft gluon coherence in order to prevent explosively large terms $\left(\alpha_{s} \ln ^{2} x\right)^{n}$ from appearing in higher loop anomalous dimensions. A good dynamical move. But a lousy one kinematically : Having abandoned fluctuation time ordering,

$$
d \xi=d \ln \frac{k_{\perp}^{2}}{z}
$$

we've lost quite a bit of wisdom along with it

Beyond the 1st loop, it starts to matter how does one order successive parton splittings that is, what one chooses for "parton evolution time". The "clever choices" had been established quite some time ago:

$$
d \xi=d \ln \frac{k_{\perp}^{2}}{1} \quad(\text { space-like }), \quad d \xi=d \ln \frac{k_{\perp}^{2}}{z^{2}} \quad(\text { time-like })
$$

Transverse momentum ordering vs. angular ordering. Each of these two clever choices - consequence of taking into full consideration soft gluon coherence in order to prevent explosively large terms $\left(\alpha_{s} \ln ^{2} x\right)^{n}$ from appearing in higher loop anomalous dimensions. A good dynamical move. But a lousy one kinematically : Having abandoned fluctuation time ordering,

$$
d \xi=d \ln \frac{k_{\perp}^{2}}{z}
$$

we've lost quite a bit of wisdom along with it

Rediscovery of the quantum-mechanical nature of gluon radiation played the major rôle in understanding the internal structure of jets.

Rediscovery of the quantum-mechanical nature of gluon radiation played the major rôle in understanding the internal structure of jets.

Why "rediscovery"?
Al Mueller, Victor Fadin, 1980

Rediscovery of the quantum-mechanical nature of gluon radiation played the major rôle in understanding the internal structure of jets.

Why "rediscovery"? Al Mueller, Victor Fadin, 1980
Because, under the spell of the probabilistic parton cascade picture theorists managed to make serious mistakes in the late 70's when they indiscriminately applied it to parton multiplication in jets.

Rediscovery of the quantum-mechanical nature of gluon radiation played the major rôle in understanding the internal structure of jets.

Why "rediscovery"? Al Mueller, Victor Fadin, 1980
Because, under the spell of the probabilistic parton cascade picture theorists managed to make serious mistakes in the late 70's when they indiscriminately applied it to parton multiplication in jets.

Subtlety: When gauge fields (conserved currents) are concerned,

> born later (time ordering)
> does not mean
> being born independently

Rediscovery of the quantum-mechanical nature of gluon radiation played the major rôle in understanding the internal structure of jets.

Why "rediscovery"? Al Mueller, Victor Fadin, 1980
Because, under the spell of the probabilistic parton cascade picture theorists managed to make serious mistakes in the late 70's when they indiscriminately applied it to parton multiplication in jets.

Subtlety: When gauge fields (conserved currents) are concerned,

$$
\begin{aligned}
& \text { born later (time ordering) } \\
& \text { does not mean } \\
& \text { being born independently }
\end{aligned}
$$

Coherence in radiation of soft gluons (photons) with $x \ll 1$

- the ones that determine the bulk of secondary parton multiplicity!

Rediscovery of the quantum-mechanical nature of gluon radiation played the major rôle in understanding the internal structure of jets.

Why "rediscovery"?
Al Mueller, Victor Fadin, 1980
Because, under the spell of the probabilistic parton cascade picture theorists managed to make serious mistakes in the late 70's when they indiscriminately applied it to parton multiplication in jets.

Subtlety: When gauge fields (conserved currents) are concerned,

> born later (time ordering)
> does not mean
> being born independently

Coherence in radiation of soft gluons (photons) with $x \ll 1$

- the ones that determine the bulk of secondary parton multiplicity!

Recall an amazing historical example: Cosmic ray physics (mid 50's); conversion of high energy photons into $e^{+} e^{-}$pairs in the emulsion

Charged particle leaves a track of ionized atoms in photo-emulsion. electron track

Charged particle leaves a track of ionized atoms in photo-emulsion. electron track

Photon converts into two electric charges : $\gamma \rightarrow e^{+} e^{-}$. $e^{+} e^{-}$track (expected)

Charged particle leaves a track of ionized atoms in photo-emulsion. electron track

Photon converts into two electric charges : $\gamma \rightarrow e^{+} e^{-}$.
$e^{+} e^{-}$track (expected)
Why then do we see this?
$e^{+} e^{-}$(observed)

Charged particle leaves a track of ionized atoms in photo-emulsion. electron track

Photon converts into two electric charges : $\gamma \rightarrow e^{+} e^{-}$.
$e^{+} e^{-}$track (expected)
Why then do we see this ?
$e^{+} e^{-}$(observed)
Transverse distance between two charges
(size of the $e^{+} e^{-}$dipole) is
$\rho_{\perp} \simeq c t \cdot \vartheta_{e}$

Charged particle leaves a track of ionized atoms in photo-emulsion. electron track

Photon converts into two electric charges : $\gamma \rightarrow e^{+} e^{-}$.
$e^{+} e^{-}$track (expected)
Why then do we see this?
$e^{+} e^{-}$(observed)
Transverse distance between two charges
(size of the $e^{+} e^{-}$dipole) is
$\rho_{\perp} \simeq c t \cdot \vartheta_{e}$

The photon is emitted after the time (lifetime of the virtual $p+k$ state)
$t \simeq \frac{(p+k)_{0}}{(p+k)^{2}} \simeq \frac{p_{0}}{2 p_{0} k_{0}(1-\cos \vartheta)} \simeq \frac{1}{k_{0} \vartheta^{2}} \simeq \frac{1}{k_{\perp}} \cdot \frac{1}{\vartheta}=\lambda_{\perp} \cdot \frac{1}{\vartheta}$

Charged particle leaves a track of ionized atoms in photo-emulsion. electron track

Photon converts into two electric charges : $\gamma \rightarrow e^{+} e^{-}$.
$e^{+} e^{-}$track (expected)
Why then do we see this?
$e^{+} e^{-}$(observed)
Transverse distance between two charges
(size of the $e^{+} e^{-}$dipole) is
$\rho_{\perp} \simeq c t \cdot \vartheta_{e}=\lambda_{\perp} \cdot \frac{\vartheta_{e}}{\vartheta}$. Angular Ordering
$\vartheta<\vartheta_{e}$ - independent radiation off $e^{-} \& e^{+}$

The photon is emitted after the time (lifetime of the virtual $p+k$ state)
$t \simeq \frac{(p+k)_{0}}{(p+k)^{2}} \simeq \frac{p_{0}}{2 p_{0} k_{0}(1-\cos \vartheta)} \simeq \frac{1}{k_{0} \vartheta^{2}} \simeq \frac{1}{k_{\perp}} \cdot \frac{1}{\vartheta}=\lambda_{\perp} \cdot \frac{1}{\vartheta}$

Charged particle leaves a track of ionized atoms in photo-emulsion. electron track

Photon converts into two electric charges : $\gamma \rightarrow e^{+} e^{-}$.
$e^{+} e^{-}$track (expected)
Why then do we see this?
$e^{+} e^{-}$(observed)
Transverse distance between two charges
(size of the $e^{+} e^{-}$dipole) is
$\rho_{\perp} \simeq c t \cdot \vartheta_{e}=\lambda_{\perp} \cdot \frac{\vartheta_{e}}{\vartheta}$. Angular Ordering
$\vartheta<\vartheta_{e}$ - independent radiation off $e^{-} \& e^{+}$

$\vartheta>\vartheta_{e}-$ no emission! $\quad\left(\rho_{\perp}<\lambda_{\perp}\right)$
The photon is emitted after the time (lifetime of the virtual $p+k$ state)
$t \simeq \frac{(p+k)_{0}}{(p+k)^{2}} \simeq \frac{p_{0}}{2 p_{0} k_{0}(1-\cos \vartheta)} \simeq \frac{1}{k_{0} \vartheta^{2}} \simeq \frac{1}{k_{\perp}} \cdot \frac{1}{\vartheta}=\lambda_{\perp} \cdot \frac{1}{\vartheta}$

Angular Ordering is more restrictive than the fluctuation time ordering: $\vartheta \leq \vartheta_{e}$ versus $\vartheta \leq \vartheta_{e} \cdot \sqrt{\frac{p_{0}}{k_{0}}}$ that follows from

$$
t_{\gamma}=\frac{p_{0}}{p_{\perp}^{2}} \simeq \frac{1}{p_{0} \vartheta_{e}^{2}}<\frac{1}{k_{0} \vartheta^{2}} \simeq \frac{k_{0}}{k_{\perp}^{2}}=t_{e}
$$

Angular Ordering is more restrictive than the fluctuation time ordering:
$\vartheta \leq \vartheta_{e} \quad$ versus $\vartheta \leq \vartheta_{e} \cdot \sqrt{\frac{p_{0}}{k_{0}}}$.
Significant difference when $k_{0} / p_{0}=x \ll 1 \quad$ (soft radiation).

Angular Ordering is more restrictive than the fluctuation time ordering: $\vartheta \leq \vartheta_{e} \quad$ versus $\quad \vartheta \leq \vartheta_{e} \cdot \sqrt{\frac{p_{0}}{k_{0}}}$.
Significant difference when $k_{0} / p_{0}=x \ll 1 \quad$ (soft radiation).

Coherence in large-angle gluon emission not only affected (suppressed) total parton multiplicity but had dramatic consequences for the structure of the energy distribution of secondary partons in jets.

Angular Ordering is more restrictive than the fluctuation time ordering: $\vartheta \leq \vartheta_{e} \quad$ versus $\quad \vartheta \leq \vartheta_{e} \cdot \sqrt{\frac{p_{0}}{k_{0}}}$.
Significant difference when $k_{0} / p_{0}=x \ll 1$ (soft radiation).

Coherence in large-angle gluon emission not only affected (suppressed) total parton multiplicity but had dramatic consequences for the structure of the energy distribution of secondary partons in jets.
It was predicted that, due to coherence, "Feynman plateau" $d N / d \ln x$ must develop a hump at

$$
(\ln k)_{\max }=\left(\frac{1}{2}-c \cdot \sqrt{\alpha_{s}(Q)}+\ldots\right) \cdot \ln Q, \quad k_{\max } \simeq Q^{0.35}
$$

Angular Ordering is more restrictive than the fluctuation time ordering: $\vartheta \leq \vartheta_{e} \quad$ versus $\quad \vartheta \leq \vartheta_{e} \cdot \sqrt{\frac{p_{0}}{k_{0}}}$.
Significant difference when $k_{0} / p_{0}=x \ll 1$ (soft radiation).

Coherence in large-angle gluon emission not only affected (suppressed) total parton multiplicity but had dramatic consequences for the structure of the energy distribution of secondary partons in jets.
It was predicted that, due to coherence, "Feynman plateau" $d N / d \ln x$ must develop a hump at

$$
(\ln k)_{\max }=\left(\frac{1}{2}-c \cdot \sqrt{\alpha_{s}(Q)}+\ldots\right) \cdot \ln Q, \quad k_{\max } \simeq Q^{0.35},
$$

while the softest particles (that seem to be the easiest to produce) should not multiply at all !

Space-like parton evolution (S) vs. time-like fragmentation (T)
Drell-Levy-Yan relation

$$
P_{B A}^{(T)}(x)=\mp x \cdot P_{A B}^{(S)}\left(x^{-1}\right)
$$

Space-like parton evolution (S) vs. time-like fragmentation (T)
Drell-Levy-Yan relation

$$
P_{B A}^{(T)}(x)=\mp x \cdot P_{A B}^{(S)}\left(x^{-1}\right) .
$$

True in any QFT, it reflects the crossing and allows to link the two channels by analytic continuation, from $x<1$ to $x>1$:

Bukhvostov, Lipatov, Popov (1974)
Drell-Levy-Yan relation beyond leading log
Blümlein, Ravindran, W.L. van Neerven (2000)

Space-like parton evolution (S) vs. time-like fragmentation (T)
Drell-Levy-Yan relation

$$
P_{B A}^{(T)}(x)=\mp x \cdot P_{A B}^{(S)}\left(x^{-1}\right) .
$$

True in any QFT, it reflects the crossing and allows to link the two channels by analytic continuation, from $x<1$ to $x>1$:

Bukhvostov, Lipatov, Popov (1974)

Drell-Levy-Yan relation beyond leading log

Blümlein, Ravindran, W.L. van Neerven (2000)
In the Leading Log Approximation (1 loop),
Gribov-Lipatov relation

Space-like parton evolution (S) vs. time-like fragmentation (T)
Drell-Levy-Yan relation

$$
P_{B A}^{(T)}(x)=\mp x \cdot P_{A B}^{(S)}\left(x^{-1}\right) .
$$

True in any QFT, it reflects the crossing and allows to link the two channels by analytic continuation, from $x<1$ to $x>1$:

Bukhvostov, Lipatov, Popov (1974)

Drell-Levy-Yan relation beyond leading log

Blümlein, Ravindran, W.L. van Neerven (2000)
In the Leading Log Approximation (1 loop),
Gribov-Lipatov relation
$P_{B A}^{(T)}\left(x_{\text {Feynman }}\right)=P_{B A}^{(S)}\left(x_{\text {Bjorken }}\right) ; \quad x_{B}=\frac{-q^{2}}{2 p q}, \quad x_{F}=\frac{2 p q}{q^{2}}$
Mark the different meaning of x in the two channels!

Space-like parton evolution (S) vs. time-like fragmentation (T)
Drell-Levy-Yan relation

$$
P_{B A}^{(T)}(x)=\mp x \cdot P_{A B}^{(S)}\left(x^{-1}\right) .
$$

True in any QFT, it reflects the crossing and allows to link the two channels by analytic continuation, from $x<1$ to $x>1$:

Bukhvostov, Lipatov, Popov (1974)

Drell-Levy-Yan relation beyond leading log

Blümlein, Ravindran, W.L. van Neerven (2000)
In the Leading Log Approximation (1 loop),
Gribov-Lipatov reciprocity

$$
P_{B A}(x)=\mp x \cdot P_{A B}\left(x^{-1}\right)
$$

Space-like parton evolution (S) vs. time-like fragmentation (T)
Drell-Levy-Yan relation

$$
P_{B A}^{(T)}(x)=\mp x \cdot P_{A B}^{(S)}\left(x^{-1}\right) .
$$

True in any QFT, it reflects the crossing and allows to link the two channels by analytic continuation, from $x<1$ to $x>1$:

Bukhvostov, Lipatov, Popov (1974)

Drell-Levy-Yan relation beyond leading log

Blümlein, Ravindran, W.L. van Neerven (2000)
In the Leading Log Approximation (1 loop),
Gribov-Lipatov reciprocity

$$
P_{B A}(x)=\mp x \cdot P_{A B}\left(x^{-1}\right)
$$

GLR was found to be broken beyond the 1st loop.

Space－like parton evolution（S）vs．time－like fragmentation（T）
Drell－Levy－Yan relation

$$
P_{B A}^{(T)}(x)=\mp x \cdot P_{A B}^{(S)}\left(x^{-1}\right) .
$$

True in any QFT，it reflects the crossing and allows to link the two channels by analytic continuation，from $x<1$ to $x>1$ ：

Bukhvostov，Lipatov，Popov（1974）

Drell－Levy－Yan relation beyond leading log

Blümlein，Ravindran，W．L．van Neerven（2000）
In the Leading Log Approximation（1 loop），
Gribov－Lipatov reciprocity

$$
P_{B A}(x)=\mp x \cdot P_{A B}\left(x^{-1}\right)
$$

GLR was found to be broken beyond the 1st loop．

Fluctuation time ordering :
D-r (HERA, 1993)

$$
\frac{d D^{A}\left(x, Q^{2}\right)}{d \ln Q^{2}}=\int_{0}^{1} \frac{d z}{z} \mathcal{P}_{B}^{A}\left(z ; \alpha_{s}\right) D^{B}\left(\frac{x}{z}, z^{\sigma} Q^{2}\right)
$$

Fluctuation time ordering :

$$
\frac{d D^{A}\left(x, Q^{2}\right)}{d \ln Q^{2}}=\int_{0}^{1} \frac{d z}{z} \mathcal{P}_{B}^{A}\left(z ; \alpha_{s}\right) D^{B}\left(\frac{x}{z}, z^{\sigma} Q^{2}\right)
$$

$$
\sigma= \begin{cases}+1, & (\mathrm{~T}) \\ -1, & (\mathrm{~S})\end{cases}
$$

Reciprocity Respecting Evolution

Fluctuation time ordering :

$$
\frac{d D^{A}\left(x, Q^{2}\right)}{d \ln Q^{2}}=\int_{0}^{1} \frac{d z}{z} \mathcal{P}_{B}^{A}\left(z ; \alpha_{s}\right) D^{B}\left(\frac{x}{z}, z^{\sigma} Q^{2}\right), \quad \sigma=\left\{\begin{array}{l}
+1, \\
-1,
\end{array}\right.
$$

D-r (HERA, 1993)
which is non-local due to the mixing of z and Q^{2} in the hardness scale.

Reciprocity Respecting Evolution

Fluctuation time ordering :
D-r (HERA, 1993)

$$
\frac{d D^{A}\left(x, Q^{2}\right)}{d \ln Q^{2}}=\int_{0}^{1} \frac{d z}{z} \mathcal{P}_{B}^{A}\left(z ; \alpha_{s}\right) D^{B}\left(\frac{x}{z}, z^{\sigma} Q^{2}\right), \quad \sigma=\left\{\begin{array}{l}
+1, \tag{T}\\
-1,
\end{array}\right.
$$

which is non-local due to the mixing of z and Q^{2} in the hardness scale.
This non-locality can be handled using the Taylor series trick:

$$
\int_{0}^{1} \frac{d z}{z} \mathcal{P}\left(z, \alpha_{s}\right) D\left(z^{\sigma} Q^{2}\right)=\int_{0}^{1} \frac{d z}{z} \mathcal{P}(z) z^{\sigma \frac{d}{d \ln Q^{2}}} D\left(Q^{2}\right), \quad d \equiv \frac{d}{d \ln Q^{2}}
$$

Reciprocity Respecting Evolution

Fluctuation time ordering :
D-r (HERA, 1993)

$$
\frac{d D^{A}\left(x, Q^{2}\right)}{d \ln Q^{2}}=\int_{0}^{1} \frac{d z}{z} \mathcal{P}_{B}^{A}\left(z ; \alpha_{s}\right) D^{B}\left(\frac{x}{z}, z^{\sigma} Q^{2}\right), \quad \sigma=\left\{\begin{array}{l}
+1, \tag{T}\\
-1,
\end{array}\right.
$$

which is non-local due to the mixing of z and Q^{2} in the hardness scale.
This non-locality can be handled using the Taylor series trick:
$\int_{0}^{1} \frac{d z}{z} \mathcal{P}\left(z, \alpha_{s}\right) D\left(z^{\sigma} Q^{2}\right)=\int_{0}^{1} \frac{d z}{z} \mathcal{P}(z) z^{\sigma \frac{d}{d \ln Q^{2}}} D\left(Q^{2}\right), \quad d \equiv \frac{d}{d \ln Q^{2}}$.
In the Mellin moment space,

$$
P_{N} \equiv \int_{0}^{1} \frac{d z}{z} P(z) z^{N} \quad \Longrightarrow \quad \gamma_{N} \cdot D_{N}\left(Q^{2}\right)=\mathcal{P}_{N+\sigma d} \cdot D_{N}\left(Q^{2}\right)
$$

the evolution kernel \mathcal{P} emerges with the differential operator for argument.

Reciprocity Respecting Evolution

Fluctuation time ordering :
D-r (HERA, 1993)

$$
\frac{d D^{A}\left(x, Q^{2}\right)}{d \ln Q^{2}}=\int_{0}^{1} \frac{d z}{z} \mathcal{P}_{B}^{A}\left(z ; \alpha_{s}\right) D^{B}\left(\frac{x}{z}, z^{\sigma} Q^{2}\right), \quad \sigma=\left\{\begin{array}{l}
+1, \tag{T}\\
-1,
\end{array}\right.
$$

which is non-local due to the mixing of z and Q^{2} in the hardness scale.
This non-locality can be handled using the Taylor series trick:
$\int_{0}^{1} \frac{d z}{z} \mathcal{P}\left(z, \alpha_{s}\right) D\left(z^{\sigma} Q^{2}\right)=\int_{0}^{1} \frac{d z}{z} \mathcal{P}(z) z^{\sigma \frac{d}{d \ln Q^{2}}} D\left(Q^{2}\right), \quad d \equiv \frac{d}{d \ln Q^{2}}$.
In the Mellin moment space,

$$
P_{N} \equiv \int_{0}^{1} \frac{d z}{z} P(z) z^{N} \quad \Longrightarrow \quad \gamma_{N} \cdot D_{N}\left(Q^{2}\right)=\mathcal{P}_{N+\sigma d} \cdot D_{N}\left(Q^{2}\right)
$$

the evolution kernel \mathcal{P} emerges with the differential operator for argument.
Expanding, get an equation for the an.dim. γ
$\gamma[\alpha]=\mathcal{P}+\dot{\mathcal{P}} \cdot(\sigma \gamma+\beta / \alpha)+\frac{1}{2} \ddot{\mathcal{P}} \cdot\left[\gamma^{2}+\sigma\left(2 \beta / \alpha \gamma+\beta \partial_{\alpha} \gamma\right)+\beta / \alpha \partial_{\alpha} \beta\right]+\mathcal{O}\left(\alpha^{4}\right)$.

