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We are witnessing explosive progress in analytical and numerical methods
and techniques for deriving sophisticated high accuracy pQCD predictions,
prompted to a large extent by the LHC needs.

The aim of this talk is to argue that pure brain effort seems to be still of
definite value in the QCD context, with evidence growing towards hidden
powerful links with ”theoretical theory” constructs (SUSY etc)

Parton Evolution Revisited:

� Space- and Time-like parton evolution

� Choosing parton evolution time(s)

� New Evolution Equation: ”wrong” but smart

� First check (large x region)

� Small x : Two Puzzles

� N = 4 SUSY Yang–Mills as QCD playing ground

� Ambitious programme
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3rd loop 3rd loop non-singlet a.d.
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3rd loop 3rd loop, more
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3rd loop 3rd loop, and more
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3rd loop 3rd loop, and again
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3rd loop 3rd loop, and still some more
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3rd loop 3rd loop, and UFF
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3rd loop facing music of the spheres

2× 2 anomalous dimension matrix occupies

1 st loop: 1/10 page

2 nd loop: 1 page

3 rd loop: 100 pages (200 K asci)

Moch, Vermaseren and Vogt

[ waterfall of results launched

March 2004, and counting ]

V ∼
{

10
N(N−1)

2
−1

102N−1−2

not too encouraging a trend . . .
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Parton Dynamics

made simple?
status quo

More importantly, without understanding the essence of the series
— the “physics” that underlines the appearance of this or that structure —
one may not hope to improve the perturbative expansion. What for ?

Numerically, αs is not such a magnificent expansion parameter . . .
Therefore, it is mandatory to apply as much grey substance as we possibly
could to re-arrange the perturbative series to ensure better convergence
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Parton splitting functions P(x , αs) are routinely equated with
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Scheme dependence enters beyond the LLA (1 loop).

MS — a well formulated and convenient renormalization scheme, BUT. . .
Among known troubles:

� P(k)(x) singular at x→1 [as P(1)(x)]

� αMS an unphysical expansion parameter

� no respect to deep symmetries (SUSY)

� Be smart with soft gluons
(Low theorem)

� Dimensional regularization
→ Dimensional Reduction

Another [hidden] symmetry —
inter-relation between DIS and annihilation channels.
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However, it has a good chance to be Exactly Solvable.

➥ A playing ground for theoretical theory: SUSY, AdS/CFT, . . .



Perturbative QCD (16/71)

Innovative Bookkeeping Innovative Bookkeeping

In the standard approach,

Splitting functions

Anomalous DimensionsEvolution Hamiltonian

kt θ ordering

� parton splitting functions are equated with anomalous dimensions;

� they are different for DIS and e+e− evolution;

� “clever evolution variables” are different too



Perturbative QCD (16/71)

Innovative Bookkeeping Innovative Bookkeeping

In the new approach,

Anomalous DimensionsEvolution Hamiltonian

ordering

Splitting functions

time

� splitting functions are disconnected from the anomalous dimensions;

� the evolution kernel is identical for space- and time-like cascades
(Gribov–Lipatov reciprocity relation true in all orders);

� unique evolution variable — parton fluctuation time



Perturbative QCD (16/71)

Innovative Bookkeeping Innovative Bookkeeping

In the new approach,

Anomalous DimensionsEvolution Hamiltonian

ordering

Splitting functions

time

� splitting functions are disconnected from the anomalous dimensions;

� the evolution kernel is identical for space- and time-like cascades
(Gribov–Lipatov reciprocity relation true in all orders);

� unique evolution variable — parton fluctuation time



Perturbative QCD (16/71)

Innovative Bookkeeping old new evolution — Innovative Bookkeeping

In the new approach,

Anomalous DimensionsEvolution Hamiltonian

ordering

Splitting functions

time

� splitting functions are disconnected from the anomalous dimensions;

� the evolution kernel is identical for space- and time-like cascades
(Gribov–Lipatov reciprocity relation true in all orders);