Reciprocity Respecting Evolution

Fluctuation time ordering :
D-r (HERA, 1993)

$$
\frac{d D^{A}\left(x, Q^{2}\right)}{d \ln Q^{2}}=\int_{0}^{1} \frac{d z}{z} \mathcal{P}_{B}^{A}\left(z ; \alpha_{s}\right) D^{B}\left(\frac{x}{z}, z^{\sigma} Q^{2}\right), \quad \sigma=\left\{\begin{array}{l}
+1, \tag{T}\\
-1,
\end{array}\right.
$$

which is non-local due to the mixing of z and Q^{2} in the hardness scale.
This non-locality can be handled using the Taylor series trick:
$\int_{0}^{1} \frac{d z}{z} \mathcal{P}\left(z, \alpha_{s}\right) D\left(z^{\sigma} Q^{2}\right)=\int_{0}^{1} \frac{d z}{z} \mathcal{P}(z) z^{\sigma \frac{d}{d \ln Q^{2}}} D\left(Q^{2}\right), \quad d \equiv \frac{d}{d \ln Q^{2}}$.
In the Mellin moment space,

$$
P_{N} \equiv \int_{0}^{1} \frac{d z}{z} P(z) z^{N} \quad \Longrightarrow \quad \gamma_{N} \cdot D_{N}\left(Q^{2}\right)=\mathcal{P}_{N+\sigma d} \cdot D_{N}\left(Q^{2}\right)
$$

the evolution kernel \mathcal{P} emerges with the differential operator for argument.
Expanding, get an equation for the an.dim. γ, one for both channels $\gamma[\alpha]=\mathcal{P}+\dot{\mathcal{P}} \cdot(\sigma \gamma+\beta / \alpha)+\frac{1}{2} \ddot{\mathcal{P}} \cdot\left[\gamma^{2}+\sigma\left(2 \beta / \alpha \gamma+\beta \partial_{\alpha} \gamma\right)+\beta / \alpha \partial_{\alpha} \beta\right]+\mathcal{O}\left(\alpha^{4}\right)$.

Examine the "reciprocity respecting equation" (RRE) by feeding in the one-loop parton "Hamiltonian", $\mathcal{P}(\alpha) \simeq \alpha P_{1}$:

$$
\begin{aligned}
\gamma[\alpha] & =\mathcal{P}+\dot{\mathcal{P}} \cdot(\sigma \gamma+\beta / \alpha)+\frac{1}{2} \ddot{\mathcal{P}} \cdot\left[\gamma^{2}+\sigma\left(2 \beta / \alpha \gamma+\beta \partial_{\alpha} \gamma\right)+\beta / \alpha \partial_{\alpha} \beta\right]+\ldots \\
& =\alpha P_{1}+\alpha^{2} \cdot\left(\sigma P_{1} \dot{P}_{1}+\beta_{0}\right) \quad+\mathcal{O}\left(\alpha^{3}\right) .
\end{aligned}
$$

Examine the "reciprocity respecting equation" (RRE) by feeding in the one-loop parton "Hamiltonian", $\mathcal{P}(\alpha) \simeq \alpha P_{1}$:

$$
\begin{aligned}
\gamma[\alpha] & =\mathcal{P}+\dot{\mathcal{P}} \cdot(\sigma \gamma+\beta / \alpha)+\frac{1}{2} \ddot{\mathcal{P}} \cdot\left[\gamma^{2}+\sigma\left(2 \beta / \alpha \gamma+\beta \partial_{\alpha} \gamma\right)+\beta / \alpha \partial_{\alpha} \beta\right]+\ldots \\
& =\alpha P_{1}+\alpha^{2} \cdot\left(\sigma P_{1} \dot{P}_{1}+\beta_{0}\right) \quad+\mathcal{O}\left(\alpha^{3}\right) .
\end{aligned}
$$

The difference between time- and space-like anomalous dimensions,

$$
\frac{1}{2}\left[P^{(T)}-P^{(S)}\right]=\alpha^{2} \cdot P_{1} \dot{P}_{1}+\mathcal{O}\left(\alpha^{3}\right)
$$

in the x-space corresponds to the convolution

$$
\frac{1}{2}\left[P_{q q}^{(2), T}-P_{q q}^{(2), S}\right]=\int_{0}^{1} \frac{d z}{z}\left\{P_{q q}^{(1)}\left(\frac{x}{z}\right)\right\}_{+} \cdot P_{q q}^{(1)}(z) \ln z
$$

responsible for GLR violation in the 2nd loop non-singlet quark anomalous dimension, as found by Curci, Furmanski \& Petronzio
(1980)

Examine the "reciprocity respecting equation" (RRE) by feeding in the one-loop parton "Hamiltonian", $\mathcal{P}(\alpha) \simeq \alpha P_{1}$:

$$
\begin{aligned}
\gamma[\alpha] & =\mathcal{P}+\dot{\mathcal{P}} \cdot(\sigma \gamma+\beta / \alpha)+\frac{1}{2} \ddot{\mathcal{P}} \cdot\left[\gamma^{2}+\sigma\left(2 \beta / \alpha \gamma+\beta \partial_{\alpha} \gamma\right)+\beta / \alpha \partial_{\alpha} \beta\right]+\ldots \\
& =\alpha P_{1}+\alpha^{2} \cdot\left(\sigma P_{1} \dot{P}_{1}+\beta_{0}+\mathcal{P}_{2}\right)+\mathcal{O}\left(\alpha^{3}\right) .
\end{aligned}
$$

The difference between time- and space-like anomalous dimensions,

$$
\frac{1}{2}\left[P^{(T)}-P^{(S)}\right]=\alpha^{2} \cdot P_{1} \dot{P}_{1}+\mathcal{O}\left(\alpha^{3}\right)
$$

in the x-space corresponds to the convolution

$$
\frac{1}{2}\left[P_{q q}^{(2), T}-P_{q q}^{(2), S}\right]=\int_{0}^{1} \frac{d z}{z}\left\{P_{q q}^{(1)}\left(\frac{x}{z}\right)\right\}_{+} \cdot P_{q q}^{(1)}(z) \ln z
$$

responsible for GLR violation in the 2nd loop non-singlet quark anomalous dimension, as found by Curci, Furmanski \& Petronzio
$\Longrightarrow \quad$ the genuine \mathcal{P}_{2} does not contain σ, is GLR respecting

Examine the "reciprocity respecting equation" (RRE) by feeding in the one-loop parton "Hamiltonian", $\mathcal{P}(\alpha) \simeq \alpha P_{1}$:

$$
\begin{aligned}
\gamma[\alpha] & =\mathcal{P}+\dot{\mathcal{P}} \cdot(\sigma \gamma+\beta / \alpha)+\frac{1}{2} \ddot{\mathcal{P}} \cdot\left[\gamma^{2}+\sigma\left(2 \beta / \alpha \gamma+\beta \partial_{\alpha} \gamma\right)+\beta / \alpha \partial_{\alpha} \beta\right]+\ldots \\
& =\alpha P_{1}+\alpha^{2} \cdot\left(\sigma P_{1} \dot{P}_{1}+\beta_{0}+\mathcal{P}_{2}\right)+\mathcal{O}\left(\alpha^{3}\right) .
\end{aligned}
$$

The difference between time- and space-like anomalous dimensions,

$$
\frac{1}{2}\left[P^{(T)}-P^{(S)}\right]=\alpha^{2} \cdot P_{1} \dot{P}_{1}+\mathcal{O}\left(\alpha^{3}\right)
$$

in the x-space corresponds to the convolution

$$
\frac{1}{2}\left[P_{q q}^{(2), T}-P_{q q}^{(2), S}\right]=\int_{0}^{1} \frac{d z}{z}\left\{P_{q q}^{(1)}\left(\frac{x}{z}\right)\right\}_{+} \cdot P_{q q}^{(1)}(z) \ln z,
$$

responsible for GLR violation in the 2nd loop non-singlet quark anomalous dimension, as found by Curci, Furmanski \& Petronzio

More generally, a renormalization scheme transformation as a cure for/against GLR violation was proposed by Stratmann \& Vogelsang (1996)

Another important aspect of the RREE is the "double nature" of the perturbative expansion - in $\alpha_{\text {phys }}$ and, at the same time, in $(1-x)$:

$$
\begin{aligned}
\gamma[\alpha] & =\mathcal{P}+\dot{\mathcal{P}} \cdot(\sigma \gamma+\beta / \alpha)+\frac{1}{2} \ddot{\mathcal{P}} \cdot\left(\gamma^{2}+\sigma\left(2 \beta / \alpha \gamma+\beta \partial_{\alpha} \gamma\right)+\beta / \alpha \partial_{\alpha} \beta\right)+\ldots \\
& =\alpha \ln N+\alpha^{2} \cdot(1 / N)+\alpha^{3} \cdot\left(1 / N^{2}\right)+\alpha^{4} \cdot\left(1 / N^{3}\right)+\ldots
\end{aligned}
$$

Another important aspect of the RREE is the "double nature" of the perturbative expansion - in $\alpha_{\text {phys }}$ and, at the same time, in ($1-x$):

$$
\begin{aligned}
\gamma[\alpha] & =\mathcal{P}+\dot{\mathcal{P}} \cdot(\sigma \gamma+\beta / \alpha)+\frac{1}{2} \ddot{\mathcal{P}} \cdot\left(\gamma^{2}+\sigma\left(2 \beta / \alpha \gamma+\beta \partial_{\alpha} \gamma\right)+\beta / \alpha \partial_{\alpha} \beta\right)+\ldots \\
& =\alpha \ln N+\alpha^{2} \cdot(1 / N)+\alpha^{3} \cdot\left(1 / N^{2}\right)+\alpha^{4} \cdot\left(1 / N^{3}\right)+\ldots
\end{aligned}
$$

Another important aspect of the RREE is the "double nature" of the perturbative expansion - in $\alpha_{\text {phys }}$ and, at the same time, in $(1-x)$:

$$
\begin{aligned}
\gamma[\alpha] & =\mathcal{P}+\dot{\mathcal{P}} \cdot(\sigma \gamma+\beta / \alpha)+\frac{1}{2} \ddot{\mathcal{P}} \cdot\left(\gamma^{2}+\sigma\left(2 \beta / \alpha \gamma+\beta \partial_{\alpha} \gamma\right)+\beta / \alpha \partial_{\alpha} \beta\right)+\ldots \\
& =\alpha \ln N+\alpha^{2} \cdot(1 / N)+\alpha^{3} \cdot\left(1 / N^{2}\right)+\alpha^{4} \cdot\left(1 / N^{3}\right)+\ldots
\end{aligned}
$$

Another important aspect of the RREE is the "double nature" of the perturbative expansion - in $\alpha_{\text {phys }}$ and, at the same time, in $(1-x)$:

$$
\begin{aligned}
\gamma[\alpha] & =\mathcal{P}+\dot{\mathcal{P}} \cdot(\sigma \gamma+\beta / \alpha)+\frac{1}{2} \ddot{\mathcal{P}} \cdot\left(\gamma^{2}+\sigma\left(2 \beta / \alpha \gamma+\beta \partial_{\alpha} \gamma\right)+\beta / \alpha \partial_{\alpha} \beta\right)+\ldots \\
& =\alpha \ln N+\alpha^{2} \cdot(1 / N)+\alpha^{3} \cdot\left(1 / N^{2}\right)+\alpha^{4} \cdot\left(1 / N^{3}\right)+\ldots
\end{aligned}
$$

Another important aspect of the RREE is the "double nature" of the perturbative expansion - in $\alpha_{\text {phys }}$ and, at the same time, in $(1-x)$:

$$
\begin{aligned}
\gamma[\alpha] & =\mathcal{P}+\dot{\mathcal{P}} \cdot(\sigma \gamma+\beta / \alpha)+\frac{1}{2} \ddot{\mathcal{P}} \cdot\left(\gamma^{2}+\sigma\left(2 \beta / \alpha \gamma+\beta \partial_{\alpha} \gamma\right)+\beta / \alpha \partial_{\alpha} \beta\right)+\ldots \\
& =\alpha \ln N+\alpha^{2} \cdot(1 / N)+\alpha^{3} \cdot\left(1 / N^{2}\right)+\alpha^{4} \cdot\left(1 / N^{3}\right)+\ldots
\end{aligned}
$$

In the $x \rightarrow 1$ limit (large moments N) inherited structures determine first subleading corrections in all orders !

Another important aspect of the RREE is the "double nature" of the perturbative expansion - in $\alpha_{\text {phys }}$ and, at the same time, in $(1-x)$:

$$
\begin{aligned}
\gamma[\alpha] & =\mathcal{P}+\dot{\mathcal{P}} \cdot(\sigma \gamma+\beta / \alpha)+\frac{1}{2} \ddot{\mathcal{P}} \cdot\left(\gamma^{2}+\sigma\left(2 \beta / \alpha \gamma+\beta \partial_{\alpha} \gamma\right)+\beta / \alpha \partial_{\alpha} \beta\right)+\ldots \\
& =\alpha \ln N+\alpha^{2} \cdot(1 / N)+\alpha^{3} \cdot\left(1 / N^{2}\right)+\alpha^{4} \cdot\left(1 / N^{3}\right)+\ldots
\end{aligned}
$$

In the $x \rightarrow 1$ limit (large moments N) inherited structures determine first subleading corrections in all orders !

$$
\gamma(x)=\frac{A x}{(1-x)_{+}}+B \delta(1-x)+C \ln (1-x)+D+\mathcal{O}\left((1-x) \log ^{p}(1-x)\right)
$$

Another important aspect of the RREE is the "double nature" of the perturbative expansion - in $\alpha_{\text {phys }}$ and, at the same time, in $(1-x)$:

$$
\begin{aligned}
\gamma[\alpha] & =\mathcal{P}+\dot{\mathcal{P}} \cdot(\sigma \gamma+\beta / \alpha)+\frac{1}{2} \ddot{\mathcal{P}} \cdot\left(\gamma^{2}+\sigma\left(2 \beta / \alpha \gamma+\beta \partial_{\alpha} \gamma\right)+\beta / \alpha \partial_{\alpha} \beta\right)+\ldots \\
& =\alpha \ln N+\alpha^{2} \cdot(1 / N)+\alpha^{3} \cdot\left(1 / N^{2}\right)+\alpha^{4} \cdot\left(1 / N^{3}\right)+\ldots
\end{aligned}
$$

In the $x \rightarrow 1$ limit (large moments N) inherited structures determine first subleading corrections in all orders !

$$
\gamma(x)=\frac{A x}{(1-x)_{+}}+B \delta(1-x)+C \ln (1-x)+D+\mathcal{O}\left((1-x) \log ^{p}(1-x)\right)
$$

A gap between classical radiation (Low-Burnett-Kroll wisdom)

Another important aspect of the RREE is the "double nature" of the perturbative expansion - in $\alpha_{\text {phys }}$ and, at the same time, in $(1-x)$:

$$
\begin{aligned}
\gamma[\alpha] & =\mathcal{P}+\dot{\mathcal{P}} \cdot(\sigma \gamma+\beta / \alpha)+\frac{1}{2} \ddot{\mathcal{P}} \cdot\left(\gamma^{2}+\sigma\left(2 \beta / \alpha \gamma+\beta \partial_{\alpha} \gamma\right)+\beta / \alpha \partial_{\alpha} \beta\right)+\ldots \\
& =\alpha \ln N+\alpha^{2} \cdot(1 / N)+\alpha^{3} \cdot\left(1 / N^{2}\right)+\alpha^{4} \cdot\left(1 / N^{3}\right)+\ldots
\end{aligned}
$$

In the $x \rightarrow 1$ limit (large moments N) inherited structures determine first subleading corrections in all orders !

$$
\gamma(x)=\frac{A x}{(1-x)_{+}}+B \delta(1-x)+C \ln (1-x)+D+\mathcal{O}\left((1-x) \log ^{p}(1-x)\right)
$$

Another important aspect of the RREE is the "double nature" of the perturbative expansion - in $\alpha_{\text {phys }}$ and, at the same time, in $(1-x)$:

$$
\begin{aligned}
\gamma[\alpha] & =\mathcal{P}+\dot{\mathcal{P}} \cdot(\sigma \gamma+\beta / \alpha)+\frac{1}{2} \ddot{\mathcal{P}} \cdot\left(\gamma^{2}+\sigma\left(2 \beta / \alpha \gamma+\beta \partial_{\alpha} \gamma\right)+\beta / \alpha \partial_{\alpha} \beta\right)+\ldots \\
& =\alpha \ln N+\alpha^{2} \cdot(1 / N)+\alpha^{3} \cdot\left(1 / N^{2}\right)+\alpha^{4} \cdot\left(1 / N^{3}\right)+\ldots
\end{aligned}
$$

In the $x \rightarrow 1$ limit (large moments N) inherited structures determine first subleading corrections in all orders !

$$
\gamma(x)=\frac{A x}{(1-x)_{+}}+B \delta(1-x)+C \ln (1-x)+D+\mathcal{O}\left((1-x) \log ^{p}(1-x)\right)
$$

Generated:
D-r, Marchesini \& Salam (2005)

$$
C=-\sigma A^{2}
$$

- relation observed by MVV in 3 loops

Another important aspect of the RREE is the "double nature" of the perturbative expansion - in $\alpha_{\text {phys }}$ and, at the same time, in $(1-x)$:

$$
\begin{aligned}
\gamma[\alpha] & =\mathcal{P}+\dot{\mathcal{P}} \cdot(\sigma \gamma+\beta / \alpha)+\frac{1}{2} \ddot{\mathcal{P}} \cdot\left(\gamma^{2}+\sigma\left(2 \beta / \alpha \gamma+\beta \partial_{\alpha} \gamma\right)+\beta / \alpha \partial_{\alpha} \beta\right)+\ldots \\
& =\alpha \ln N+\alpha^{2} \cdot(1 / N)+\alpha^{3} \cdot\left(1 / N^{2}\right)+\alpha^{4} \cdot\left(1 / N^{3}\right)+\ldots
\end{aligned}
$$

In the $x \rightarrow 1$ limit (large moments N) inherited structures determine first subleading corrections in all orders !

$$
\gamma(x)=\frac{A x}{(1-x)_{+}}+B \delta(1-x)+C \ln (1-x)+D+\mathcal{O}\left((1-x) \log ^{p}(1-x)\right)
$$

Generated:
D-r, Marchesini \& Salam (2005)

$$
\begin{aligned}
& C=-\sigma A^{2} \\
& D=-\sigma A B+\mathcal{O}(\beta)
\end{aligned}
$$

- relation observed by MVV in 3 loops
- another all-order relation

RREE relates two long-standing puzzles :

RREE relates two long-standing puzzles:

DIS (space-like evolution). Look at small x that is, $N \ll 1$

$$
\mathrm{BFKL}: \quad \gamma_{N}=\frac{\alpha_{\mathrm{s}}}{N}+\left(\frac{\alpha_{\mathrm{s}}}{N}\right)^{2}+\left(\frac{\alpha_{\mathrm{s}}}{N}\right)^{3}+\left(\frac{\alpha_{\mathrm{s}}}{N}\right)^{4}+\ldots
$$

RREE relates two long-standing puzzles :

DIS (space-like evolution). Look at small x that is, $N \ll 1$

$$
\mathrm{BFKL}: \quad \gamma_{N}=\frac{\alpha_{\mathrm{s}}}{N}+0 \cdot\left(\frac{\alpha_{\mathrm{s}}}{N}\right)^{2}+0 \cdot\left(\frac{\alpha_{\mathrm{s}}}{N}\right)^{3}+\left(\frac{\alpha_{\mathrm{s}}}{N}\right)^{4}+\ldots
$$

RREE relates two long-standing puzzles :

DIS (space-like evolution). Look at small x that is, $N \ll 1$

BFKL : $\quad \gamma_{N}=\frac{\alpha_{\mathrm{s}}}{N}+0 \cdot\left(\frac{\alpha_{\mathrm{s}}}{N}\right)^{2}+0 \cdot\left(\frac{\alpha_{\mathrm{s}}}{N}\right)^{3}+\left(\frac{\alpha_{\mathrm{s}}}{N}\right)^{4}+\ldots$
$e^{+} e^{-}$annihilation (time-like cascades) - a similar story:

RREE relates two long-standing puzzles :

DIS (space-like evolution). Look at small x that is, $N \ll 1$
$\mathrm{BFKL}: \quad \gamma_{N}=\frac{\alpha_{\mathrm{s}}}{N}+0 \cdot\left(\frac{\alpha_{\mathrm{s}}}{N}\right)^{2}+0 \cdot\left(\frac{\alpha_{\mathrm{s}}}{N}\right)^{3}+\left(\frac{\alpha_{\mathrm{s}}}{N}\right)^{4}+\ldots$
$e^{+} e^{-}$annihilation (time-like cascades) - a similar story:
$1 \rightarrow 1+2$

RREE relates two long-standing puzzles :

DIS (space-like evolution). Look at small x that is, $N \ll 1$
$\mathrm{BFKL}: \quad \gamma_{N}=\frac{\alpha_{\mathrm{s}}}{N}+0 \cdot\left(\frac{\alpha_{\mathrm{s}}}{N}\right)^{2}+0 \cdot\left(\frac{\alpha_{\mathrm{s}}}{N}\right)^{3}+\left(\frac{\alpha_{\mathrm{s}}}{N}\right)^{4}+\ldots$
$e^{+} e^{-}$annihilation (time-like cascades) - a similar story:
$1 \rightarrow 1+2 \quad \Longrightarrow \quad$ Angular Ordering

RREE relates two long-standing puzzles :

DIS (space-like evolution). Look at small x that is, $N \ll 1$
$\mathrm{BFKL}: \quad \gamma_{N}=\frac{\alpha_{\mathrm{s}}}{N}+0 \cdot\left(\frac{\alpha_{\mathrm{s}}}{N}\right)^{2}+0 \cdot\left(\frac{\alpha_{\mathrm{s}}}{N}\right)^{3}+\left(\frac{\alpha_{\mathrm{s}}}{N}\right)^{4}+\ldots$
$e^{+} e^{-}$annihilation (time-like cascades) - a similar story:
$1 \rightarrow 1+2 \quad \Longrightarrow \quad$ Angular Ordering
$1 \rightarrow 1+2+3$

RREE relates two long-standing puzzles :

DIS (space-like evolution). Look at small x that is, $N \ll 1$

$$
\mathrm{BFKL}: \quad \gamma_{N}=\frac{\alpha_{\mathrm{s}}}{N}+0 \cdot\left(\frac{\alpha_{\mathrm{s}}}{N}\right)^{2}+0 \cdot\left(\frac{\alpha_{\mathrm{s}}}{N}\right)^{3}+\left(\frac{\alpha_{\mathrm{s}}}{N}\right)^{4}+\ldots
$$

$e^{+} e^{-}$annihilation (time-like cascades) - a similar story:
$1 \rightarrow 1+2 \quad \Longrightarrow \quad$ Exact Angular Ordering
$1 \rightarrow 1+2+3 \quad \Longrightarrow \quad(1 \rightarrow 1+2) \otimes(2 \rightarrow 2+3)$

RREE relates two long-standing puzzles :

DIS (space-like evolution). Look at small x that is, $N \ll 1$

$$
\mathrm{BFKL}: \quad \gamma_{N}=\frac{\alpha_{\mathrm{s}}}{N}+0 \cdot\left(\frac{\alpha_{\mathrm{s}}}{N}\right)^{2}+0 \cdot\left(\frac{\alpha_{\mathrm{s}}}{N}\right)^{3}+\left(\frac{\alpha_{\mathrm{s}}}{N}\right)^{4}+\ldots
$$

$e^{+} e^{-}$annihilation (time-like cascades) - a similar story:
$1 \rightarrow 1+2 \quad \Longrightarrow \quad$ Exact Angular Ordering
$1 \rightarrow 1+2+3 \quad \Longrightarrow \quad(1 \rightarrow 1+2) \otimes(2 \rightarrow 2+3)$
$1 \rightarrow 1+2+3+4$

RREE relates two long-standing puzzles :

DIS (space-like evolution). Look at small x that is, $N \ll 1$

$$
\mathrm{BFKL}: \quad \gamma_{N}=\frac{\alpha_{\mathrm{s}}}{N}+0 \cdot\left(\frac{\alpha_{\mathrm{s}}}{N}\right)^{2}+0 \cdot\left(\frac{\alpha_{\mathrm{s}}}{N}\right)^{3}+\left(\frac{\alpha_{\mathrm{s}}}{N}\right)^{4}+\ldots
$$

$e^{+} e^{-}$annihilation (time-like cascades) - a similar story:
$1 \rightarrow 1+2 \quad \Longrightarrow \quad$ Exact Angular Ordering still intact!
$1 \rightarrow 1+2+3 \quad \Longrightarrow \quad(1 \rightarrow 1+2) \otimes(2 \rightarrow 2+3)$
$1 \rightarrow 1+2+3+4 \quad \Longrightarrow \quad(1 \rightarrow 1+2) \otimes(2 \rightarrow 2+3) \otimes(3 \rightarrow 3+4)$
so-called "Malaza puzzle"

RREE relates two long-standing puzzles:

DIS (space-like evolution). Look at small x that is, $N \ll 1$

$$
\gamma_{N}=\frac{\alpha_{\mathrm{s}}}{N}+0 \cdot\left(\frac{\alpha_{\mathrm{s}}}{N}\right)^{2}+0 \cdot\left(\frac{\alpha_{\mathrm{s}}}{N}\right)^{3}+\left(\frac{\alpha_{\mathrm{s}}}{N}\right)^{4}+\ldots
$$

$e^{+} e^{-}$annihilation (time-like cascades) - a similar story:
$1 \rightarrow 1+2 \quad \Longrightarrow \quad$ Exact Angular Ordering

$$
\begin{array}{lll}
1 \rightarrow 1+2+3 & \Longrightarrow \quad(1 \rightarrow 1+2) \otimes(2 \rightarrow 2+3) \\
1 \rightarrow 1+2+3+4 & \Longrightarrow \quad(1 \rightarrow 1+2) \otimes(2 \rightarrow 2+3) \otimes(3 \rightarrow 3+4)
\end{array}
$$

Perturbative QCD (30/71)
-Innovative Bookkeeping
— RREE applications

Solid - BFKL (black) and N-BFKL (green) known in all orders.

Dashed blue -
γ_{+}terms generated by α / N and α.

Yellow - unknown.

The origin of the GL reciprocity violation is essentially kinematical : inherited from previous loops !

The origin of the GL reciprocity violation is essentially kinematical : inherited from previous loops!

Hypothesis of the new RR evolution kernel \mathcal{P}
D-r, Marchesini \& Salam (2005)
was verified at 3 loops for the nonsinglet channel, $\left(\gamma^{(T)}-\gamma^{(S)}\right)=$ OK
Mitov, Moch \& Vogt (2006)

Space-Time bookkeeping

The origin of the GL reciprocity violation is essentially kinematical :

 inherited from previous loops !Hypothesis of the new RR evolution kernel \mathcal{P}
D-r, Marchesini \& Salam (2005)
was verified at 3 loops for the nonsinglet channel, $\left(\gamma^{(T)}-\gamma^{(S)}\right)=$ OK
Mitov, Moch \& Vogt (2006)
In the moment space, the GL symmetry, $x \rightarrow 1 / x \Leftrightarrow N \rightarrow-(N+1)$, translates into dependence on the conformal Casimir $J^{2}=N(N+1)$.
By means of the large N expansion, $\quad \mathcal{P}=\alpha_{\text {phys }} \cdot \ln J^{2}+\Sigma_{n}\left(J^{2}\right)^{-n}$

Space-Time bookkeeping

The origin of the GL reciprocity violation is essentially kinematical : inherited from previous loops !

Hypothesis of the new RR evolution kernel \mathcal{P}
D-r, Marchesini \& Salam (2005)
was verified at 3 loops for the nonsinglet channel, $\left(\gamma^{(T)}-\gamma^{(S)}\right)=$ OK
Mitov, Moch \& Vogt (2006)
In the moment space, the GL symmetry, $x \rightarrow 1 / x \Leftrightarrow N \rightarrow-(N+1)$, translates into dependence on the conformal Casimir $J^{2}=N(N+1)$. By means of the large N expansion, $\quad \mathcal{P}=\alpha_{\text {phys }} \cdot \ln J^{2}+\Sigma_{n}\left(J^{2}\right)^{-n}$ Extra QCD checks: Basso \& Korchemsky, in coll. with S.Moch (2006)

- 3loop singlet unpolarized
- 2loop quark transversity
- 2loop linearly polarized gluon
- 2loop singlet polarized

Space-Time bookkeeping

The origin of the GL reciprocity violation is essentially kinematical : inherited from previous loops !

Hypothesis of the new RR evolution kernel \mathcal{P}
D-r, Marchesini \& Salam (2005)
was verified at 3 loops for the nonsinglet channel, $\left(\gamma^{(T)}-\gamma^{(S)}\right)=$ OK
Mitov, Moch \& Vogt (2006)
In the moment space, the GL symmetry, $x \rightarrow 1 / x \Leftrightarrow N \rightarrow-(N+1)$, translates into dependence on the conformal Casimir $J^{2}=N(N+1)$.
By means of the large N expansion, $\quad \mathcal{P}=\alpha_{\text {phys }} \cdot \ln J^{2}+\Sigma_{n}\left(J^{2}\right)^{-n}$

Extra QCD checks:

- 3loop singlet unpolarized
- 2loop quark transversity
- 2loop linearly polarized gluon
- 2loop singlet polarized

Basso \& Korchemsky, in coll. with S.Moch (2006)

- Also true for SUSYs,
- in 4 loops in $\lambda \phi^{4}$,
- in QCD $\beta_{0} \rightarrow \infty$, all loops,
- AdS/CFT $(\mathcal{N}=4 \mathrm{SYM} \alpha \gg 1)$

Space-Time bookkeeping

The origin of the GL reciprocity violation is essentially kinematical : inherited from previous loops !

Hypothesis of the new RR evolution kernel \mathcal{P}
D-r, Marchesini \& Salam (2005)
was verified at 3 loops for the nonsinglet channel, $\left(\gamma^{(T)}-\gamma^{(S)}\right)=$ OK
Mitov, Moch \& Vogt (2006)
In the moment space, the GL symmetry, $x \rightarrow 1 / x \Leftrightarrow N \rightarrow-(N+1)$, translates into dependence on the conformal Casimir $J^{2}=N(N+1)$.
By means of the large N expansion, $\quad \mathcal{P}=\alpha_{\text {phys }} \cdot \ln J^{2}+\Sigma_{n}\left(J^{2}\right)^{-n}$

Extra QCD checks:

- 3loop singlet unpolarized
- 2loop quark transversity
- 2loop linearly polarized gluon
- 2loop singlet polarized

Basso \& Korchemsky, in coll. with S.Moch (2006)

- Also true for SUSYs,
- in 4 loops in $\lambda \phi^{4}$,
- in QCD $\beta_{0} \rightarrow \infty$, all loops,
- AdS/CFT $(\mathcal{N}=4$ SYM $\alpha \gg 1)$

Space-Time bookkeeping

Maximally super-symmetric $\mathcal{N}=4 \mathrm{YM}$ allows for a compact analytic solution of the GLR problem in 3 loops ($\forall N$)

D-r \& Marchesini (2006)

Space-Time bookkeeping

Maximally super-symmetric $\mathcal{N}=4 \mathrm{YM}$ allows for a compact analytic solution of the GLR problem in 3 loops ($\forall N$)

D-r \& Marchesini (2006)
Moreover, the most resent result, still smoking : in $\mathcal{N}=4$ $\times \quad$ GLR holds for twist 3, in 3+4 loops Matteo Beccaria et. al (2007)

Maximally super-symmetric $\mathcal{N}=4 \mathrm{YM}$ allows for a compact analytic solution of the GLR problem in 3 loops ($\forall N$) D-r \& Marchesini (2006)

Moreover, the most resent result, still smoking : in $\mathcal{N}=4$ $x \quad$ GLR holds for twist 3, in 3+4 loops Matteo Beccaria et al. (2007)

What is so special about $\mathcal{N}=4$ SYM ?

Maximally super-symmetric $\mathcal{N}=4 \mathrm{YM}$ allows for a compact analytic solution of the GLR problem in 3 loops ($\forall N$)

Moreover, the most resent result, still smoking : in $\mathcal{N}=4$ $\times \quad$ GLR holds for twist 3, in 3+4 loops Matteo Beccaria et al. (2007)

What is so special about $\mathcal{N}=4$ SYM ?

This QFT has a good chance to be solvable - "integrable".
Dynamics can be fully integrated if the system possesses a sufficient (infinite!) number of conservation laws, - integrals of motion.

Maximally super-symmetric $\mathcal{N}=4 \mathrm{YM}$ allows for a compact analytic solution of the GLR problem in 3 loops ($\forall N$)

Moreover, the most resent result, still smoking : in $\mathcal{N}=4$ $x \quad$ GLR holds for twist 3, in 3+4 loops Matteo Beccaria et al. (2007)

What is so special about $\mathcal{N}=4$ SYM ?

This QFT has a good chance to be solvable - "integrable".
Dynamics can be fully integrated if the system possesses a sufficient (infinite!) number of conservation laws, - integrals of motion.

Recall an old hint from QCD ...

Relating parton splittings

$$
\underbrace{\mathrm{z}}_{1-z}=C_{F} \cdot \frac{1+z^{2}}{1-z}
$$

$$
=T_{R} \cdot\left[z^{2}+(1-z)^{2}\right]
$$

$$
=C_{F} \cdot \frac{1+(1-z)^{2}}{z}
$$

$$
=N_{c} \cdot \frac{1+z^{4}+(1-z)^{4}}{z(1-z)}
$$

Four "parton splitting functions"

$$
{ }_{q}^{q[g]}(z), \quad{ }_{q}^{g}[q](z), \quad \quad_{g}^{q[\bar{q}]}(z), \quad{ }_{g}^{g}[g](z)
$$

Relating parton splittings

$\underbrace{z}_{1-z}=C_{F} \cdot \frac{1+z^{2}}{1-z}$

$$
=C_{F} \cdot \frac{1+(1-z)^{2}}{z}
$$

$$
=T_{R} \cdot\left[z^{2}+(1-z)^{2}\right]
$$

$$
=N_{c} \cdot \frac{1+z^{4}+(1-z)^{4}}{z(1-z)}
$$

- Exchange the decay products : $z \rightarrow 1-z$

$$
{ }_{q}^{q[g]}(z) \quad{ }_{q}^{g[q]}(z) \quad{ }_{g}^{q[\bar{q}]}(z) \quad{ }_{g}^{g[g]}(z)
$$

Relating parton splittings

$\overbrace{1-z}^{z}=C_{F} \cdot \frac{1+z^{2}}{1-z}$

$$
=C_{F} \cdot \frac{1+(1-z)^{2}}{z}
$$

$$
=T_{R} \cdot\left[z^{2}+(1-z)^{2}\right]
$$

$$
=N_{c} \cdot \frac{1+z^{4}+(1-z)^{4}}{z(1-z)}
$$

- Exchange the decay products : $z \rightarrow 1-z$
- Exchange the parent and the offspring : $z \rightarrow 1 / z$

Relating parton splittings

$$
\sim_{1-z}^{z}=C_{F} \cdot \frac{1+z^{2}}{1-z}
$$

$$
=C_{F} \cdot \frac{1+(1-z)^{2}}{z}
$$

$$
=T_{R} \cdot\left[z^{2}+(1-z)^{2}\right]
$$

$$
=N_{c} \cdot \frac{1+z^{4}+(1-z)^{4}}{z(1-z)}
$$

- Exchange the decay products : $z \rightarrow 1-z$
- Exchange the parent and the offspring : $z \rightarrow 1 / z$

Three (QED) "kernels" are inter-related; gluon self-interaction stays put:

$$
{ }_{q}^{q[g]}(z), \quad{ }_{q}^{g[q]}(z), \quad{ }_{g}^{q[\bar{q}]}(z)
$$

Relating parton splittings

$$
\underbrace{z}_{1-z}=C_{F} \cdot \frac{1+z^{2}}{1-z}
$$

$$
=C_{F} \cdot \frac{1+(1-z)^{2}}{z}
$$

$$
=T_{R} \cdot\left[z^{2}+(1-z)^{2}\right]
$$

$$
=N_{c} \cdot \frac{1+z^{4}+(1-z)^{4}}{z(1-z)}
$$

- Exchange the decay products : $z \rightarrow 1-z$
- Exchange the parent and the offspring : $z \rightarrow 1 / z$
- The story continues, however:

All four are related!

Relating parton splittings

$$
=C_{F} \cdot \frac{1+(1-z)^{2}}{z}
$$

$$
=T_{R} \cdot\left[z^{2}+(1-z)^{2}\right]
$$

$$
=N_{c} \cdot \frac{1+z^{4}+(1-z)^{4}}{z(1-z)}
$$

- Exchange the decay products : $z \rightarrow 1-z$
- Exchange the parent and the offspring : $z \rightarrow 1 / z$
- The story continues, however: $\quad C_{F}=T_{R}=N_{c}$: Super-Symmetry

All four are related!

$$
=C_{F} \cdot \frac{1+(1-z)^{2}}{z}
$$

$$
=T_{R} \cdot\left[z^{2}+(1-z)^{2}\right]
$$

$$
=N_{c} \cdot \frac{1+z^{4}+(1-z)^{4}}{z(1-z)}
$$

- Exchange the decay products : $z \rightarrow 1-z$
- Exchange the parent and the offspring : $z \rightarrow 1 / z$
- The story continues, however: $\quad C_{F}=T_{R}=N_{c}$: Super-Symmetry All four are related! $\quad \equiv$ infinite number of conservation laws!

$$
w_{q}(z)={\underset{q}{q[g]}(z)+{ }_{q}^{g}[q]}_{q^{q}}(z)={\underset{g}{q}[\bar{q}]}^{q}(z)+{\underset{g}{g}[g]}_{g_{g}[z)}=w_{g}(z)
$$

The integrability feature manifests itself already in certain sectors of QCD, in specific problems where one can identify QCD with SUSY-QCD :
\checkmark the Regge behaviour (large N_{c})
\checkmark baryon wave function
maximal helicity multi-gluon operators

Lipatov
Faddeev \& Korchemsky (1994)
Braun, Derkachov, Korchemsky,
Manashov; Belitsky
Lipatov
Minahan \& Zarembo
Beisert \& Staudacher
(1997)
(2003)

The integrability feature manifests itself already in certain sectors of QCD, in specific problems where one can identify QCD with SUSY-QCD :
\checkmark the Regge behaviour (large N_{c})
\checkmark baryon wave function

Lipatov
Faddeev \& Korchemsky (1994)
Braun, Derkachov, Korchemsky,
Manashov; Belitsky
Lipatov
Minahan \& Zarembo
Beisert \& Staudacher
(1997)
(2003)

The higher the symmetry, the deeper integrability.

The integrability feature manifests itself already in certain sectors of QCD, in specific problems where one can identify QCD with SUSY-QCD :
\checkmark the Regge behaviour (large N_{c})
\checkmark baryon wave function

from Bookkeeping to Solving

Lipatov
Faddeev \& Korchemsky (1994)
Braun, Derkachov, Korchemsky, Manashov; Belitsky Lipatov
Minahan \& Zarembo
Beisert \& Staudacher

The higher the symmetry, the deeper integrability. $\mathcal{N}=4$ - the extreme:
\times Conformal theory $\beta(\alpha) \equiv 0$
\times All order expansion for $\alpha_{\text {phys }}$
x Full integrability via AdS/CFT

Beisert, Eden, Staudacher
Maldacena; Witten,
Gubser, Klebanov, Polyakov

The integrability feature manifests itself already in certain sectors of QCD, in specific problems where one can identify QCD with SUSY-QCD :
\checkmark the Regge behaviour (large N_{c})
\checkmark baryon wave function

Lipatov
Faddeev \& Korchemsky (1994)
Braun, Derkachov, Korchemsky,
Manashov; Belitsky
Lipatov
Minahan \& Zarembo
Beisert \& Staudacher

The higher the symmetry, the deeper integrability. $\mathcal{N}=4$ - the extreme:
\times Conformal theory $\beta(\alpha) \equiv 0$
\times All order expansion for $\alpha_{\text {phys }}$
\times Full integrability via AdS/CFT

Beisert, Eden, Staudacher
Maldacena; Witten,
Gubser, Klebanov, Polyakov

The integrability feature manifests itself already in certain sectors of QCD, in specific problems where one can identify QCD with SUSY-QCD :
\checkmark the Regge behaviour (large N_{c})
\checkmark baryon wave function

from Bookkeeping to Solving

Lipatov

Faddeev \& Korchemsky (1994)
Braun, Derkachov, Korchemsky, Manashov; Belitsky

Lipatov
Minahan \& Zarembo
Beisert \& Staudacher

The higher the symmetry, the deeper integrability. $\mathcal{N}=4$ - the extreme:
\times Conformal theory $\beta(\alpha) \equiv 0$
\times All order expansion for $\alpha_{\text {phys }}$
\times Full integrability via AdS/CFT

Beisert, Eden, Staudacher
Maldacena; Witten,
Gubser, Klebanov, Polyakov

And here we arrive at the second - Divide and Conquer - issue

Recall the diagonal first loop anomalous dimensions:

$$
\begin{aligned}
\tilde{\gamma}_{q \rightarrow q(x)+g} & =\frac{C_{F} \alpha_{\mathrm{s}}}{\pi}\left[\frac{x}{1-x}+(1-x) \cdot \frac{1}{2}\right] \\
\tilde{\gamma}_{g \rightarrow g(x)+g} & =\frac{C_{A} \alpha_{\mathrm{s}}}{\pi}\left[\frac{x}{1-x}+(1-x) \cdot\left(x+x^{-1}\right)\right] .
\end{aligned}
$$

Recall the diagonal first loop anomalous dimensions:

$$
\begin{aligned}
\tilde{\gamma}_{q \rightarrow q(x)+g} & =\frac{C_{F} \alpha_{\mathrm{s}}}{\pi}\left[\frac{x}{1-x}+(1-x) \cdot \frac{1}{2}\right] \\
\tilde{\gamma}_{g \rightarrow g(x)+g} & =\frac{C_{A} \alpha_{\mathrm{s}}}{\pi}\left[\frac{x}{1-x}+(1-x) \cdot\left(x+x^{-1}\right)\right] .
\end{aligned}
$$

The first component is independent of the nature of the radiating particle - the Low-Burnett-Kroll classical radiation \Longrightarrow "claglons".

Recall the diagonal first loop anomalous dimensions:

$$
\begin{aligned}
\tilde{\gamma}_{q \rightarrow q(x)+g} & =\frac{C_{F} \alpha_{\mathrm{s}}}{\pi}\left[\frac{x}{1-x}+(1-x) \cdot \frac{1}{2}\right] \\
\tilde{\gamma}_{g \rightarrow g(x)+g} & =\frac{C_{A} \alpha_{\mathrm{s}}}{\pi}\left[\frac{x}{1-x}+(1-x) \cdot\left(x+x^{-1}\right)\right] .
\end{aligned}
$$

The first component is independent of the nature of the radiating particle - the Low-Burnett-Kroll classical radiation \Longrightarrow "claglons".

The second - "quaglons" - is relatively suppressed as $\mathcal{O}\left((1-x)^{2}\right)$.

Recall the diagonal first loop anomalous dimensions:

$$
\begin{aligned}
\tilde{\gamma}_{q \rightarrow q(x)+g} & =\frac{C_{F} \alpha_{\mathrm{s}}}{\pi}\left[\frac{x}{1-x}+(1-x) \cdot \frac{1}{2}\right] \\
\tilde{\gamma}_{g \rightarrow g(x)+g} & =\frac{C_{A} \alpha_{\mathrm{s}}}{\pi}\left[\frac{x}{1-x}+(1-x) \cdot\left(x+x^{-1}\right)\right] .
\end{aligned}
$$

The first component is independent of the nature of the radiating particle - the Low-Burnett-Kroll classical radiation \Longrightarrow "claglons".

The second - "quaglons" - is relatively suppressed as $\mathcal{O}\left((1-x)^{2}\right)$.
Classical and quantum contributions respect the GL relation, individually:

$$
-x f(1 / x)=f(x)
$$

Recall the diagonal first loop anomalous dimensions:

$$
\begin{aligned}
\tilde{\gamma}_{q \rightarrow q(x)+g} & =\frac{C_{F} \alpha_{\mathrm{s}}}{\pi}\left[\frac{x}{1-x}+(1-x) \cdot \frac{1}{2}\right] \\
\tilde{\gamma}_{g \rightarrow g(x)+g} & =\frac{C_{A} \alpha_{\mathrm{s}}}{\pi}\left[\frac{x}{1-x}+(1-x) \cdot\left(x+x^{-1}\right)\right] .
\end{aligned}
$$

The first component is independent of the nature of the radiating particle - the Low-Burnett-Kroll classical radiation \Longrightarrow "claglons".