� unique evolution variable — parton fluctuation time
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So long as probability of one extra parton
emission is large, one has to consider and
treat arbitrary number of parton splittings
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q (z) = CF · 1 + z2

1 − z
,
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z
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Four basic splitting processes :

“Hamiltonian” for parton cascades

Pq
q (z) = CF · 1 + z2

1 − z
,

Pg
q (z) = CF · 1 + (1−z)2

z
,

Pq
g (z) = TR · [ z2 + (1−z)2

]
,

Pg
g (z) = Nc · 1 + z4 + (1−z)4

z(1 − z)

Logarithmic “evolution time” dξ = αs

2π
dk2

⊥

k2
⊥
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Parton dynamics
Relating parton splittings

Nowadays we cannot predict, from the first principles, parton content (B)
of a hadron (h). However, perturbative QCD tells us how it changes with
the resolution of the DIS process – momentum transfer Q2. Evolution of
parton distribution reminds the Schrödinger equation:

d

d lnQ2
DB

h (x ,Q2) =
αs(Q

2)

2π

∑
A=q,q̄,g

∫ 1

x

dz

z
PB

A (z) · DA
h (

x

z
,Q2)

Parton Dynamics turned out to be extremely simple.

Have a deeper look at parton splitting probabilities
– our evolution Hamiltonian –

to fully appreciate the power of the probabilistic
interpretation of parton cascades
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z

1−z
= CF · 1 + z2

1 − z

z

= CF · 1 + (1−z)2

z
z

= TR · [
z2 + (1−z)2

]
z

= Nc · 1 + z4 + (1−z)4

z(1 − z)

Four “parton splitting functions”

q[g ]
q (z) ,

g [q]
q (z) ,

q[q̄]
g (z) ,

g [g ]
g (z)
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� Exchange the decay products : z → 1 − z

� Exchange the parent and the offspring : z → 1/z

Three (QED) “kernels” are inter-related; gluon self-interaction stays put :
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q (z) ,

g [q]
q (z) ,

q[q̄]
g (z) ;

g [g ]
g (z)
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= CF · 1 + (1−z)2

z
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= TR · [
z2 + (1−z)2

]
z

= Nc · 1 + z4 + (1−z)4

z(1 − z)

� Exchange the decay products : z → 1 − z

� Exchange the parent and the offspring : z → 1/z

� The story continues, however : CF = TR = Nc : Super-Symmetry

All four are related ! (over-constrained system [+ conformal symm. etc])

wq(z) =
q[g ]
q (z) +

g [q]
q (z) =

q[q̄]
g (z) +

g [g ]
g (z) = wg (z)
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This inequality has a transparent physical meaning:

z · EA

|k2
B |
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|k2
A|
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strongly ordered lifetimes of successive parton fluctuations !
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How to Order parton splittings?

Beyond the 1st loop, it starts to matter how does one order successive
parton splittings that is, what one chooses for ”parton evolution time”.

The ”clever choices” had been established quite some time ago:

dξ = d ln
k2
⊥

1
(space-like), dξ = d ln

k2
⊥

z2
(time-like).

Transverse momentum ordering vs. angular ordering.
Each of these two clever choices — consequence of taking into full
consideration soft gluon coherence in order to prevent explosively large
terms (αs ln2 x)n from appearing in higher loop anomalous dimensions.

A good dynamical move. But a lousy one kinematically :
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Rediscovery of the quantum-mechanical nature of gluon radiation played
the major rôle in understanding the internal structure of jets.

Why “rediscovery”? Al Mueller, Victor Fadin, 1980
Because, under the spell of the probabilistic parton cascade picture
theorists managed to make serious mistakes in the late 70’s when they
indiscriminately applied it to parton multiplication in jets.

Subtlety: When gauge fields (conserved currents) are concerned,

born later (time ordering)

does not mean
being born independently

=⇒
Coherence in radiation

of soft gluons (photons) with x � 1
— the ones that determine the bulk

of secondary parton multiplicity!

Recall an amazing historical example: Cosmic ray physics (mid 50’s);

conversion of high energy photons into e+e− pairs in the emulsion
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Why then do we see this ?

e+e− (observed)

Transverse distance between two charges
(size of the e+e− dipole) is

ρ⊥ � c t · ϑe
ϑ e

k

p
ϑp+kphoton

The photon is emitted after the time (lifetime of the virtual p + k state)

t � (p + k)0
(p + k)2

� p0

2p0k0(1 − cos ϑ)
� 1

k0ϑ2
� 1

k⊥
· 1

ϑ
= λ⊥ · 1

ϑ
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Charged particle leaves a track of ionized atoms in photo-emulsion.

electron track

Photon converts into two electric charges : γ → e+e−.

e+e− track (expected)

Why then do we see this ?

e+e− (observed)

Transverse distance between two charges
(size of the e+e− dipole) is
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Photon converts into two electric charges : γ → e+e−.

e+e− track (expected)

Why then do we see this ?

e+e− (observed)

Transverse distance between two charges
(size of the e+e− dipole) is

ρ⊥ � c t · ϑe = λ⊥ · ϑe

ϑ
. Angular Ordering

ϑ < ϑe – independent radiation off e− & e+

ϑ > ϑe – no emission ! (ρ⊥ < λ⊥)

ϑ e

k

p
ϑp+kphoton

The photon is emitted after the time (lifetime of the virtual p + k state)

t � (p + k)0
(p + k)2
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2p0k0(1 − cos ϑ)
� 1

k0ϑ2
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QCD coherence
intRAjet coherence

Angular Ordering is more restrictive than the fluctuation time ordering:

ϑ ≤ ϑe versus ϑ ≤ ϑe ·
√

p0

k0
that follows from

tγ =
p0

p2
⊥

� 1

p0ϑe
2

<
1

k0ϑ2
� k0

k2
⊥

= te
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Coherence in large-angle gluon emission not only affected (suppressed) total
parton multiplicity but had dramatic consequences for the structure of the
energy distribution of secondary partons in jets.

It was predicted that, due to coherence, “Feynman plateau” dN/d ln x
must develop a hump at

(ln k)max =

(
1

2
− c ·

√
αs(Q) + . . .

)
· lnQ , kmax � Q0.35



Perturbative QCD (24/71)

Innovative Bookkeeping

QCD coherence
intRAjet coherence

Angular Ordering is more restrictive than the fluctuation time ordering:

ϑ ≤ ϑe versus ϑ ≤ ϑe ·
√

p0

k0
.

Significant difference when k0/p0 = x � 1 (soft radiation).

Coherence in large-angle gluon emission not only affected (suppressed) total
parton multiplicity but had dramatic consequences for the structure of the
energy distribution of secondary partons in jets.

It was predicted that, due to coherence, “Feynman plateau” dN/d ln x
must develop a hump at

(ln k)max =

(
1

2
− c ·

√
αs(Q) + . . .

)
· lnQ , kmax � Q0.35 ,

while the softest particles (that seem to be the easiest to produce)

should not multiply at all !
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Parton Cascades
space- and time-like parton multiplication

Space-like parton evolution (S) vs. time-like fragmentation (T)

Drell–Levy–Yan relation

P
(T )
BA (x) = ∓x · P(S)

AB (x−1).
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Parton Cascades
space- and time-like parton multiplication

Space-like parton evolution (S) vs. time-like fragmentation (T)

Drell–Levy–Yan relation

P
(T )
BA (x) = ∓x · P(S)

AB (x−1).