The second - "quaglons" - is relatively suppressed as $\mathcal{O}\left((1-x)^{2}\right)$.
Classical and quantum contributions respect the GL relation, individually:

$$
-x f(1 / x)=f(x)
$$

Let us look at the rôles these animals play on the QCD stage

Clagons:

\times Classical Field
\checkmark infrared singular, $d \omega / \omega$
\checkmark define the physical coupling
responsible for
\rightarrow DL radiative effects,
\rightarrow reggeization,
\rightarrow QCD/Lund string
\checkmark play the major rôle in evolution

Quagons:

x Quantum d.o.f.s (constituents)
\checkmark infrared irrelevant, $d \omega \cdot \omega$
\checkmark make the coupling run
\checkmark responsible for conservation of
$\rightarrow P$-parity, $\}$ in decays,
\rightarrow C-parity, $\}$ in \quad production
\rightarrow colour
\checkmark minor rôle

Clagons:

\times Classical Field
\checkmark infrared singular, $d \omega / \omega$
\checkmark define the physical coupling
responsible for
\rightarrow DL radiative effects,
\rightarrow reggeization,
\rightarrow QCD/Lund string (gluers)
\checkmark play the major rôle in evolution

Quagons:

x Quantum d.o.f.s (constituents)
\checkmark infrared irrelevant, $d \omega \cdot \omega$
\checkmark make the coupling run
\checkmark responsible for conservation of
$\rightarrow P$-parity, $\}$ in decays,
\rightarrow C-parity, $\}$ in \quad production
\rightarrow colour
\checkmark minor rôle

In addition,
x Tree multi-clagon (Parke-Taylor) amplitudes are known exactly
x It is clagons which dominate in all the integrability cases

Maximally super-symmetric YM field model:
Matter content $=4$ Majorana fermions, 6 scalars; everyone in the ajoint representation.

Maximally super-symmetric YM field model:
Matter content $=4$ Majorana fermions, 6 scalars;
everyone in the ajoint representation.

$$
\frac{d}{d \ln \mu^{2}}\left(\frac{\alpha\left(\mu^{2}\right)}{4 \pi}\right)_{Q C D}^{-1}=-\frac{11}{3} \cdot C_{A}+n_{f} \cdot T_{R} \cdot \int_{0}^{1} d \times 2\left[x^{2}+(1-x)^{2}\right]
$$

Maximally super-symmetric YM field model:
Matter content $=4$ Majorana fermions, 6 scalars;
everyone in the ajoint representation.

$$
\frac{d}{d \ln \mu^{2}}\left(\frac{\alpha\left(\mu^{2}\right)}{4 \pi}\right)_{Q C D}^{-1}=-\frac{11}{3} \cdot C_{A}+n_{f} \cdot T_{R} \cdot \int_{0}^{1} d \times 2\left[x^{2}+(1-x)^{2}\right]
$$

Now, $\mathcal{N}=4$ SUSY :

$$
\frac{C_{A}^{-1} d}{d \ln \mu^{2}}\left(\frac{\alpha\left(\mu^{2}\right)}{4 \pi}\right)^{-1}
$$

Maximally super-symmetric YM field model:
Matter content $=4$ Majorana fermions, 6 scalars;
everyone in the ajoint representation.

$$
\frac{d}{d \ln \mu^{2}}\left(\frac{\alpha\left(\mu^{2}\right)}{4 \pi}\right)_{Q C D}^{-1}=-\frac{11}{3} \cdot C_{A}+n_{f} \cdot T_{R} \cdot \int_{0}^{1} d x 2\left[x^{2}+(1-x)^{2}\right]
$$

Now, $\mathcal{N}=4$ SUSY :

$$
\frac{C_{A}{ }^{-1} d}{d \ln \mu^{2}}\left(\frac{\alpha\left(\mu^{2}\right)}{4 \pi}\right)^{-1}=-\frac{11}{3}+\frac{4}{2} \cdot \int_{0}^{1} d \times 2\left[x^{2}+(1-x)^{2}\right]+\frac{6}{2!} \cdot \int_{0}^{1} d x 2 x(1-x)
$$

Maximally super-symmetric YM field model:
Matter content $=4$ Majorana fermions, 6 scalars;
everyone in the ajoint representation.

$$
\frac{d}{d \ln \mu^{2}}\left(\frac{\alpha\left(\mu^{2}\right)}{4 \pi}\right)_{Q C D}^{-1}=-\frac{11}{3} \cdot C_{A}+n_{f} \cdot T_{R} \cdot \int_{0}^{1} d x 2\left[x^{2}+(1-x)^{2}\right]
$$

Now, $\mathcal{N}=4$ SUSY :

$$
\frac{C_{A}{ }^{-1} d}{d \ln \mu^{2}}\left(\frac{\alpha\left(\mu^{2}\right)}{4 \pi}\right)^{-1}=-\frac{11}{3}+\frac{4}{2} \cdot \int_{0}^{1} d \times 2\left[x^{2}+(1-x)^{2}\right]+\frac{6}{2!} \cdot \int_{0}^{1} d x 2 x(1-x)
$$

- $\beta(\alpha) \equiv 0$ in all orders !

Maximally super-symmetric YM field model:
Matter content $=4$ Majorana fermions, 6 scalars;
everyone in the ajoint representation.

$$
\frac{d}{d \ln \mu^{2}}\left(\frac{\alpha\left(\mu^{2}\right)}{4 \pi}\right)_{Q C D}^{-1}=-\frac{11}{3} \cdot C_{A}+n_{f} \cdot T_{R} \cdot \int_{0}^{1} d x 2\left[x^{2}+(1-x)^{2}\right]
$$

Now, $\mathcal{N}=4$ SUSY :

$$
\frac{C_{A}{ }^{-1} d}{d \ln \mu^{2}}\left(\frac{\alpha\left(\mu^{2}\right)}{4 \pi}\right)^{-1}=-\frac{11}{3}+\frac{4}{2} \cdot \int_{0}^{1} d x 2\left[x^{2}+(1-x)^{2}\right]+\frac{6}{2!} \cdot \int_{0}^{1} d x 2 x(1-x)
$$

- $\beta(\alpha) \equiv 0$ in all orders !
... makes one think of a classical nature (?) of the SYM-4 dynamics

Maximally super-symmetric YM field model:
Matter content $=4$ Majorana fermions, 6 scalars;
everyone in the ajoint representation.

$$
\frac{d}{d \ln \mu^{2}}\left(\frac{\alpha\left(\mu^{2}\right)}{4 \pi}\right)_{Q C D}^{-1}=-\frac{11}{3} \cdot C_{A}+n_{f} \cdot T_{R} \cdot \int_{0}^{1} d x 2\left[x^{2}+(1-x)^{2}\right]
$$

Now, $\mathcal{N}=4$ SUSY :
$\frac{C_{A}{ }^{-1} d}{d \ln \mu^{2}}\left(\frac{\alpha\left(\mu^{2}\right)}{4 \pi}\right)^{-1}=-\frac{11}{3}+\frac{4}{2} \cdot \int_{0}^{1} d x 2\left[x^{2}+(1-x)^{2}\right]+\frac{6}{2!} \cdot \int_{0}^{1} d x 2 x(1-x)$

- $\beta(\alpha) \equiv 0$ in all orders $!\quad \Longrightarrow \quad \gamma \Rightarrow \frac{x}{1-x}+$ no quagons !
... makes one think of a classical nature (?) of the SYM-4 dynamics

Euler-Zagier harmonic sums

ŁUniversal anomalous dimension
In spite of having many states $\left(s=0, \frac{1}{2}, 1\right)$, the SYM-4 parton dynamics is built of a single "universal" anomalous dimension:
$\gamma_{+}(N+2)=\tilde{\gamma}_{+}(N+1)=\gamma_{0}(N)=\tilde{\gamma}_{-}(N-1)=\gamma_{-}(N-2) \equiv \gamma_{\text {uni }}(N)$
with the 1st loop given by

$$
\gamma_{\mathrm{uni}}^{(1)}(N)=-S_{1}(N)=-\int_{0}^{1} \frac{d x}{x}\left(x^{N}-1\right) \cdot \frac{x}{x-1}
$$

Euler-Zagier harmonic sums

In spite of having many states $\left(s=0, \frac{1}{2}, 1\right)$, the SYM-4 parton dynamics is built of a single "universal" anomalous dimension:
$\gamma_{+}(N+2)=\tilde{\gamma}_{+}(N+1)=\gamma_{0}(N)=\tilde{\gamma}_{-}(N-1)=\gamma_{-}(N-2) \equiv \gamma_{\text {uni }}(N)$
with the 1st loop given by

$$
\gamma_{\mathrm{uni}}^{(1)}(N)=-S_{1}(N)=-\int_{0}^{1} \frac{d x}{x}\left(x^{N}-1\right) \cdot \frac{x}{x-1} \equiv \mathbf{M}\left[\frac{x}{(1-x)_{+}}\right] .
$$

In spite of having many states $\left(s=0, \frac{1}{2}, 1\right)$, the SYM-4 parton dynamics is built of a single "universal" anomalous dimension:
$\gamma_{+}(N+2)=\tilde{\gamma}_{+}(N+1)=\gamma_{0}(N)=\tilde{\gamma}_{-}(N-1)=\gamma_{-}(N-2) \equiv \gamma_{\text {uni }}(N)$
with the 1st loop given by

$$
\gamma_{\mathrm{uni}}^{(1)}(N)=-S_{1}(N)=-\int_{0}^{1} \frac{d x}{x}\left(x^{N}-1\right) \cdot \frac{x}{x-1} \equiv \mathbf{M}\left[\frac{x}{(1-x)_{+}}\right] .
$$

Look upon S_{1} as a "harmonic sum",

$$
S_{1}(N)=\sum_{k=1}^{N} \frac{1}{k}=\psi(N+1)-\psi(1)
$$

In spite of having many states $\left(s=0, \frac{1}{2}, 1\right)$, the SYM-4 parton dynamics is built of a single "universal" anomalous dimension:
$\gamma_{+}(N+2)=\tilde{\gamma}_{+}(N+1)=\gamma_{0}(N)=\tilde{\gamma}_{-}(N-1)=\gamma_{-}(N-2) \equiv \gamma_{\text {uni }}(N)$
with the 1st loop given by

$$
\gamma_{\mathrm{uni}}^{(1)}(N)=-S_{1}(N)=-\int_{0}^{1} \frac{d x}{x}\left(x^{N}-1\right) \cdot \frac{x}{x-1} \equiv \mathbf{M}\left[\frac{x}{(1-x)_{+}}\right] .
$$

Look upon S_{1} as a "harmonic sum",

$$
S_{1}(N)=\sum_{k=1}^{N} \frac{1}{k}=\psi(N+1)-\psi(1)
$$

In higher orders enter $m>1$,

$$
S_{m}(N)=\sum_{k=1}^{N} \frac{1}{k^{m}}=\frac{(-1)^{m}}{\Gamma(m)} \int_{0}^{1} d x x^{N} \frac{\ln ^{m-1} x}{1-x}+\zeta(m),
$$

In spite of having many states $\left(s=0, \frac{1}{2}, 1\right)$, the SYM-4 parton dynamics is built of a single "universal" anomalous dimension:
$\gamma_{+}(N+2)=\tilde{\gamma}_{+}(N+1)=\gamma_{0}(N)=\tilde{\gamma}_{-}(N-1)=\gamma_{-}(N-2) \equiv \gamma_{\text {uni }}(N)$
with the 1st loop given by

$$
\gamma_{\mathrm{uni}}^{(1)}(N)=-S_{1}(N)=-\int_{0}^{1} \frac{d x}{x}\left(x^{N}-1\right) \cdot \frac{x}{x-1} \equiv \mathbf{M}\left[\frac{x}{(1-x)_{+}}\right] .
$$

Look upon S_{1} as a "harmonic sum",

$$
S_{1}(N)=\sum_{k=1}^{N} \frac{1}{k}=\psi(N+1)-\psi(1)
$$

In higher orders enter $m>1$,

$$
S_{m}(N)=\sum_{k=1}^{N} \frac{1}{k^{m}}=\frac{(-1)^{m}}{\Gamma(m)} \int_{0}^{1} d x x^{N} \frac{\ln ^{m-1} x}{1-x}+\zeta(m)
$$

as we as multiple indices - nested sums

$$
S_{m, \vec{\rho}}(N)=\sum_{k=1}^{N} \frac{S_{\vec{\rho}}(k)}{k^{m}} \quad\left(\vec{\rho}=\left(m_{1}, m_{2}, \ldots, m_{i}\right)\right),
$$

—Universal anomalous dimension
Starting from the 2nd loop, one encounters also negative indices,

$$
S_{-m}(N)=\sum_{k=1}^{N} \frac{(-1)^{k}}{k^{m}}
$$

Starting from the 2nd loop, one encounters also negative indices,

$$
S_{-m}(N)=\sum_{k=1}^{N} \frac{(-1)^{k}}{k^{m}}
$$

The origin of these oscillating sums - the $s \rightarrow u$ crossing:

$$
\begin{aligned}
& (a) \leftrightarrow(b) \\
& P \rightarrow-P \\
& x \rightarrow-x
\end{aligned}
$$

Starting from the 2nd loop, one encounters also negative indices,

$$
S_{-m}(N)=\sum_{k=1}^{N} \frac{(-1)^{k}}{k^{m}}
$$

The origin of these oscillating sums - the $s \rightarrow u$ crossing:

$(a) \leftrightarrow(b)$
$P \rightarrow-P$
$x \rightarrow-x$

$$
p_{q \bar{q}}(x)=\alpha_{s}^{2}\left(\frac{1}{2} C_{A}-C_{F}\right) p_{q q}(-x) \cdot \phi_{2}(x), \quad p_{q q}(x)=\frac{1+x^{2}}{2(1-x)} .
$$

Starting from the 2nd loop, one encounters also negative indices,

$$
S_{-m}(N)=\sum_{k=1}^{N} \frac{(-1)^{k}}{k^{m}}
$$

The origin of these oscillating sums - the $s \rightarrow u$ crossing:

$$
\begin{aligned}
& \text { (a) } \begin{array}{l}
(a) \leftrightarrow(b) \\
P \rightarrow-P \\
x \rightarrow-x
\end{array} \\
& \frac{x}{1-x} \cdot \ln ^{2} x \rightarrow S_{3}(N) \quad \frac{x}{1+x} \cdot \phi_{2}(x) \rightarrow Y_{-3}(N) \\
& p_{q \bar{q}}(x)=\alpha_{s}^{2}\left(\frac{1}{2} C_{A}-C_{F}\right) p_{q q}(-x) \cdot \phi_{2}(x), \quad p_{q q}(x)=\frac{1+x^{2}}{2(1-x)} .
\end{aligned}
$$

[^0]Loop \# 1: $\quad \gamma_{1}=-S_{1}$.
Loop \# 2: $\quad \gamma_{2}=\frac{1}{2} S_{3}+S_{1} S_{2}+\left(\frac{1}{2} S_{-3}+S_{1} S_{-2}-S_{-2,1}\right)$.
(direct calculation by Kotikov \& Lipatov, 2000)

Loop \# 1: $\quad \gamma_{1}=-S_{1}$.
Loop \# 2: $\quad \gamma_{2}=\frac{1}{2} S_{3}+S_{1} S_{2}+\left(\frac{1}{2} S_{-3}+S_{1} S_{-2}-S_{-2,1}\right)$.
(direct calculation by Kotikov \& Lipatov, 2000)
AK observation: γ_{2} contains but the "most transcendental" structures !

Loop \# 1: $\quad \gamma_{1}=-S_{1}$.
Loop \# 2: $\quad \gamma_{2}=\frac{1}{2} S_{3}+S_{1} S_{2}+\left(\frac{1}{2} S_{-3}+S_{1} S_{-2}-S_{-2,1}\right)$.
(direct calculation by Kotikov \& Lipatov, 2000)
AK observation: γ_{2} contains but the "most transcendental" structures !
Loop \# 3 : since neither fermions nor scalars give rise to $S_{2 L-1}$, pick out the maximal transcedentality pieces from the QCD an. dim.

Loop \# 1: $\quad \gamma_{1}=-S_{1}$.
Loop \# 2: $\quad \gamma_{2}=\frac{1}{2} S_{3}+S_{1} S_{2}+\left(\frac{1}{2} S_{-3}+S_{1} S_{-2}-S_{-2,1}\right)$.
(direct calculation by Kotikov \& Lipatov, 2000)
AK observation: γ_{2} contains but the "most transcendental" structures !
Loop \# 3 : since neither fermions nor scalars give rise to $S_{2 L-1}$, pick out the maximal transcedentality pieces from the QCD an. dim.

$$
\begin{aligned}
\gamma_{3}= & -\frac{1}{2} S_{5}-\left[S_{1}^{2} S_{3}+\frac{1}{2} S_{2} S_{3}+S_{1} S_{2}^{2}+\frac{3}{2} S_{1} S_{4}\right] \\
& -S_{1}\left[4 S_{-4}+\frac{1}{2} S_{-2}^{2}+2 S_{2} S_{-2}-6 S_{-3,1}-5 S_{-2,2}+8 S_{-2,1,1}\right] \\
& -\left(\frac{1}{2} S_{2}+3 S_{1}^{2}\right) S_{-3}-S_{3} S_{-2}+\left(S_{2}+2 S_{1}^{2}\right) S_{-2,1}+12 S_{-2,1,1,1} \\
& -6\left(S_{-3,1,1}+S_{-2,1,2}+S_{-2,2,1}\right)+3\left(S_{-4,1}+S_{-3,2}+S_{-2,3}\right)-\frac{3}{2} S_{-5} .
\end{aligned}
$$

Loop \# 1: $\quad \gamma_{1}=-S_{1}$.
Loop \# 2: $\quad \gamma_{2}=\frac{1}{2} S_{3}+S_{1} S_{2}+\left(\frac{1}{2} S_{-3}+S_{1} S_{-2}-S_{-2,1}\right)$.
(direct calculation by Kotikov \& Lipatov, 2000)
AK observation: γ_{2} contains but the "most transcendental" structures !
Loop \# 3 : since neither fermions nor scalars give rise to $S_{2 L-1}$, pick out the maximal transcedentality pieces from the QCD an. dim.

$$
\begin{aligned}
\gamma_{3}= & -\frac{1}{2} S_{5}-\left[S_{1}^{2} S_{3}+\frac{1}{2} S_{2} S_{3}+S_{1} S_{2}^{2}+\frac{3}{2} S_{1} S_{4}\right] \\
& -S_{1}\left[4 S_{-4}+\frac{1}{2} S_{-2}^{2}+2 S_{2} S_{-2}-6 S_{-3,1}-5 S_{-2,2}+8 S_{-2,1,1}\right] \\
& -\left(\frac{1}{2} S_{2}+3 S_{1}^{2}\right) S_{-3}-S_{3} S_{-2}+\left(S_{2}+2 S_{1}^{2}\right) S_{-2,1}+12 S_{-2,1,1,1} \\
& -6\left(S_{-3,1,1}+S_{-2,1,2}+S_{-2,2,1}\right)+3\left(S_{-4,1}+S_{-3,2}+S_{-2,3}\right)-\frac{3}{2} S_{-5} .
\end{aligned}
$$

The RREE,

$$
\gamma_{\sigma}(N)=\mathcal{P}\left(N+\sigma \gamma_{\sigma}(N)\right)
$$

Loop \# 1: $\quad \gamma_{1}=-S_{1}$.
Loop \# 2: $\quad \gamma_{2}=\frac{1}{2} S_{3}+S_{1} S_{2}+\left(\frac{1}{2} S_{-3}+S_{1} S_{-2}-S_{-2,1}\right)$.
(direct calculation by Kotikov \& Lipatov, 2000)
AK observation: γ_{2} contains but the "most transcendental" structures !
Loop \# 3 : since neither fermions nor scalars give rise to $S_{2 L-1}$, pick out the maximal transcedentality pieces from the QCD an. dim.

$$
\begin{aligned}
\gamma_{3}= & -\frac{1}{2} S_{5}-\left[S_{1}^{2} S_{3}+\frac{1}{2} S_{2} S_{3}+S_{1} S_{2}^{2}+\frac{3}{2} S_{1} S_{4}\right] \\
& -S_{1}\left[4 S_{-4}+\frac{1}{2} S_{-2}^{2}+2 S_{2} S_{-2}-6 S_{-3,1}-5 S_{-2,2}+8 S_{-2,1,1}\right] \\
& -\left(\frac{1}{2} S_{2}+3 S_{1}^{2}\right) S_{-3}-S_{3} S_{-2}+\left(S_{2}+2 S_{1}^{2}\right) S_{-2,1}+12 S_{-2,1,1,1} \\
& -6\left(S_{-3,1,1}+S_{-2,1,2}+S_{-2,2,1}\right)+3\left(S_{-4,1}+S_{-3,2}+S_{-2,3}\right)-\frac{3}{2} S_{-5} .
\end{aligned}
$$

The RREE,

$$
\gamma_{\sigma}(N)=\mathcal{P}\left(N+\sigma \gamma_{\sigma}(N)\right)
$$

Loop \# 1: $\quad \gamma_{1}=-S_{1}$.
Loop \# 2: $\quad \gamma_{2}=\frac{1}{2} S_{3}+S_{1} S_{2}+\left(\frac{1}{2} S_{-3}+S_{1} S_{-2}-S_{-2,1}\right)$.
(direct calculation by Kotikov \& Lipatov, 2000)
AK observation: γ_{2} contains but the "most transcendental" structures!
Loop \# 3 : since neither fermions nor scalars give rise to $S_{2 L-1}$, pick out the maximal transcedentality pieces from the QCD an. dim.

$$
\begin{aligned}
\gamma_{3}= & -\frac{1}{2} S_{5}-\left[S_{1}^{2} S_{3}+\frac{1}{2} S_{2} S_{3}+S_{1} S_{2}^{2}+\frac{3}{2} S_{1} S_{4}\right] \\
& -S_{1}\left[4 S_{-4}+\frac{1}{2} S_{-2}^{2}+2 S_{2} S_{-2}-6 S_{-3,1}-5 S_{-2,2}+8 S_{-2,1,1}\right] \\
& -\left(\frac{1}{2} S_{2}+3 S_{1}^{2}\right) S_{-3}-S_{3} S_{-2}+\left(S_{2}+2 S_{1}^{2}\right) S_{-2,1}+12 S_{-2,1,1,1} \\
& -6\left(S_{-3,1,1}+S_{-2,1,2}+S_{-2,2,1}\right)+3\left(S_{-4,1}+S_{-3,2}+S_{-2,3}\right)-\frac{3}{2} S_{-5} .
\end{aligned}
$$

The RREE,

$$
\gamma_{\sigma}(N)=\mathcal{P}\left(N+\sigma \gamma_{\sigma}(N)\right)
$$

generates positives and simplifies negatives.

In terms of the perturbative expansion in the physical coupling,

$$
\begin{aligned}
& a_{\mathrm{ph}}=a\left(1-\frac{1}{2} \zeta_{2} a+\frac{11}{20} \zeta_{2}^{2} a^{2}+\ldots\right), \\
& \mathcal{P}_{1}=-S_{1} ; \\
& \mathcal{P}_{2}=\frac{1}{2} \hat{S}_{3}-\frac{1}{2} \hat{Y}_{-3}+B_{2} ; \\
& \mathcal{P}_{3}=-\frac{1}{2} \hat{S}_{5}+\frac{3}{2} \hat{Y}_{-5}+B_{3}+\zeta_{2} \cdot \frac{1}{2} \hat{S}_{3} \\
& +S_{1} \cdot\left[\hat{Y}_{-4}-\frac{1}{2}\left(\hat{S}_{-4}+\hat{S}_{-2}^{2}\right)+\zeta_{2} \cdot \frac{1}{2} \hat{S}_{-2}\right]
\end{aligned}
$$

In terms of the perturbative expansion in the physical coupling,

$$
\begin{aligned}
& a_{\mathrm{ph}}=a\left(1-\frac{1}{2} \zeta_{2} a+\frac{11}{20} \zeta_{2}^{2} a^{2}+\ldots\right), \\
& \mathcal{P}_{1}=-S_{1} ; \\
& \mathcal{P}_{2}=\frac{1}{2} \hat{S}_{3}-\frac{1}{2} \hat{Y}_{-3}+B_{2} ; \quad\left[B_{2}=\frac{3}{4} \zeta_{3}\right] \\
& \mathcal{P}_{3}=-\frac{1}{2} \hat{S}_{5}+\frac{3}{2} \hat{Y}_{-5}+B_{3}+\zeta_{2} \cdot \frac{1}{2} \hat{S}_{3} \quad\left[B_{3}=-\frac{1}{8} \zeta_{2} \zeta_{3}-\frac{5}{4} \zeta_{5}\right] \\
& +S_{1} \cdot\left[\hat{Y}_{-4}-\frac{1}{2}\left(\hat{S}_{-4}+\hat{S}_{-2}^{2}\right)+\zeta_{2} \cdot \frac{1}{2} \hat{S}_{-2}\right]
\end{aligned}
$$

In terms of the perturbative expansion in the physical coupling,

$$
\begin{aligned}
& a_{\mathrm{ph}}=a\left(1-\frac{1}{2} \zeta_{2} a+\frac{11}{20} \zeta_{2}^{2} a^{2}+\ldots\right), \\
& \mathcal{P}_{1}=-S_{1} ; \\
& \mathcal{P}_{2}=\frac{1}{2} \hat{S}_{3}-\frac{1}{2} \hat{Y}_{-3}+B_{2} ; \\
& \mathcal{P}_{3}=-\frac{1}{2} \hat{S}_{5}+\frac{3}{2} \hat{Y}_{-5}+B_{3}+\zeta_{2} \cdot \frac{1}{2} \hat{S}_{3} \\
& +S_{1} \cdot\left[\hat{Y}_{-4}-\frac{1}{2}\left(\hat{S}_{-4}+\hat{S}_{-2}^{2}\right)+\zeta_{2} \cdot \frac{1}{2} \hat{S}_{-2}\right]
\end{aligned}
$$

In terms of the perturbative expansion in the physical coupling,

$$
\begin{aligned}
& a_{\mathrm{ph}}=a\left(1-\frac{1}{2} \zeta_{2} a+\frac{11}{20} \zeta_{2}^{2} a^{2}+\ldots\right), \\
& \mathcal{P}_{1}=-S_{1} ; \\
& \mathcal{P}_{2}=\frac{1}{2} \hat{S}_{3}-\frac{1}{2} \hat{Y}_{-3}+B_{2} ; \\
& \mathcal{P}_{3}=-\frac{1}{2} \hat{S}_{5}+\frac{3}{2} \hat{Y}_{-5}+B_{3}+\zeta_{2} \cdot \frac{1}{2} \hat{S}_{3} \\
& +S_{1} \cdot\left[\hat{Y}_{-4}-\frac{1}{2}\left(\hat{S}_{-4}+\hat{S}_{-2}^{2}\right)+\zeta_{2} \cdot \frac{1}{2} \hat{S}_{-2}\right]
\end{aligned}
$$

In terms of the perturbative expansion in the physical coupling,

$$
\begin{aligned}
& a_{\mathrm{ph}}=a\left(1-\frac{1}{2} \zeta_{2} a+\frac{11}{20} \zeta_{2}^{2} a^{2}+\ldots\right), \\
& \mathcal{P}_{1}=-S_{1} ; \\
& \mathcal{P}_{2}=\frac{1}{2} \hat{S}_{3}-\frac{1}{2} \hat{Y}_{-3}+B_{2} ; \\
& \mathcal{P}_{3}=-\frac{1}{2} \hat{S}_{5}+\frac{3}{2} \hat{Y}_{-5}+B_{3}+\zeta_{2} \cdot \frac{1}{2} \hat{S}_{3} \\
& +S_{1} \cdot\left[\hat{Y}_{-4}-\frac{1}{2}\left(\hat{S}_{-4}+\hat{S}_{-2}^{2}\right)+\zeta_{2} \cdot \frac{1}{2} \hat{S}_{-2}\right]
\end{aligned}
$$

Notation:

$$
\begin{gathered}
\hat{Y}_{-m}(N)=(-1)^{N} \mathbf{M}\left[\frac{x}{1+x} \phi_{m-1}(x)\right], \\
\phi_{m}(x)=\frac{1}{\Gamma(m)} \int_{x}^{1} \frac{d z}{z} \ln ^{m-1}\left(\frac{(1+x)^{2} z}{x(1+z)^{2}}\right) .
\end{gathered}
$$

In terms of the perturbative expansion in the physical coupling,

$$
\begin{aligned}
& a_{\mathrm{ph}}=a\left(1-\frac{1}{2} \zeta_{2} a+\frac{11}{20} \zeta_{2}^{2} a^{2}+\ldots\right), \\
& \mathcal{P}_{1}=-S_{1} ; \\
& \mathcal{P}_{2}=\frac{1}{2} \hat{S}_{3}-\frac{1}{2} \hat{Y}_{-3}+B_{2} ; \\
& \mathcal{P}_{3}=-\frac{1}{2} \hat{S}_{5}+\frac{3}{2} \hat{Y}_{-5}+B_{3}+\zeta_{2} \cdot \frac{1}{2} \hat{S}_{3} \\
& +S_{1} \cdot\left[\hat{Y}_{-4}-\frac{1}{2}\left(\hat{S}_{-4}+\hat{S}_{-2}^{2}\right)+\zeta_{2} \cdot \frac{1}{2} \hat{S}_{-2}\right]
\end{aligned}
$$

Notation:

$$
\begin{gathered}
\hat{Y}_{-m}(N)=(-1)^{N} \mathbf{M}\left[\frac{x}{1+x} \phi_{m-1}(x)\right] \\
\phi_{m}(x)=\frac{1}{\Gamma(m)} \int_{x}^{1} \frac{d z}{z} \ln ^{m-1}\left(\frac{(1+x)^{2} z}{x(1+z)^{2}}\right) . \quad \phi_{m}\left(x^{-1}\right)=-\phi_{m}(x) .
\end{gathered}
$$

In terms of the perturbative expansion in the physical coupling,

$$
\begin{aligned}
& a_{\mathrm{ph}}=a\left(1-\frac{1}{2} \zeta_{2} a+\frac{11}{20} \zeta_{2}^{2} a^{2}+\ldots\right), \\
& \mathcal{P}_{1}=-S_{1} ; \\
& \mathcal{P}_{2}=\frac{1}{2} \hat{S}_{3}-\frac{1}{2} \hat{Y}_{-3}+B_{2} ; \\
& \mathcal{P}_{3}=-\frac{1}{2} \hat{S}_{5}+\frac{3}{2} \hat{Y}_{-5}+B_{3}+\zeta_{2} \cdot \frac{1}{2} \hat{S}_{3} \\
& +S_{1} \cdot\left[\hat{Y}_{-4}-\frac{1}{2}\left(\hat{S}_{-4}+\hat{S}_{-2}^{2}\right)+\zeta_{2} \cdot \frac{1}{2} \hat{S}_{-2}\right]
\end{aligned}
$$

Notation:

$$
\begin{gathered}
\hat{Y}_{-m}(N)=(-1)^{N} \mathbf{M}\left[\frac{x}{1+x} \phi_{m-1}(x)\right] \\
\phi_{m}(x)=\frac{1}{\Gamma(m)} \int_{x}^{1} \frac{d z}{z} \ln ^{m-1}\left(\frac{(1+x)^{2} z}{x(1+z)^{2}}\right) . \quad \phi_{m}\left(x^{-1}\right)=-\phi_{m}(x) .
\end{gathered}
$$

In terms of the perturbative expansion in the physical coupling,

$$
\begin{aligned}
& a_{\mathrm{ph}}=a\left(1-\frac{1}{2} \zeta_{2} a+\frac{11}{20} \zeta_{2}^{2} a^{2}+\ldots\right), \\
& \mathcal{P}_{1}=-S_{1} ; \\
& \mathcal{P}_{2}=\frac{1}{2} \hat{S}_{3}-\frac{1}{2} \hat{Y}_{-3}+B_{2} ; \\
& \mathcal{P}_{3}=-\frac{1}{2} \hat{S}_{5}+\frac{3}{2} \hat{Y}_{-5}+B_{3}+\zeta_{2} \cdot \frac{1}{2} \hat{S}_{3} \\
& +S_{1} \cdot\left[\hat{Y}_{-4}-\frac{1}{2}\left(\hat{S}_{-4}+\hat{S}_{-2}^{2}\right)+\zeta_{2} \cdot \frac{1}{2} \hat{S}_{-2}\right] \quad \propto \frac{\ln N}{N^{2}}
\end{aligned}
$$

Notation:

$$
\begin{gathered}
\hat{Y}_{-m}(N)=(-1)^{N} \mathbf{M}\left[\frac{x}{1+x} \phi_{m-1}(x)\right] \\
\phi_{m}(x)=\frac{1}{\Gamma(m)} \int_{x}^{1} \frac{d z}{z} \ln ^{m-1}\left(\frac{(1+x)^{2} z}{x(1+z)^{2}}\right) . \quad \phi_{m}\left(x^{-1}\right)=-\phi_{m}(x) .
\end{gathered}
$$

The $\mathfrak{s l}(2)$ sector of planar $\mathcal{N}=4 \mathrm{SYM}$ contains single trace states which are linear combinations of the basic operators

$$
\operatorname{Tr}\left\{\left(\mathcal{D}^{s_{1}} Z\right) \cdots\left(\mathcal{D}^{s_{L}} Z\right)\right\}, \quad s_{1}+\cdots+s_{L}=N,
$$

where Z is one of the three complex scalar fields and \mathcal{D} is a light-cone covariant derivative. The numbers $\left\{s_{i}\right\}$ are non-negative integers and N is the total spin. The number L of Z fields is the twist of the operator, i.e. the classical dimension minus spin.
The anomalous dimensions of these states are the eigenvalues $\gamma_{L}(N ; g)$ of
the dilatation operator - integrable Hamiltonian.
These values were obtained by solving numerically the Bethe Ansatz
equations (BAE), order by order in g^{2}, and guessing the answer in terms
of harmonic sums of transcedentality $\tau=2 n-1$, at n loops.

The $\mathfrak{s l}(2)$ sector of planar $\mathcal{N}=4 \mathrm{SYM}$ contains single trace states which are linear combinations of the basic operators

$$
\operatorname{Tr}\left\{\left(\mathcal{D}^{s_{1}} Z\right) \cdots\left(\mathcal{D}^{s_{L}} Z\right)\right\}, \quad s_{1}+\cdots+s_{L}=N,
$$

where Z is one of the three complex scalar fields and \mathcal{D} is a light-cone covariant derivative. The numbers $\left\{s_{i}\right\}$ are non-negative integers and N is the total spin. The number L of Z fields is the twist of the operator, i.e. the classical dimension minus spin.
The anomalous dimensions of these states are the eigenvalues $\gamma_{L}(N ; g)$ of the dilatation operator - integrable Hamiltonian.
These values were obtained by solving numerically the Bethe Ansatz equations (BAE), order by order in g^{2}, and guessing the answer in terms of harmonic sums of transcedentality $\tau=2 n-1$, at n loops.

The $\mathfrak{s l}(2)$ sector of planar $\mathcal{N}=4 \mathrm{SYM}$ contains single trace states which are linear combinations of the basic operators

$$
\operatorname{Tr}\left\{\left(\mathcal{D}^{s_{1}} Z\right) \cdots\left(\mathcal{D}^{s_{L}} Z\right)\right\}, \quad s_{1}+\cdots+s_{L}=N,
$$

where Z is one of the three complex scalar fields and \mathcal{D} is a light-cone covariant derivative. The numbers $\left\{s_{i}\right\}$ are non-negative integers and N is the total spin. The number L of Z fields is the twist of the operator, i.e. the classical dimension minus spin.
The anomalous dimensions of these states are the eigenvalues $\gamma_{L}(N ; g)$ of the dilatation operator - integrable Hamiltonian.
These values were obtained by solving numerically the Bethe Ansatz equations (BAE), order by order in g^{2}, and guessing the answer in terms of harmonic sums of transcedentality $\tau=2 n-1$, at n loops.

The $\mathfrak{s l}(2)$ sector of planar $\mathcal{N}=4 \mathrm{SYM}$ contains single trace states which are linear combinations of the basic operators

$$
\operatorname{Tr}\left\{\left(\mathcal{D}^{s_{1}} Z\right) \cdots\left(\mathcal{D}^{s_{L}} Z\right)\right\}, \quad s_{1}+\cdots+s_{L}=N,
$$

where Z is one of the three complex scalar fields and \mathcal{D} is a light-cone covariant derivative. The numbers $\left\{s_{i}\right\}$ are non-negative integers and N is the total spin. The number L of Z fields is the twist of the operator, i.e. the classical dimension minus spin.
The anomalous dimensions of these states are the eigenvalues $\gamma_{L}(N ; g)$ of the dilatation operator - integrable Hamiltonian.
These values were obtained by solving numerically the Bethe Ansatz equations (BAE), order by order in g^{2}, and guessing the answer in terms of harmonic sums of transcedentality $\tau=2 n-1$, at n loops.
smed

The $\mathfrak{s l}(2)$ sector of planar $\mathcal{N}=4$ SYM contains single trace states which are linear combinations of the basic operators

$$
\operatorname{Tr}\left\{\left(\mathcal{D}^{s_{1}} Z\right) \cdots\left(\mathcal{D}^{s_{L}} Z\right)\right\}, \quad s_{1}+\cdots+s_{L}=N
$$

where Z is one of the three complex scalar fields and \mathcal{D} is a light-cone covariant derivative. The numbers $\left\{s_{i}\right\}$ are non-negative integers and N is the total spin. The number L of Z fields is the twist of the operator, i.e. the classical dimension minus spin.
The anomalous dimensions of these states are the eigenvalues $\gamma_{L}(N ; g)$ of the dilatation operator - integrable Hamiltonian.
These values were obtained by solving numerically the Bethe Ansatz equations (BAE), order by order in g^{2}, and guessing the answer in terms of harmonic sums of transcedentality $\tau=2 n-1$, at n loops.
Since wrapping problems, delayed by supersymmetry, appear at $L+2$ loop order for twist-L operators, the BAE for twist-3 are reliable up to four loops (including, at the fourth loop, the dressing factor).

$$
\begin{aligned}
\gamma_{3}^{(1)}= & 4 S_{1}, \\
\gamma_{3}^{(2)}= & -2\left(S_{3}+2 S_{1} S_{2}\right) \\
\gamma_{3}^{(3)}= & 5 S_{5}+6 S_{2} S_{3}-8 S_{3,1,1}+4 S_{4,1}-4 S_{2,3}+S_{1}\left(4 S_{2}^{2}+2 S_{4}+8 S_{3,1}\right), \\
\gamma_{3}^{(4)}= & \frac{1}{2} S_{7}+7 S_{1,6}+15 S_{2,5}-5 S_{3,4}-29 S_{4,3}-21 S_{5,2}-5 S_{6,1} \\
& -40 S_{1,1,5}-32 S_{1,2,4}+24 S_{1,3,3}+32 S_{1,4,2}-32 S_{2,1,4}+20 S_{2,2,3} \\
& +40 S_{2,3,2}+4 S_{2,4,1}+24 S_{3,1,3}+44 S_{3,2,2}+24 S_{3,3,1}+36 S_{4,1,2} \\
& +36 S_{4,2,1}+24 S_{5,1,1}+80 S_{1,1,1,4}-16 S_{1,1,3,2}+32 S_{1,1,4,1} \\
& -24 S_{1,2,2,2}+16 S_{1,2,3,1}-24 S_{1,3,1,2}-24 S_{1,3,2,1}-24 S_{1,4,1,1} \\
& -24 S_{2,1,2,2}+16 S_{2,1,3,1}-24 S_{2,2,1,2}-24 S_{2,2,2,1}-24 S_{2,3,1,1} \\
& -24 S_{3,1,1,2}-24 S_{3,1,2,1}-24 S_{3,2,1,1}-24 S_{4,1,1,1}-64 S_{1,1,1,3,1} \\
& -8 \beta S_{1} S_{3} .
\end{aligned}
$$

The last term, with $\beta=\zeta_{3}$, is the contribution from the dressing factor that appears in the BAE at the fourth loop.

The twist-3 anomalous dimension has two characteristic features:

1. All harmonic functions $S_{\vec{a}}$ are evaluated at half the spin, $S_{a} \equiv S_{a}(N / 2)$. On the integrability side, this does not look unwarranted, since only even N belong to the non-degenerate ground state of the magnet.
negative index sums were present starting from the second loop.
\qquad

The twist-3 anomalous dimension has two characteristic features:

1. All harmonic functions $S_{\vec{a}}$ are evaluated at half the spin, $S_{a} \equiv S_{a}(N / 2)$. On the integrability side, this does not look unwarranted, since only even N belong to the non-degenerate ground state of the magnet.
2. No negative indices appear at twist-3, while in the case of twist-2 negative index sums were present starting from the second loop.

At the $N \rightarrow \infty$ limit, the minimal anomalous dimension γ (corresponding
to the ground state) must exhibit the universal (LBK-classical) In N
behaviour which depends neither on the twist, nor on the nature of fields
under consideration. Computing analytically the large N asymptotics yields

which matches the four-loop cusp anomalous dimension - the physical coupling. This is a non-trivial check, since the derivation was based on experimenting with finite values of the spin N

The twist-3 anomalous dimension has two characteristic features:

1. All harmonic functions $S_{\vec{a}}$ are evaluated at half the spin, $S_{a} \equiv S_{a}(N / 2)$. On the integrability side, this does not look unwarranted, since only even N belong to the non-degenerate ground state of the magnet.
2. No negative indices appear at twist-3, while in the case of twist-2 negative index sums were present starting from the second loop.

At the $N \rightarrow \infty$ limit, the minimal anomalous dimension γ (corresponding to the ground state) must exhibit the universal (LBK-classical) In N behaviour which depends neither on the twist, nor on the nature of fields under consideration. Computing analytically the large N asymptotics yields

$$
\frac{\gamma_{3}(N)}{\ln N}=4 g^{2}-\frac{2 \pi^{2}}{3} g^{4}+\frac{11 \pi^{4}}{45} g^{6}-\left(4 \zeta_{3}^{2}+\frac{73 \pi^{6}}{630}\right) g^{8}+\mathcal{O}\left(g^{10}\right)
$$

which matches the four-loop cusp anomalous dimension - the physical coupling. This is a non-trivial check, since the derivation was based on experimenting with finite values of the spin N.

After processing thru $\gamma=\mathcal{P}\left(N+\frac{1}{2} \gamma\right)$, in series in $g^{2}=\frac{N_{c} \alpha}{2 \pi}$,

$$
\begin{aligned}
P^{(1)}= & 4 S_{1} \\
P^{(2)}= & -2 S_{3}-4 \zeta_{2} S_{1} \\
P^{(3)}= & S_{5}+2 \zeta_{2} S_{3}+4\left(S_{3,2}+S_{4,1}-2 S_{3,1,1}\right) \\
& +4 S_{1}\left(2 S_{3,1}-S_{4}+4 \zeta_{4}\right)-4 S_{1}^{2}\left(S_{3}-\zeta_{3}\right)
\end{aligned}
$$

The fourth loop kernel we split into two terms: $P^{(4)}=P_{S}^{(4)}+P_{\zeta}^{(4)}$.

$$
\begin{aligned}
P_{S}^{(4)}= & -8\left[S_{3,3}+S_{1,5}+2 S_{2,4}-4\left(S_{2,1,3}+S_{1,2,3}+S_{1,1,4}\right)+8 S_{1,1,1,3}\right] S_{1} \\
+ & \frac{3}{2} S_{7}-16\left(S_{1,6}+S_{4,3}\right)-24\left(S_{2,5}+S_{3,4}\right) \\
& +48\left(S_{1,1,5}+S_{1,3,3}+S_{3,1,3}\right)+64\left(S_{2,2,3}+S_{2,1,4}+S_{1,2,4}\right) \\
& -128\left(S_{1,1,1,4}+S_{2,1,1,3}+S_{1,2,1,3}+S_{1,1,2,3}\right)+256 S_{1,1,1,1,3}, \\
P_{\zeta}^{(4)}= & 8 \zeta_{4} \mathcal{S}_{1}^{3}-4\left[\zeta_{2} \zeta_{3}+8 \zeta_{5}\right] \mathcal{S}_{1}^{2}-\left[4\left(\zeta_{3}+2 \beta\right) \mathcal{S}_{3}+49 \zeta_{6}\right] \mathcal{S}_{1} \\
& +\left(8 \mathcal{S}_{1,1,3}-4 \mathcal{S}_{1,4}-4 \mathcal{S}_{2,3}-\mathcal{S}_{5}\right) \zeta_{2}-8 \mathcal{S}_{3} \zeta_{4} .
\end{aligned}
$$

$$
\tilde{\Phi}_{b, \vec{m}}(x)=-[\Gamma(b)]^{-1} \frac{x}{x-1} \int_{x}^{1} \frac{d z(z+1)}{z^{2}} \ln ^{b-1} \frac{z}{x} \cdot \tilde{\Phi}_{\vec{m}}(z),
$$

where the single index function coincides with the image of the standard harmonic sum,

$$
\tilde{\Phi}_{a}(x)=[\Gamma(a)]^{-1} \frac{x}{x-1} \ln ^{a-1} \frac{1}{x}=\tilde{\mathcal{S}}_{a}(x) .
$$

$$
\tilde{\Phi}_{b, \vec{m}}(x)=-[\Gamma(b)]^{-1} \frac{x}{x-1} \int_{x}^{1} \frac{d z(z+1)}{z^{2}} \ln ^{b-1} \frac{z}{x} \cdot \tilde{\Phi}_{\vec{m}}(z),
$$

where the single index function coincides with the image of the standard harmonic sum,

$$
\tilde{\Phi}_{a}(x)=[\Gamma(a)]^{-1} \frac{x}{x-1} \ln ^{a-1} \frac{1}{x}=\tilde{\mathcal{S}}_{a}(x) .
$$

At the base of the recursion, we have (the weight $w \equiv \tau-\ell$)

$$
\tilde{\Phi}_{a}(x)=\left(-x \tilde{\Phi}_{a}\left(x^{-1}\right)\right) \cdot(-1)^{a-1} \equiv\left(-x \tilde{\Phi}_{a}\left(x^{-1}\right)\right) \cdot(-1)^{w[a]}
$$

Let $\vec{m}=\left\{m_{1}, m_{2}, \ldots, m_{\ell}\right\}$, and examine the recurrence relation

$$
\tilde{\Phi}_{b, \vec{m}}(x)=-[\Gamma(b)]^{-1} \frac{x}{x-1} \int_{x}^{1} \frac{d z(z+1)}{z^{2}} \ln ^{b-1} \frac{z}{x} \cdot \tilde{\Phi}_{\vec{m}}(z),
$$

where the single index function coincides with the image of the standard harmonic sum,

$$
\tilde{\Phi}_{a}(x)=[\Gamma(a)]^{-1} \frac{x}{x-1} \ln ^{a-1} \frac{1}{x}=\tilde{\mathcal{S}}_{a}(x) .
$$

At the base of the recursion, we have (the weight $w \equiv \tau-\ell$)

$$
\tilde{\Phi}_{a}(x)=\left(-x \tilde{\Phi}_{a}\left(x^{-1}\right)\right) \cdot(-1)^{a-1} \equiv\left(-x \tilde{\Phi}_{a}\left(x^{-1}\right)\right) \cdot(-1)^{w[a]} .
$$

An iteration increases transcedentality $\tau=\sum_{i=1}^{\ell}\left|m_{i}\right|$ of the function by b, and the length ℓ of the index vector by one, so that

$$
w[\vec{m}]+b-1=w[b, \vec{m}] .
$$

Let $\vec{m}=\left\{m_{1}, m_{2}, \ldots, m_{\ell}\right\}$, and examine the recurrence relation

$$
\tilde{\Phi}_{b, \vec{m}}(x)=-[\Gamma(b)]^{-1} \frac{x}{x-1} \int_{x}^{1} \frac{d z(z+1)}{z^{2}} \ln ^{b-1} \frac{z}{x} \cdot \tilde{\Phi}_{\vec{m}}(z),
$$

where the single index function coincides with the image of the standard harmonic sum,

$$
\tilde{\Phi}_{a}(x)=[\Gamma(a)]^{-1} \frac{x}{x-1} \ln ^{a-1} \frac{1}{x}=\tilde{\mathcal{S}}_{a}(x) .
$$

For an arbitrary index vector (the weight $w \equiv \tau-\ell$)

$$
\tilde{\Phi}_{\vec{m}}(x)=\left(-x \tilde{\Phi}_{\vec{m}}\left(x^{-1}\right)\right) \cdot(-1)^{w[\vec{m}]}
$$

An iteration increases transcedentality $\tau=\sum_{i=1}^{\ell}\left|m_{i}\right|$ of the function by b, and the length ℓ of the index vector by one, so that

$$
w[\vec{m}]+b-1=w[b, \vec{m}] .
$$

Then, in terms of the physical coupling,
$\mathbf{g}_{\mathrm{ph}}^{2} \equiv \frac{N_{c} \alpha_{\mathrm{ph}}}{2 \pi}=g^{2}-\zeta_{2} g^{4}+\frac{11}{5} \zeta_{2}^{2} g^{6}-\left(\frac{73}{10} \zeta_{2}^{3}+\zeta_{3}^{2}\right) g^{8}+\ldots$, the perturbative series for the kernel, $\mathcal{P}=\sum_{n=1} \mathbf{g}_{\mathrm{ph}}^{2 n} \mathcal{P}_{\mathrm{ph}}^{(n)}$, becomes

$$
\begin{aligned}
& \mathcal{P}_{\mathrm{ph}}^{(1)}=4 \mathcal{S}_{1}, \\
& \mathcal{P}_{\mathrm{ph}}^{(2)}=-2 \mathcal{S}_{3}, \\
& \mathcal{P}_{\mathrm{ph}}^{(3)}=3 \mathcal{S}_{5}-2 \Phi_{1,1,3}+\zeta_{2} \cdot\left(-2 \mathcal{S}_{3}\right), \\
& \mathcal{P}_{\mathrm{ph}}^{(4)}=4 S_{1} \cdot \widehat{\mathcal{A}}_{4}+\mathcal{B}_{4}+2 \zeta_{2} \cdot\left(3 \mathcal{S}_{5}-2 \Phi_{1,1,3}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
\widehat{\mathcal{A}}_{4} & =2 \widehat{\Phi}_{1,1,1,3}-\left(\widehat{\Phi}_{1,5}+\widehat{\Phi}_{3,3}\right)-\zeta_{3} \widehat{\mathcal{S}}_{3} \\
\mathcal{B}_{4} & =16 \Phi_{1,1,1,1,3}-4\left(\Phi_{3,1,3}+\Phi_{1,3,3}+\Phi_{1,1,5}\right)-\frac{5}{2} \mathcal{S}_{7}
\end{aligned}
$$

Then, in terms of the physical coupling,
$\mathbf{g}_{\mathrm{ph}}^{2} \equiv \frac{N_{c} \alpha_{\mathrm{ph}}}{2 \pi}=g^{2}-\zeta_{2} g^{4}+\frac{11}{5} \zeta_{2}^{2} g^{6}-\left(\frac{73}{10} \zeta_{2}^{3}+\zeta_{3}^{2}\right) g^{8}+\ldots$, the perturbative series for the kernel, $\mathcal{P}=\sum_{n=1} \mathbf{g}_{\mathrm{ph}}^{2 n} \mathcal{P}_{\mathrm{ph}}^{(n)}$, becomes

$$
\begin{aligned}
& \mathcal{P}_{\mathrm{ph}}^{(1)}=4 \mathcal{S}_{1}, \\
& \mathcal{P}_{\mathrm{ph}}^{(2)}=-2 \mathcal{S}_{3}, \\
& \mathcal{P}_{\mathrm{ph}}^{(3)}=3 \mathcal{S}_{5}-2 \Phi_{1,1,3}+\zeta_{2} \cdot\left(-2 \mathcal{S}_{3}\right), \\
& \mathcal{P}_{\mathrm{ph}}^{(4)}=4 S_{1} \cdot \widehat{\mathcal{A}}_{4}+\mathcal{B}_{4}+2 \zeta_{2} \cdot\left(3 \mathcal{S}_{5}-2 \Phi_{1,1,3}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
\widehat{\mathcal{A}}_{4} & =2 \widehat{\Phi}_{1,1,1,3}-\left(\widehat{\Phi}_{1,5}+\widehat{\Phi}_{3,3}\right)-\zeta_{3} \widehat{\mathcal{S}}_{3} \\
\mathcal{B}_{4} & =16 \Phi_{1,1,1,1,3}-4\left(\Phi_{3,1,3}+\Phi_{1,3,3}+\Phi_{1,1,5}\right)-\frac{5}{2} \mathcal{S}_{7}
\end{aligned}
$$

Then, in terms of the physical coupling,
$\mathbf{g}_{\mathrm{ph}}^{2} \equiv \frac{N_{c} \alpha_{\mathrm{ph}}}{2 \pi}=g^{2}-\zeta_{2} g^{4}+\frac{11}{5} \zeta_{2}^{2} g^{6}-\left(\frac{73}{10} \zeta_{2}^{3}+\zeta_{3}^{2}\right) g^{8}+\ldots$, the perturbative series for the kernel, $\mathcal{P}=\sum_{n=1} \mathbf{g}_{\mathrm{ph}}^{2 n} \mathcal{P}_{\mathrm{ph}}^{(n)}$, becomes

$$
\begin{aligned}
& \mathcal{P}_{\mathrm{ph}}^{(1)}=4 \mathcal{S}_{1}, \\
& \mathcal{P}_{\mathrm{ph}}^{(2)}=-2 \mathcal{S}_{3}, \\
& \mathcal{P}_{\mathrm{ph}}^{(3)}=3 \mathcal{S}_{5}-2 \Phi_{1,1,3}+\zeta_{2} \cdot\left(-2 \mathcal{S}_{3}\right), \\
& \mathcal{P}_{\mathrm{ph}}^{(4)}=4 S_{1} \cdot \widehat{\mathcal{A}}_{4}+\mathcal{B}_{4}+2 \zeta_{2} \cdot\left(3 \mathcal{S}_{5}-2 \Phi_{1,1,3}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
\widehat{\mathcal{A}}_{4} & =2 \widehat{\Phi}_{1,1,1,3}-\left(\widehat{\Phi}_{1,5}+\widehat{\Phi}_{3,3}\right)-\zeta_{3} \widehat{\mathcal{S}}_{3} \\
\mathcal{B}_{4} & =16 \Phi_{1,1,1,1,3}-4\left(\Phi_{3,1,3}+\Phi_{1,3,3}+\Phi_{1,1,5}\right)-\frac{5}{2} \mathcal{S}_{7}
\end{aligned}
$$

Since all harmonic functions involved have even weights w, the evolution kernel is Reciprocity Respecting.

This result can be compared with the evolution kernel that generates the twist-2 universal anomalous dimension :

$$
\begin{aligned}
\mathcal{P}_{\mathrm{ph}}^{(1)}= & 4 \mathcal{S}_{1} ; \\
\mathcal{P}_{\mathrm{ph}}^{(2)}= & -4 \mathcal{S}_{3}+4 \Phi_{1,-2} ; \\
\mathcal{P}_{\mathrm{ph}}^{(3)}= & 8 \mathcal{S}_{5}-24 \Phi_{1,1,1,-2}-8 \zeta_{2} \mathcal{S}_{3} \\
& -8 \mathcal{S}_{1} \cdot\left[2 \widehat{\Phi}_{1,1,-2}+\widehat{\Phi}_{-2,-2}-\widehat{\mathcal{S}}_{-4}+\zeta_{2} \widehat{\mathcal{S}}_{-2}\right]
\end{aligned}
$$

similar pattern of the single $\log N$ enhancement.

This result can be compared with the evolution kernel that generates the twist-2 universal anomalous dimension :

$$
\begin{aligned}
\mathcal{P}_{\mathrm{ph}}^{(1)}= & 4 \mathcal{S}_{1} ; \\
\mathcal{P}_{\mathrm{ph}}^{(2)}= & -4 \mathcal{S}_{3}+4 \Phi_{1,-2} ; \\
\mathcal{P}_{\mathrm{ph}}^{(3)}= & 8 \mathcal{S}_{5}-24 \Phi_{1,1,1,-2}-8 \zeta_{2} \mathcal{S}_{3} \\
& -8 \mathcal{S}_{1} \cdot\left[2 \widehat{\Phi}_{1,1,-2}+\widehat{\Phi}_{-2,-2}-\widehat{\mathcal{S}}_{-4}+\zeta_{2} \widehat{\mathcal{S}}_{-2}\right]
\end{aligned}
$$

similar pattern of the single $\log N$ enhancement.

This result can be compared with the evolution kernel that generates the twist-2 universal anomalous dimension :

$$
\begin{aligned}
\mathcal{P}_{\mathrm{ph}}^{(1)}= & 4 \mathcal{S}_{1} ; \\
\mathcal{P}_{\mathrm{ph}}^{(2)}= & -4 \mathcal{S}_{3}+4 \Phi_{1,-2} ; \\
\mathcal{P}_{\mathrm{ph}}^{(3)}= & 8 \mathcal{S}_{5}-24 \Phi_{1,1,1,-2}-8 \zeta_{2} \mathcal{S}_{3} \\
& -8 \mathcal{S}_{1} \cdot\left[2 \widehat{\Phi}_{1,1,-2}+\widehat{\Phi}_{-2,-2}-\widehat{\mathcal{S}}_{-4}+\zeta_{2} \widehat{\mathcal{S}}_{-2}\right]
\end{aligned}
$$

similar pattern of the single $\log N$ enhancement.
Remark: in general, the GL parity is

$$
\tilde{\Phi}_{\vec{m}}(x)=\left(-x \tilde{\Phi}_{\vec{m}}\left(x^{-1}\right)\right) \cdot(-1)^{w[\vec{m}]} \cdot(-1)^{\# \text { of negative indices }}
$$

since

$$
\frac{x}{x-1} \Longrightarrow \frac{x}{x+1}
$$

General structure of the RR Evolution Kernel

$$
\mathcal{P}(N)=\mathcal{S}_{1} \cdot\left(\alpha_{\mathrm{ph}}+\widehat{\mathcal{A}}\right)+\mathcal{B}, \quad \widehat{\mathcal{A}}=\mathcal{O}\left(1 / N^{2}\right) .
$$

This feature is in a marked contrast with the anomalous dimension per se, whose large N expansion includes growing powers of $\log N$:

General structure of the RR Evolution Kernel $\quad(\mathcal{A}, \mathcal{B}$ are log free !)

$$
\mathcal{P}(N)=\mathcal{S}_{1} \cdot\left(\alpha_{\mathrm{ph}}+\widehat{\mathcal{A}}\right)+\mathcal{B}, \quad \widehat{\mathcal{A}}=\mathcal{O}\left(1 / N^{2}\right)
$$

This feature is in a marked contrast with the anomalous dimension per se, whose large N expansion includes growing powers of $\log N$:

$$
\gamma(N)=a \ln N+\sum_{k=0}^{\infty} \frac{1}{N^{k}} \sum_{m=0}^{k} a_{k, m} \ln ^{m} N
$$

Easy to see from

Physically, the reduction of singularity of the large N expansion shows that the tower of subleading logarithmic singularities in the anomalous
\qquad

General structure of the RR Evolution Kernel

$$
\mathcal{P}(N)=\mathcal{S}_{1} \cdot\left(\alpha_{\mathrm{ph}}+\widehat{\mathcal{A}}\right)+\mathcal{B}, \quad \widehat{\mathcal{A}}=\mathcal{O}\left(1 / N^{2}\right)
$$

This feature is in a marked contrast with the anomalous dimension per se, whose large N expansion includes growing powers of $\log N$:

$$
\gamma(N)=a \ln N+\sum_{k=0}^{\infty} \frac{1}{N^{k}} \sum_{m=0}^{k} a_{k, m} \ln ^{m} N
$$

Easy to see from

$$
\gamma_{\sigma}=\mathcal{P}(N+\sigma \gamma) \quad \Longrightarrow \quad \gamma_{\sigma}(N)=\sum_{k=1}^{\infty} \frac{1}{k!}\left(\sigma \frac{d}{d N}\right)^{k-1}[\mathcal{P}(N)]^{k},
$$

Physically, the reduction of singularity of the large N expansion shows that the tower of subleading logarithmic singularities in the anomalous

General structure of the RR Evolution Kernel $\quad(\mathcal{A}, \mathcal{B}$ are log free !)

$$
\mathcal{P}(N)=\mathcal{S}_{1} \cdot\left(\alpha_{\mathrm{ph}}+\widehat{\mathcal{A}}\right)+\mathcal{B}, \quad \widehat{\mathcal{A}}=\mathcal{O}\left(1 / N^{2}\right)
$$

This feature is in a marked contrast with the anomalous dimension per se, whose large N expansion includes growing powers of $\log N$:

$$
\gamma(N)=a \ln N+\sum_{k=0}^{\infty} \frac{1}{N^{k}} \sum_{m=0}^{k} a_{k, m} \ln ^{m} N .
$$

Easy to see from

$$
\gamma_{\sigma}=\mathcal{P}(N+\sigma \gamma) \quad \Longrightarrow \quad \gamma_{\sigma}(N)=\sum_{k=1}^{\infty} \frac{1}{k!}\left(\sigma \frac{d}{d N}\right)^{k-1}[\mathcal{P}(N)]^{k},
$$

Physically, the reduction of singularity of the large N expansion shows that the tower of subleading logarithmic singularities in the anomalous dimension is actually inherited from the first loop - the LBK-classical $\gamma^{(1)}=\mathcal{P}^{(1)} \propto S_{1}$, and the RREE generates them automatically !

- RRE as a natural consequence of the conformal invariance
"Anomalous dimensions of high-spin operators beyond the leading order" Benjamin Basso \& Gregory Korchemsky hep-th/0612247
- "N=4 SUSY Yang-Mills: three loops made simple(r)" D-r \& Pino Marchesini hep-th/0612248
- "Anomalous dimensions at twist-3 in the sl(2) sector of $N=4$ SYM" Matteo Beccaria
- Bethe Ansatz fails ("maximally") at 4 loops for twist-2
"Dressing and Wrapping"
Kotikov, Lipatov, Rej, Staudacher \& Velizhanin
0704.3586 [hep-th]
- twist-3 gaugino = twist-2 "universal"
"Universality of three gaugino anomalous dimensions in N=4 SYM"
Beccaria
0705.0663 [hep-th]
- "Twist 3 of the sl(2) sector of N=4 SYM and reciprocity respecting evolution" Beccaria, D-r \& Marchesini
$\mathcal{N}=4$ SYM has already demonstrated viability of the "inheritance" idea.
$\mathcal{N}=4$ SYM has already demonstrated viability of the "inheritance" idea.
A deeper understanding of the $s \rightarrow u$ crossing ($x \rightarrow-x$ symmetry) should turn the "viability of" into the "power of" (negative index sums)
$\mathcal{N}=4$ SYM has already demonstrated viability of the "inheritance" idea.
A deeper understanding of the $s \rightarrow u$ crossing ($x \rightarrow-x$ symmetry) should turn the "viability of" into the "power of"
$\mathcal{N}=4$ SYM dynamics is classical, in certain sense.
$\mathcal{N}=4$ SYM has already demonstrated viability of the "inheritance" idea.
A deeper understanding of the $s \rightarrow u$ crossing ($x \rightarrow-x$ symmetry) should turn the "viability of" into the "power of"
$\mathcal{N}=4$ SYM dynamics is classical, in uncertain sense
$\mathcal{N}=4$ SYM has already demonstrated viability of the "inheritance" idea.
A deeper understanding of the $s \rightarrow u$ crossing ($x \rightarrow-x$ symmetry) should turn the "viability of" into the "power of"
$\mathcal{N}=4$ SYM dynamics is classical, in a not yet completely certain sense
$\mathcal{N}=4$ SYM has already demonstrated viability of the "inheritance" idea.
A deeper understanding of the $s \rightarrow u$ crossing ($x \rightarrow-x$ symmetry) should turn the "viability of" into the "power of"
$\mathcal{N}=4$ SYM dynamics is classical, in certain sense.
If so, the final goal - to derive γ from $\gamma^{(1)}$, in all orders !
$\mathcal{N}=4$ SYM has already demonstrated viability of the "inheritance" idea.
A deeper understanding of the $s \rightarrow u$ crossing ($x \rightarrow-x$ symmetry) should turn the "viability of" into the "power of"
$\mathcal{N}=4$ SYM dynamics is classical, in certain sense.
If so, the final goal - to derive γ from $\gamma^{(1)}$, in all orders !

QCD and SUSY-QCD share the gluons.
$\mathcal{N}=4$ SYM has already demonstrated viability of the "inheritance" idea.
A deeper understanding of the $s \rightarrow u$ crossing ($x \rightarrow-x$ symmetry) should turn the "viability of" into the "power of"
$\mathcal{N}=4$ SYM dynamics is classical, in certain sense.
If so, the final goal - to derive γ from $\gamma^{(1)}$, in all orders !

QCD and SUSY-QCD share the gluons.
Importantly, the maximal transcedentality (clagon) structures constitute the bulk of the QCD anomalous dimensions.
$\mathcal{N}=4$ SYM has already demonstrated viability of the "inheritance" idea.
A deeper understanding of the $s \rightarrow u$ crossing ($x \rightarrow-x$ symmetry) should turn the "viability of" into the "power of"
$\mathcal{N}=4$ SYM dynamics is classical, in certain sense.
If so, the final goal - to derive γ from $\gamma^{(1)}$, in all orders !

QCD and SUSY-QCD share the gluons.

$$
\frac{\text { clever 2nd loop }}{\text { clever 1st loop }}<2 \% \quad\binom{\text { Heavy quark fragmentation }}{\text { D-r, Khoze \& Troyan, PRD 1996 }}
$$

$\mathcal{N}=4$ SYM has already demonstrated viability of the "inheritance" idea.
A deeper understanding of the $s \rightarrow u$ crossing ($x \rightarrow-x$ symmetry) should turn the "viability of" into the "power of"
$\mathcal{N}=4$ SYM dynamics is classical, in certain sense.
If so, the final goal - to derive γ from $\gamma^{(1)}$, in all orders !

QCD and SUSY-QCD share the gluons.
Importantly, the maximal transcedentality (clagon) structures constitute the bulk of the QCD anomalous dimensions.

Employ $\mathcal{N}=4$ SYM to simplify the essential part of the QCD dynamics

- A steady progress in high order perturbative QCD calculations is worth accompanying by reflections upon the origin and the structure of higher loop correction effects
- Reformulation of parton cascades in terms of Gribov-Lipatov reciprocity respecting evolution equations (RREE)
- reduces complexity by (at leat) an order of magnitude
- improves perturbative series (less singular, better "converging") - links interesting phenomena in the DIS and $e^{+} e^{-}$annihilation channels The Low theorem should be part of theor. phys. curriculum, worldwide
- A steady progress in high order perturbative QCD calculations is worth accompanying by reflections upon the origin and the structure of higher loop correction effects
- Reformulation of parton cascades in terms of Gribov-Lipatov reciprocity respecting evolution equations (RREE)
- reduces complexity by (at leat) an order of magnitude
- improves perturbative series (less singular, better "converging")
- links interesting phenomena in the DIS and $e^{+} e^{-}$annihilation channels
- The Low theorem should be part of theor.phys. curriculum, worldwide one-line-all-orders description of the major part of QCD parton dynamics
- A steady progress in high order perturbative QCD calculations is worth accompanying by reflections upon the origin and the structure of higher loop correction effects
- Reformulation of parton cascades in terms of Gribov-Lipatov reciprocity respecting evolution equations (RREE)
- reduces complexity by (at leat) an order of magnitude
- improves perturbative series (less singular, better "converging")
- links interesting phenomena in the DIS and $e^{+} e^{-}$annihilation channels
- The Low theorem should be part of theor.phys. curriculum, worldwide
- Complete solution of the $\mathcal{N}=4$ SYM QFT should provide us with a one-line-all-orders description of the major part of QCD parton dynamics
- Long live QFT, and perturbative QCD
- A steady progress in high order perturbative QCD calculations is worth accompanying by reflections upon the origin and the structure of higher loop correction effects
- Reformulation of parton cascades in terms of Gribov-Lipatov reciprocity respecting evolution equations (RREE)
- reduces complexity by (at leat) an order of magnitude
- improves perturbative series (less singular, better "converging")
- links interesting phenomena in the DIS and $e^{+} e^{-}$annihilation channels
- The Low theorem should be part of theor.phys. curriculum, worldwide
- Complete solution of the $\mathcal{N}=4$ SYM QFT should provide us with a one-line-all-orders description of the major part of QCD parton dynamics
- Long live QFT, and perturbative QCD
- A steady progress in high order perturbative QCD calculations is worth accompanying by reflections upon the origin and the structure of higher loop correction effects
- Reformulation of parton cascades in terms of Gribov-Lipatov reciprocity respecting evolution equations (RREE)
- reduces complexity by (at leat) an order of magnitude
- improves perturbative series (less singular, better "converging")
- links interesting phenomena in the DIS and $e^{+} e^{-}$annihilation channels
- The Low theorem should be part of theor.phys. curriculum, worldwide
- Complete solution of the $\mathcal{N}=4$ SYM QFT should provide us with a one-line-all-orders description of the major part of QCD parton dynamics
- Long live QFT, and perturbative QCD !

Back to Hadrons at high energies

Colour dynamics in $p p, p A, A B$

Colour dynamics in $p p, p A, A B$

- Colour in quark scattering

Colour dynamics in $p p, p A, A B$

－Colour in quark scattering
－Colour in hadron scattering

Colour dynamics in $p p, p A, A B$

- Colour in quark scattering
- Colour in hadron scattering
- Colour in multiple collisions

Colour dynamics in $p p, p A, A B$

- Colour in quark scattering
- Colour in hadron scattering
- Colour in multiple collisions
- Baryon Stopping and Strangeness

Colour dynamics in $p p, p A, A B$

- Colour in quark scattering
- Colour in hadron scattering
- Colour in multiple collisions
- Baryon Stopping and Strangeness
- Confinement in strong Colour field

Colour in Quark scattering

Quark inelastic scattering scenario：

Quark inelastic scattering scenario: gluon exchange

Quark inelastic scattering scenario: gluon exchange

Meson inelastic scattering scenario: gluon exchange

$$
\begin{array}{r}
=\text { two "quark chains" } \\
=\text { Pomeron }
\end{array}
$$

Meson inelastic scattering scenario：gluon exchange

$$
\begin{array}{r}
=\text { two "quark chains" } \\
=\text { Pomeron }
\end{array}
$$

Look now at the proton projectile：

Single scattering scenario:

Single scattering scenario:

Single scattering scenario:

Coherence of the diquark ain't broken:

Single scattering scenario:

Coherence of the diquark ain't broken:
\Longrightarrow a Leading Baryon:
$B(1) \rightarrow B(2 / 3)+M(1 / 3)+\ldots$

Kick it twice to break the Colour Coherence of the Valence Quarks:

Kick it twice to break the Colour Coherence of the Valence Quarks:

$$
\mathbf{P} \rightarrow \rho^{+} \mathbf{K}^{+} \pi^{-}+\ldots
$$

Kick it twice to break the Colour Coherence of the Valence Quarks:

Proton is "fragile"
Expect the baryon quantum number to sink into the sea :

$$
B(1) \rightarrow M(1 / 3)+M(1 / 3)+M(1 / 3)+\ldots+B(0)
$$

Protons disappear from the fragmentation region in scattering of/off Nuclei:

Multiple Proton Scattering: $p A, A B$

Protons disappear from the fragmentation region in scattering of/off Nuclei:

CERN $\sqrt{s}=17 \mathrm{GeV}$ (NA49)

- in Pb Pb collisions

Multiple Proton Scattering: $p A, A B$

Protons disappear from the fragmentation region in scattering of/off Nuclei:

CERN $\sqrt{s}=17 \mathrm{GeV}$ (NA49)

- in Pb Pb collisions

Projectile component of net proton spectrum

Multiple Proton Scattering: $p A, A B$

Protons disappear from the fragmentation region in scattering of/off Nuclei:

CERN $\sqrt{s}=17 \mathrm{GeV}$ (NA49)

- in Pb Pb collisions
- in p Pb collisions

Projectile component of net proton spectrum

Multiple Proton Scattering: $p A, A B$

Protons disappear from the fragmentation region in scattering of/off Nuclei:

CERN $\sqrt{s}=17 \mathrm{GeV}$ (NA49)

- in Pb Pb collisions
- in p Pb collisions
- $\left\langle x_{F}\right\rangle$ of net protons

ν - number of collisions

Multiple Proton Scattering: $p A, A B$

Protons disappear from the fragmentation region in scattering of/off Nuclei:

CERN $\sqrt{s}=17 \mathrm{GeV}$ (NA49)

- in Pb Pb collisions
- in p Pb collisions
- $\left\langle x_{F}\right\rangle$ of net protons

Known as Proton Stopping.

Multiple Proton Scattering: $p A, A B$

Protons disappear from the fragmentation region in scattering of/off Nuclei:

CERN $\sqrt{s}=17 \mathrm{GeV}$ (NA49)

- in Pb Pb collisions
- in p Pb collisions
- $\left\langle x_{F}\right\rangle$ of net protons

ν - number of collisions
Known as Proton Stopping. Better be known as Proton Decay

Multiple scattering and strangeness

NA49: strangeness yield vs. target "thickness"

Multiple scattering and strangeness

NA49: strangeness yield vs. target "thickness"

- Negative K to π yield

NA49: strangeness yield vs. target "thickness"

- Negative K to π yield
- Positive K to π yield

NA49: strangeness yield vs. target "thickness"

- Negative K to π yield
- Positive K to π yield
- The ϕ / π ratio versus the "density of inelastic collisions"

NA49: strangeness yield vs. target "thickness"

- Negative K to π yield
- Positive K to π yield
- The ϕ / π ratio versus the "density of inelastic collisions"
- Strange baryons (三) versus the number of collisions
\bar{E}^{+}, isospin corr.

NA49: strangeness yield vs. target "thickness"

- Negative K to π yield
- Positive K to π yield
- The ϕ / π ratio versus the "density of inelastic collisions"
- Strange baryons (三) versus the number of collisions
!!! Universal pattern:

Multiple scattering and strangeness

NA49: strangeness yield vs. target "thickness"

- Negative K to π yield
- Positive K to π yield
- The ϕ / π ratio versus the "density of inelastic collisions"
- Strange baryons (三) versus the number of collisions
!!!

Multiple scattering and strangeness

NA49: strangeness yield vs. target "thickness"

- Negative K to π yield
- Positive K to π yield
- The ϕ / π ratio versus the "density of inelastic collisions"
- Strange baryons (三) versus the number of collisions
!!!
Universal pattern:
- The Baryon "Stopping" and
- Lifting-off the Strangeness

Suppression

Multiple scattering and strangeness

NA49：strangeness yield vs．target＂thickness＂
－Negative K to π yield
－Positive K to π yield
－The ϕ / π ratio versus the ＂density of inelastic collisions＂
－Strange baryons（三）versus the number of collisions
！！！Universal pattern：
－The Baryon＂Stopping＂and
－Lifting－off the Strangeness
Suppression

develop with the number of inelastic collisions； be it in AA, pA（or even in pp）

Multiple scattering and strangeness

NA49: strangeness yield vs. target "thickness"

- Negative K to π yield
- Positive K to π yield
- The ϕ / π ratio versus the "density of inelastic collisions"
- Strange baryons (三) versus the number of collisions
!!! Universal pattern:
- The Baryon "Stopping" and
- Lifting-off the Strangeness Suppression

develop with the number of inelastic collisions; be it in AA, pA (or even in pp)
thus making the $Q G P$ interpretation

Multiple scattering and strangeness

NA49: strangeness yield vs. target "thickness"

- Negative K to π yield
- Positive K to π yield
- The ϕ / π ratio versus the "density of inelastic collisions"
- Strange baryons (三) versus the number of collisions
!!! Universal pattern:
- The Baryon "Stopping" and
- Lifting-off the Strangeness Suppression

develop with the number of inelastic collisions; be it in AA, pA (or even in pp)
thus making the QGP interpretation,

Multiple collisions in pp

NA－49
ratio $\frac{\phi \text { to } \pi}{\text { in pp collisions }}$
as a function of event multiplicity

三 三のく

$$
\begin{gathered}
\qquad \mathrm{NA}-49 \\
\text { ratio } \frac{\phi \text { to } \pi}{\text { in pp collisions }} \\
\text { as a function of event multiplicity }
\end{gathered}
$$

NA-49
ratio $\frac{\phi \text { to } \pi}{\text { in pp collisions }}$ as a function of event multiplicity

A way to trigger on multiple collisions

NA-49

A way to trigger on multiple collisions (or to select protons-perpetrators, if you wish)

NA-49
$\phi \quad$ to π
ratio in pp collisions as a function of event multiplicity

A way to trigger on multiple collisions (or to select protons-perpetrators, if you wish)

Would have been extremely interesting to correlate enhanced strangeness yield with stopping...

One gluon exchange: Accompanying radiation

$$
-\frac{\mathbf{k}_{\perp}}{\mathbf{k}_{\perp}^{2}}+\frac{\mathbf{k}_{\perp}}{\mathbf{k}_{\perp}^{2}}+\frac{\mathbf{q}_{\perp}-\mathbf{k}_{\perp}}{\left(\mathbf{q}_{\perp}-\mathbf{k}_{\perp}\right)^{2}}
$$

One gluon exchange: Accompanying radiation

$$
-\frac{\mathbf{k}_{\perp}}{\mathbf{k}_{\perp}^{2}}+\frac{\mathbf{k}_{\perp}}{\mathbf{k}_{\perp}^{2}}+\frac{\mathbf{q}_{\perp}-\mathbf{k}_{\perp}}{\left(\mathbf{q}_{\perp}-\mathbf{k}_{\perp}\right)^{2}}
$$

One gluon exchange: Accompanying radiation

$$
-\frac{\mathbf{k}_{\perp}}{\mathbf{k}_{\perp}^{2}} \mathbf{T}^{\mathrm{b}} \mathbf{T}^{\mathrm{a}}+\frac{\mathbf{k}_{\perp}}{\mathbf{k}_{\perp}^{2}} \mathbf{T}^{\mathrm{a}} \mathbf{T}^{\mathbf{b}}+\frac{\mathbf{q}_{\perp}-\mathbf{k}_{\perp}}{\left(\mathbf{q}_{\perp}-\mathbf{k}_{\perp}\right)^{2}} i f_{a b c} \mathbf{T}^{\mathrm{c}}
$$

$\stackrel{\text { Perturbative QCD (61/71) }}{\stackrel{\text { Coluar and Hadrons }}{ } \text { Multiple gluon exchange and Hadron Multiplicity }}$

One gluon exchange: Accompanying radiation

$$
-\frac{\mathbf{k}_{\perp}}{\mathbf{k}_{\perp}^{2}} \mathbf{T}^{\mathrm{b}} \mathbf{T}^{\mathrm{a}}+\frac{\mathbf{k}_{\perp}}{\mathbf{k}_{\perp}^{2}} \mathbf{T}^{\mathrm{a}} \mathbf{T}^{\mathrm{b}}+\frac{\mathbf{q}_{\perp}-\mathbf{k}_{\perp}}{\left(\mathbf{q}_{\perp}-\mathbf{k}_{\perp}\right)^{2}} i f_{a b c} \mathbf{T}^{\mathrm{c}}=i f_{a b c} \mathbf{T}^{\mathrm{c}} \cdot\left[\frac{\mathbf{k}_{\perp}}{\mathbf{k}_{\perp}^{2}}+\frac{\mathbf{q}_{\perp}-\mathbf{k}_{\perp}}{\left(\mathbf{q}_{\perp}-\mathbf{k}_{\perp}\right)^{2}}\right]
$$

One gluon exchange: Accompanying radiation

$$
-\frac{\mathbf{k}_{\perp}}{\mathbf{k}_{\perp}^{2}} \mathbf{T}^{\mathrm{b}} \mathbf{T}^{\mathrm{a}}+\frac{\mathbf{k}_{\perp}}{\mathbf{k}_{\perp}^{2}} \mathbf{T}^{\mathrm{a}} \mathbf{T}^{\mathrm{b}}+\frac{\mathbf{q}_{\perp}-\mathbf{k}_{\perp}}{\left(\mathbf{q}_{\perp}-\mathbf{k}_{\perp}\right)^{2}} i f_{a b c} \mathbf{T}^{\mathrm{c}}=i f_{a b c} \mathbf{T}^{\mathrm{c}} \cdot\left[\frac{\mathbf{k}_{\perp}}{\mathbf{k}_{\perp}^{2}}+\frac{\mathbf{q}_{\perp}-\mathbf{k}_{\perp}}{\left(\mathbf{q}_{\perp}-\mathbf{k}_{\perp}\right)^{2}}\right]
$$

- Secondary Gluon spectrum
- $k_{\perp}<q_{\perp} \Longrightarrow$ finite transverse momenta;
- $d \omega / \omega \Longrightarrow$ rapidity plateau

Perturbative QCD (61/71) Colour and Hadrons

One gluon exchange: Accompanying radiation

$$
-\frac{\mathbf{k}_{\perp}}{\mathbf{k}_{\perp}^{2}} \mathbf{T}^{\mathrm{b}} \mathbf{T}^{\mathrm{a}}+\frac{\mathbf{k}_{\perp}}{\mathbf{k}_{\perp}^{2}} \mathbf{T}^{\mathrm{a}} \mathbf{T}^{\mathrm{b}}+\frac{\mathbf{q}_{\perp}-\mathbf{k}_{\perp}}{\left(\mathbf{q}_{\perp}-\mathbf{k}_{\perp}\right)^{2}} i f_{a b c} \mathbf{T}^{\mathrm{c}}=i f_{a b c} \mathbf{T}^{\mathrm{c}} \cdot\left[\frac{\mathbf{k}_{\perp}}{\mathbf{k}_{\perp}^{2}}+\frac{\mathbf{q}_{\perp}-\mathbf{k}_{\perp}}{\left(\mathbf{q}_{\perp}-\mathbf{k}_{\perp}\right)^{2}}\right]
$$

- Particle density is universal - does not depend on the projectile: Conservation of Colour at work

Perturbative QCD (61/71) LColour and HadronsM ultiple gluon exchange and Hadron Multiplicity

One gluon exchange: Accompanying radiation

$$
-\frac{\mathbf{k}_{\perp}}{\mathbf{k}_{\perp}^{2}} \mathbf{T}^{\mathrm{b}} \mathbf{T}^{\mathrm{a}}+\frac{\mathbf{k}_{\perp}}{\mathbf{k}_{\perp}^{2}} \mathbf{T}^{\mathrm{a}} \mathbf{T}^{\mathrm{b}}+\frac{\mathbf{q}_{\perp}-\mathbf{k}_{\perp}}{\left(\mathbf{q}_{\perp}-\mathbf{k}_{\perp}\right)^{2}} i f_{a b c} \mathbf{T}^{\mathrm{c}}=i f_{a b c} \mathbf{T}^{\mathrm{c}} \cdot\left[\frac{\mathbf{k}_{\perp}}{\mathbf{k}_{\perp}^{2}}+\frac{\mathbf{q}_{\perp}-\mathbf{k}_{\perp}}{\left(\mathbf{q}_{\perp}-\mathbf{k}_{\perp}\right)^{2}}\right]
$$

- Particle density is universal - does not depend on the projectile: Conservation of Colour at work
- Multiple scattering of a quark (or a $q \bar{q}$ meson) $\Longrightarrow \quad$ NParticipant scaling

Inclusive spectrum of medium-induced gluon radiation:

$$
\frac{\omega d n}{d \omega} \simeq \frac{\alpha_{s}}{\pi} \cdot\left[\frac{L}{\lambda}\right] \cdot \sqrt{\frac{\mu^{2} \lambda}{\omega}}, \quad \mu^{2} \lambda<\omega<\mu^{2} \lambda\left[\frac{L}{\lambda}\right]^{2}
$$

Inclusive spectrum of medium-induced gluon radiation:

$$
\frac{\omega d n}{d \omega} \simeq \frac{\alpha_{s}}{\pi} \cdot\left[\frac{L}{\lambda}\right] \cdot \sqrt{\frac{\mu^{2} \lambda}{\omega}}, \quad \mu^{2} \lambda<\omega<\mu^{2} \lambda\left[\frac{L}{\lambda}\right]^{2}
$$

Bethe-Heitler spectrum (independent radiation off each scattering centre)

Inclusive spectrum of medium-induced gluon radiation:

$$
\frac{\omega d n}{d \omega} \simeq \frac{\alpha_{s}}{\pi} \cdot\left[\frac{L}{\lambda}\right] \cdot \sqrt{\frac{\mu^{2} \lambda}{\omega}}, \quad \mu^{2} \lambda<\omega<\mu^{2} \lambda\left[\frac{L}{\lambda}\right]^{2}
$$

The number of collisions of the projectile, $n_{c}=L / \lambda$

Inclusive spectrum of medium-induced gluon radiation:

$$
\frac{\omega d n}{d \omega} \simeq \frac{\alpha_{s}}{\pi} \cdot\left[\frac{L}{\lambda}\right] \cdot \sqrt{\frac{\mu^{2} \lambda}{\omega}}, \quad \mu^{2} \lambda<\omega<\mu^{2} \lambda\left[\frac{L}{\lambda}\right]^{2}
$$

The number of collisions of the projectile, $n_{c}=L / \lambda$

Inclusive spectrum of medium-induced gluon radiation:

$$
\frac{\omega d n}{d \omega} \simeq \frac{\alpha_{s}}{\pi} \cdot\left[\frac{L}{\lambda}\right] \cdot \sqrt{\frac{\mu^{2} \lambda}{\omega}}, \quad \mu^{2} \lambda<\omega<\mu^{2} \lambda\left[\frac{L}{\lambda}\right]^{2}
$$

The number of collisions of the projectile, $n_{c}=L / \lambda$

Coherent radiation $=$ "Participant" scaling

Inclusive spectrum of medium-induced gluon radiation:

$$
\frac{\omega d n}{d \omega} \simeq \frac{\alpha_{s}}{\pi} \cdot\left[\frac{L}{\lambda}\right] \cdot \sqrt{\frac{\mu^{2} \lambda}{\omega}}, \quad \mu^{2} \lambda<\omega<\mu^{2} \lambda\left[\frac{L}{\lambda}\right]^{2}
$$

The number of collisions of the projectile, $n_{c}=L / \lambda$

Coherent radiation $=$ "Participant" scaling

Transition region, down to "Collision" scaling; occupies finite rapidity range (fragmentation of the nucleus)

Multiple collisions of a（2－quark）pion

Consider double scattering (two gluon exchange)
In meson scattering only two colour representations can be realized

Consider double scattering (two gluon exchange) The (3-quark) proton is more capacious, but still ...

Consider double scattering (two gluon exchange) The (3-quark) proton is more capacious, but still ...
Calculate the average colour charge of the two-gluon system:

$$
\frac{1}{64} \cdot 0+\frac{8+8}{64} \cdot 3+\frac{10+\overline{10}}{64} \cdot 6+\frac{27}{64} \cdot 8=6=2 \cdot 3 \Longrightarrow \begin{aligned}
& \text { double density } \\
& \text { of hadrons } \\
& =2 \text { Pomerons }
\end{aligned}
$$

Consider double scattering (two gluon exchange) The (3-quark) proton is more capacious, but still ...
Calculate the average colour charge of the two-gluon system:

$$
\frac{1}{64} \cdot 0+\frac{8+8}{64} \cdot 3+\frac{10+\overline{10}}{64} \cdot 6+\frac{27}{64} \cdot 8=6=2 \cdot 3 \Longrightarrow \begin{aligned}
& \text { double density } \\
& \text { of hadrons } \\
& =2 \text { Pomerons }
\end{aligned}
$$

Cannot be realized on the valence-built proton:

$$
\frac{1}{27} \cdot 0+\frac{8+8}{27} \cdot 3+\frac{10}{27} \cdot 6=4
$$

Colour coherence and breathing projectiles

Coherent picture of hadron accompaniment applies to the bulk of multiplicity (small transverse momentum hadrons) and implies relatively "compact" projectiles (on the penetrator side).

Colour coherence and breathing projectiles

Coherent picture of hadron accompaniment applies to the bulk of multiplicity (small transverse momentum hadrons) and implies relatively "compact" projectiles (on the penetrator side).
This destructive coherence invalidates the multi-Pomeron exchange picture !

To have N Pomerons produce (up to) N times enhanced density of the hadron plateau, one must be able to find N independent (incoherent) partons inside the projectile.

To have N Pomerons produce (up to) N times enhanced density of the hadron plateau, one must be able to find N independent (incoherent) partons inside the projectile.

Recall the good old Amati-Fubini-Stanghellini puzzle.

To have N Pomerons produce (up to) N times enhanced density of the hadron plateau, one must be able to find N independent (incoherent) partons inside the projectile. Successive scatterings of a parton do not produce branch points in the complex angular momentum plane (Reggeon loops).

Colour coherence and breathing projectiles

To have N Pomerons produce (up to) N times enhanced density of the hadron plateau, one must be able to find N independent (incoherent) partons inside the projectile. Successive scatterings of a parton do not produce branch points in the complex angular momentum plane (Reggeon loops). It is the Mandelstam construction that generates "Reggeon cuts", with Pomerons attached to separate - coex-
 isting - partons.

Colour coherence and breathing projectiles

To have N Pomerons produce (up to) N times enhanced density of the hadron plateau, one must be able to find N independent (incoherent) partons inside the projectile. Successive scatterings of a parton do not produce branch points in the complex angular momentum plane (Reggeon loops). It is the Mandelstam construction that generates "Reggeon cuts", with Pomerons attached to separate - coex-
 isting - partons.
Two ways to break colour coherence:

Colour coherence and breathing projectiles

To have N Pomerons produce (up to) N times enhanced density of the hadron plateau, one must be able to find N independent (incoherent) partons inside the projectile. Successive scatterings of a parton do not produce branch points in the complex angular momentum plane (Reggeon loops). It is the Mandelstam construction that generates "Reggeon cuts", with Pomerons attached to separate - coex-
 isting - partons.
Two ways to break colour coherence:

- Look for perpetrators
(hadron projectiles broader than usual);

Colour coherence and breathing projectiles

To have N Pomerons produce (up to) N times enhanced density of the hadron plateau, one must be able to find N independent (incoherent) partons inside the projectile. Successive scatterings of a parton do not produce branch points in the complex angular momentum plane (Reggeon loops). It is the Mandelstam construction that generates "Reggeon cuts", with Pomerons attached to separate - coex-

 isting - partons.
Two ways to break colour coherence:

- Look for perpetrators
(hadron projectiles broader than usual);
- Increase the colour capacity of the projectile by increasing resolution.

Colour coherence and breathing projectiles

To have N Pomerons produce (up to) N times enhanced density of the hadron plateau, one must be able to find
N independent (incoherent) partons inside the projectile.
Successive scatterings of a parton do not produce branch points in the complex angular momentum plane (Reggeon loops). It is the Mandelstam construction that generates "Reggeon cuts", with Pomerons attached to separate - coex-
 isting - partons.
Two ways to break colour coherence:

- Look for perpetrators
(hadron projectiles broader than usual);
- Increase the colour capacity of the projectile by increasing resolution.

Compare the number of collisions n_{c} with the number of resolved partons

$$
C\left(x_{h}, Q_{r e s}\right)=\int_{x_{h}}^{x_{p r o j}} \frac{d x}{x}\left[x G_{p r o j}\left(x, Q_{r e s}^{2}\right)\right]
$$

Colour coherence and breathing projectiles

To have N Pomerons produce (up to) N times enhanced density of the hadron plateau, one must be able to find
N independent (incoherent) partons inside the projectile.
Successive scatterings of a parton do not produce branch points in the complex angular momentum plane (Reggeon loops). It is the Mandelstam construction that generates "Reggeon cuts", with Pomerons attached to separate - coex-
 isting - partons.
Two ways to break colour coherence:

- Look for perpetrators
(hadron projectiles broader than usual);
- Increase the colour capacity of the projectile by increasing resolution.

Compare the number of collisions n_{c} with the number of resolved partons

$$
C\left(x_{h}, Q_{r e s}\right)=\int_{x_{h}}^{x_{p r o j}} \frac{d x}{x}\left[x G_{p r o j}\left(x, Q_{r e s}^{2}\right)\right]
$$

C increases fast with $Q_{\text {res }}$ (hadron transverse momenta), drops in the fragmentation region, etc

Confinement in Multiple Collisions

In the framework of the standard hadron (multi-Pomeron) picture (e.g., in the successful Dual Parton Model of Capella \& Kaidalov et al.) one includes final state interactions to explain spectacular heavy ion phenomena like J / ψ suppression, enhancement of strangeness and alike.

Confinement in Multiple Collisions

In the framework of the standard hadron (multi-Pomeron) picture (e.g., in the successful Dual Parton Model of Capella \& Kaidalov et al.) one includes final state interactions to explain spectacular heavy ion phenomena like J / ψ suppression, enhancement of strangeness and alike. "Final state interaction" is a synonym to "non-independent fragmentation" — cross-talking Pomerons, overlapping strings, "string ropes", ...

Confinement in Multiple Collisions

In the framework of the standard hadron (multi-Pomeron) picture (e.g., in the successful Dual Parton Model of Capella \& Kaidalov et al.) one includes final state interactions to explain spectacular heavy ion phenomena like J / ψ suppression, enhancement of strangeness and alike. "Final state interaction" is a synonym to "non-independent fragmentation" — cross-talking Pomerons, overlapping strings, "string ropes", ...

From the point of view of the colour dynamics, in $p A$ and $A A$ environments we face an intrinsically new, unexplored, question:

Confinement in Multiple Collisions

In the framework of the standard hadron (multi-Pomeron) picture (e.g., in the successful Dual Parton Model of Capella \& Kaidalov et al.) one includes final state interactions to explain spectacular heavy ion phenomena like J / ψ suppression, enhancement of strangeness and alike. "Final state interaction" is a synonym to "non-independent fragmentation" — cross-talking Pomerons, overlapping strings, "string ropes", ...

From the point of view of the colour dynamics, in $p A$ and $A A$ environments we face an intrinsically new, unexplored, question: After the pancakes separate, at each impact parameter we have the colour field strength that corresponds to $n_{p} / \mathrm{fm}^{2} \propto A^{1 / 3}$ strings. How does the vacuum break up in stronger than usual colour field?

Confinement in Multiple Collisions

In the framework of the standard hadron (multi-Pomeron) picture (e.g., in the successful Dual Parton Model of Capella \& Kaidalov et al.) one includes final state interactions to explain spectacular heavy ion phenomena like J / ψ suppression, enhancement of strangeness and alike. "Final state interaction" is a synonym to "non-independent fragmentation" - cross-talking Pomerons, overlapping strings, "string ropes", ...

From the point of view of the colour dynamics, in $p A$ and $A A$ environments we face an intrinsically new, unexplored, question: After the pancakes separate, at each impact parameter we have the colour field strength that corresponds to $n_{p} / \mathrm{fm}^{2} \propto A^{1 / 3}$ strings.
How does the vacuum break up in stronger than usual colour field?

Confinement in Multiple Collisions

In the framework of the standard hadron (multi-Pomeron) picture (e.g., in the successful Dual Parton Model of Capella \& Kaidalov et al.) one includes final state interactions to explain spectacular heavy ion phenomena like J / ψ suppression, enhancement of strangeness and alike. "Final state interaction" is a synonym to "non-independent fragmentation" — cross-talking Pomerons, overlapping strings, "string ropes", ...

From the point of view of the colour dynamics, in $p A$ and $A A$ environments we face an intrinsically new, unexplored, question: After the pancakes separate, at each impact parameter we have the colour field strength that corresponds to $n_{p} / \mathrm{fm}^{2} \propto A^{1 / 3}$ strings.
How does the vacuum break up in stronger than usual colour field?

2 fm
simultaneous
independent
breaking
of strings

The question is,

- like BOOOOM (4 Pomerons)

Does it go

Confinement in Multiple Collisions

In the framework of the standard hadron (multi-Pomeron) picture (e.g., in the successful Dual Parton Model of Capella \& Kaidalov et al.) one includes final state interactions to explain spectacular heavy ion phenomena like J / ψ suppression, enhancement of strangeness and alike. "Final state interaction" is a synonym to "non-independent fragmentation" — cross-talking Pomerons, overlapping strings, "string ropes", ...

From the point of view of the colour dynamics, in $p A$ and $A A$ environments we face an intrinsically new, unexplored, question:
After the pancakes separate, at each impact parameter we have the colour field strength that corresponds to $n_{p} / \mathrm{fm}^{2} \propto A^{1 / 3}$ strings.
How does the vacuum break up in stronger than usual colour field?

The question is, Does it go

- like BOOOOM (4 Pomerons)
- or rather like TA-TA-TA-TA? (new hadron abundances)

QCD at Terrestrial and
 Cosmic Energies

QCD at Terrestrial and Cosmic Energies

QCD is far from over

QCD at Terrestrial and
 Cosmic Energies

QCD is far from over

- on theory side: new fascinating hopes for an analytic progress

QCD at Terrestrial and
 Cosmic Energies

QCD is far from over

- on theory side: new fascinating hopes for an analytic progress
- on pheno side: explore QCD performance in new environment

QCD at Terrestrial and
 Cosmic Energies

QCD is far from over

- on theory side: new fascinating hopes for an analytic progress
- on pheno side: explore QCD performance in new environment multiple scattering; fragile proton; hadronization in large colour fields, ...

QCD at Terrestrial and
 Cosmic Energies

QCD is far from over

- on theory side: new fascinating hopes for an analytic progress
- on pheno side: explore QCD performance in new environment multiple scattering; fragile proton; hadronization in large colour fields, ...

QCD at Terrestrial and
 Cosmic Energies

QCD is far from over

- on theory side: new fascinating hopes for an analytic progress
- on pheno side: explore QCD performance in new environment multiple scattering; fragile proton; hadronization in large colour fields, ...

QCD at Terrestrial and
 Cosmic Energies

QCD is far from over

- on theory side: new fascinating hopes for an analytic progress
- on pheno side: explore QCD performance in new environment multiple scattering; fragile proton; hadronization in large colour fields, ...

QCD at Terrestrial and
 Cosmic Energies

QCD is far from over

- on theory side: new fascinating hopes for an analytic progress
- on pheno side: explore QCD performance in new environment multiple scattering; fragile proton; hadronization in large colour fields, ...
important news for terrestrial/cosmic experimenters :

QCD at Terrestrial and
 Cosmic Energies

QCD is far from over

- on theory side: new fascinating hopes for an analytic progress
- on pheno side: explore QCD performance in new environment multiple scattering; fragile proton; hadronization in large colour fields, ...
important news for terrestrial/cosmic experimenters :
M.Cacciari and G.Salam, hep-ph/0512210
http://www.lpthe.jussieu.fr/~salam/fastjet/

Extras

Second loop $G \rightarrow G \quad$ [quark box]
$P_{G}^{(S)}=8 x-16+\frac{20}{3} x^{2}+\frac{4}{3} x^{-1}-(6+10 x) \ln x-2(1+x) \ln ^{2} x$,
$P_{G}^{(T)}=12 x-4-\frac{164}{9} x^{2}+\frac{92}{9} x^{-1}+\left(10+14 x+\frac{16}{3}\left[x^{2}+x^{-1}\right]\right) \ln x+2(1+x) \ln ^{2} x ;$
Non-singlet $F \rightarrow F$
[via 2 gluons]
$P_{F}^{(S)}=12 x-4-\frac{112}{9} x^{2}+\frac{40}{9} x^{-1}+\left(2+10 x+\frac{16}{3} x^{2}\right) \ln x-2(1+x) \ln ^{2} x$,
$P_{F}^{(T)}=8 x-16+\frac{112}{9} x^{2}-\frac{40}{9} x^{-1}-\left(10+18 x+\frac{16}{3} x^{2}\right) \ln x+2(1+x) \ln ^{2} x$

Second loop $G \rightarrow G \quad$ [quark box]
$P_{G}^{(S)}=8 x-16+\frac{20}{3} x^{2}+\frac{4}{3} x^{-1}-(6+10 x) \ln x-2(1+x) \ln ^{2} x$,
$P_{G}^{(T)}=12 x-4-\frac{164}{9} x^{2}+\frac{92}{9} x^{-1}+\left(10+14 x+\frac{16}{3}\left[x^{2}+x^{-1}\right]\right) \ln x+2(1+x) \ln ^{2} x ;$
Non-singlet $F \rightarrow F \quad[$ via 2 gluons]
$P_{F}^{(S)}=12 x-4-\frac{112}{9} x^{2}+\frac{40}{9} x^{-1}+\left(2+10 x+\frac{16}{3} x^{2}\right) \ln x-2(1+x) \ln ^{2} x$,
$P_{F}^{(T)}=8 x-16+\frac{112}{9} x^{2}-\frac{40}{9} x^{-1}-\left(10+18 x+\frac{16}{3} x^{2}\right) \ln x+2(1+x) \ln ^{2} x$
Cross-differences :

$$
\frac{1}{2}\left[P_{F}^{(T)}-P_{G}^{(S)}\right]=P_{F}^{G} \dot{P}_{G}^{F}, \quad \frac{1}{2}\left[P_{G}^{(T)}-P_{F}^{(S)}\right]=P_{G}^{F} \dot{P}_{F}^{G}
$$

Second loop $G \rightarrow G \quad$ [quark box]
$P_{G}^{(S)}=8 x-16+\frac{20}{3} x^{2}+\frac{4}{3} x^{-1}-(6+10 x) \ln x-2(1+x) \ln ^{2} x$,
$P_{G}^{(T)}=12 x-4-\frac{164}{9} x^{2}+\frac{92}{9} x^{-1}+\left(10+14 x+\frac{16}{3}\left[x^{2}+x^{-1}\right]\right) \ln x+2(1+x) \ln ^{2} x ;$
Non-singlet $F \rightarrow F \quad[$ via 2 gluons]
$P_{F}^{(S)}=12 x-4-\frac{112}{9} x^{2}+\frac{40}{9} x^{-1}+\left(2+10 x+\frac{16}{3} x^{2}\right) \ln x-2(1+x) \ln ^{2} x$,
$P_{F}^{(T)}=8 x-16+\frac{112}{9} x^{2}-\frac{40}{9} x^{-1}-\left(10+18 x+\frac{16}{3} x^{2}\right) \ln x+2(1+x) \ln ^{2} x$
Cross-differences :

$$
\frac{1}{2}\left[P_{F}^{(T)}-P_{G}^{(S)}\right]=P_{F}^{G} \dot{P}_{G}^{F}, \quad \frac{1}{2}\left[P_{G}^{(T)}-P_{F}^{(S)}\right]=P_{G}^{F} \dot{P}_{F}^{G}
$$

1. anomalous dimensions \Rightarrow eigenvalues of the dilatation operator
2. subset of composite operators su(2) $=$ trace $(X X X Y Y X Y X X X Y Y Y)$ can be mapped onto a spin $1 / 2$ system ($\mathrm{X}=$ spin up, $\mathrm{Y}=$ spin down)
3. At one loop, it is the Hamiltonian of the integrable $X X X$ spin $1 / 2$ chain
4. At higher loops, a more complicated spin chain, but with spins interacting at neighbouring sites (up to a certain distance)
5. At all loops, there are conjectures for the all loop spin Hamiltonian, exploiting the string results, assuming AdS/CFT duality.
6. Integrability $=$ an infinite number of invariants (conserved quantities).

2- and 3-prong colour antennae are sort of "trivial" : coherence being taken care of, the answers turned out to be essentially additive The case of $2 \rightarrow 2$ hard parton scattering is more involved (4 emitters)

2- and 3-prong colour antennae are sort of "trivial" : coherence being taken care of, the answers turned out to be essentially additive

The case of $2 \rightarrow 2$ hard parton scattering is more involved (4 emitters), especially so for gluon-gluon scattering.

2- and 3-prong colour antennae are sort of "trivial" : coherence being taken care of, the answers turned out to be essentially additive

The case of $2 \rightarrow 2$ hard parton scattering is more involved (4 emitters) especially so for gluon-gluon scattering. Here one encounters 6 (5 for $S U(3)$) colour channels that mix with each other under soft gluon radiation

2- and 3-prong colour antennae are sort of "trivial" : coherence being taken care of, the answers turned out to be essentially additive

The case of $2 \rightarrow 2$ hard parton scattering is more involved (4 emitters), especially so for gluon-gluon scattering.
Here one encounters 6 (5 for SU(3)) colour channels that mix with each
other under soft gluon radiation

2- and 3-prong colour antennae are sort of "trivial" : coherence being taken care of, the answers turned out to be essentially additive

The case of $2 \rightarrow 2$ hard parton scattering is more involved (4 emitters), especially so for gluon-gluon scattering. Here one encounters 6 (5 for $S U(3)$) colour channels that mix with each other under soft gluon radiation

The difficult quest of sorting out large angle gluon radiation in all orders in $\left(\alpha_{s} \log Q\right)^{n}$ was set up and solved by George Sterman and collaborators

2- and 3-prong colour antennae are sort of "trivial" : coherence being taken care of, the answers turned out to be essentially additive

The case of $2 \rightarrow 2$ hard parton scattering is more involved (4 emitters), especially so for gluon-gluon scattering. Here one encounters 6 (5 for $S U(3)$) colour channels that mix with each other under soft gluon radiation

The difficult quest of sorting out large angle gluon radiation in all orders in $\left(\alpha_{s} \log Q\right)^{n}$ was set up and solved by George Sterman and collaborators.

Recent
addition to the problem

2- and 3-prong colour antennae are sort of "trivial" : coherence being taken care of, the answers turned out to be essentially additive

The case of $2 \rightarrow 2$ hard parton scattering is more involved (4 emitters), especially so for gluon-gluon scattering. Here one encounters 6 (5 for $S U(3)$) colour channels that mix with each other under soft gluon radiation

The difficult quest of sorting out large angle gluon radiation in all orders in $\left(\alpha_{s} \log Q\right)^{n}$ was set up and solved by George Sterman and collaborators.

Recent (fall 2005) addition to the problem

Soft anomalous dimension,

$$
\frac{\partial}{\partial \ln Q} M \propto\left\{-N_{c} \ln \left(\frac{t u}{s^{2}}\right) \cdot \hat{\Gamma}\right\} \cdot M, \quad \hat{\Gamma} V_{i}=E_{i} V_{i} .
$$

$6=3+3$. Three eigenvalues are "simple"

Soft anomalous dimension,

$$
\frac{\partial}{\partial \ln Q} M \propto\left\{-N_{c} \ln \left(\frac{t u}{s^{2}}\right) \cdot \hat{\Gamma}\right\} \cdot M, \quad \hat{\Gamma} V_{i}=E_{i} V_{i}
$$

$6=3+3$. Three eigenvalues are "simple".

Soft anomalous dimension ,

$$
\frac{\partial}{\partial \ln Q} M \propto\left\{-N_{c} \ln \left(\frac{t u}{s^{2}}\right) \cdot \hat{\Gamma}\right\} \cdot M, \quad \hat{\Gamma} V_{i}=E_{i} V_{i}
$$

$6=3+3$. Three eigenvalues are "simple".
Three "ain't-so-simple" ones were found to satisfy the cubic equation:

$$
\left[E_{i}-\frac{4}{3}\right]^{3}-\frac{\left(1+3 b^{2}\right)\left(1+3 x^{2}\right)}{3}\left[E_{i}-\frac{4}{3}\right]-\frac{2\left(1-9 b^{2}\right)\left(1-9 x^{2}\right)}{27}=0
$$

where

$$
x=\frac{1}{N}, \quad b \equiv \frac{\ln (t / s)-\ln (u / s)}{\ln (t / s)+\ln (u / s)}
$$

Soft anomalous dimension ,

$$
\frac{\partial}{\partial \ln Q} M \propto\left\{-N_{c} \ln \left(\frac{t u}{s^{2}}\right) \cdot \hat{\Gamma}\right\} \cdot M, \quad \hat{\Gamma} V_{i}=E_{i} V_{i}
$$

$6=3+3$. Three eigenvalues are "simple".
Three "ain't-so-simple" ones were found to satisfy the cubic equation:

$$
\left[E_{i}-\frac{4}{3}\right]^{3}-\frac{\left(1+3 b^{2}\right)\left(1+3 x^{2}\right)}{3}\left[E_{i}-\frac{4}{3}\right]-\frac{2\left(1-9 b^{2}\right)\left(1-9 x^{2}\right)}{27}=0
$$

where

$$
x=\frac{1}{N}, \quad b \equiv \frac{\ln (t / s)-\ln (u / s)}{\ln (t / s)+\ln (u / s)}
$$

Mark the mysterious symmetry w.r.t. to $x \rightarrow b$: interchanging internal (group rank) and external (scattering angle) variables of the problem ...

[^0]: Loop \# 1: $\quad \gamma_{1}=-S_{1}$.