True in any QFT, it reflects the crossing and allows to link the two
channels by analytic continuation, from x < 1 to x > 1 :

Bukhvostov, Lipatov, Popov (1974)

Drell–Levy–Yan relation beyond leading log

Blümlein, Ravindran, W.L. van Neerven (2000)

In the Leading Log Approximation (1 loop),

Gribov–Lipatov relation

P
(T )
BA (x Feynman ) = P

(S)
BA (x Bjorken ) ; xB = −q2

2pq
, xF = 2pq

q2

Mark the different meaning of x in the two channels!
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Parton Cascades
space- and time-like parton multiplication

Space-like parton evolution (S) vs. time-like fragmentation (T)

Drell–Levy–Yan relation

P
(T )
BA (x) = ∓x · P(S)

AB (x−1).

True in any QFT, it reflects the crossing and allows to link the two
channels by analytic continuation, from x < 1 to x > 1 :

Bukhvostov, Lipatov, Popov (1974)

Drell–Levy–Yan relation beyond leading log

Blümlein, Ravindran, W.L. van Neerven (2000)

In the Leading Log Approximation (1 loop),

Gribov–Lipatov reciprocity

PBA(x) = ∓x · PAB(x−1)

GLR was found to be broken beyond the 1st loop. But WHY ?
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Fluctuation time ordering : D-r (HERA, 1993)

dDA(x ,Q2)

d lnQ2
=

∫ 1

0
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B (z ;αs) DB
(x

z
, zσQ2

)
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Fluctuation time ordering : D-r (HERA, 1993)

dDA(x ,Q2)

d lnQ2
=

∫ 1

0

dz

z
PA

B (z ;αs) DB
(x

z
, zσQ2

)
, σ =

{
+1, (T)
−1, (S)

which is non-local due to the mixing of z and Q2 in the hardness scale.
This non-locality can be handled using the Taylor series trick:∫ 1

0

dz
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P(z , αs)D

(
zσQ2

)
=
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0
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z
P(z) z

σ d

d ln Q2 D(Q2), d ≡ d

d lnQ2
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PN ≡
∫ 1

0

dz
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P(z) zN =⇒ γN · DN(Q2) = PN+σd · DN(Q2)

the evolution kernel P emerges with the differential operator for argument.
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.
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PN ≡
∫ 1

0

dz

z
P(z) zN =⇒ γN · DN(Q2) = PN+σd · DN(Q2)

the evolution kernel P emerges with the differential operator for argument.

Expanding, get an equation for the an.dim. γ

γ[α] = P + Ṗ · (σγ+β/α
)
+1

2 P̈ · [γ2+σ(2β/α γ+β∂αγ)+β/α ∂αβ
]
+O(

α4
)
.
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GLR respecting evolution
Reciprocity Respecting Evolution

Fluctuation time ordering : D-r (HERA, 1993)

dDA(x ,Q2)

d lnQ2
=

∫ 1

0

dz

z
PA

B (z ;αs) DB
(x

z
, zσQ2

)
, σ =

{
+1, (T)
−1, (S)

which is non-local due to the mixing of z and Q2 in the hardness scale.
This non-locality can be handled using the Taylor series trick:∫ 1

0

dz

z
P(z , αs)D

(
zσQ2

)
=

∫ 1

0

dz

z
P(z) z

σ d

d ln Q2 D(Q2), d ≡ d

d lnQ2
.

In the Mellin moment space,

PN ≡
∫ 1

0

dz

z
P(z) zN =⇒ γN · DN(Q2) = PN+σd · DN(Q2)

the evolution kernel P emerges with the differential operator for argument.

Expanding, get an equation for the an.dim. γ, one for both channels

γ[α] = P + Ṗ · (σγ+β/α
)
+1

2 P̈ · [γ2+σ(2β/α γ+β∂αγ)+β/α ∂αβ
]
+O(

α4
)
.



Perturbative QCD (27/71)

Innovative Bookkeeping

GLR respecting evolution
GLR beyond the 1st loop

Examine the “reciprocity respecting equation” (RRE) by feeding in the
one-loop parton “Hamiltonian”, P(α) � αP1 :

γ[α] = P + Ṗ · (σγ+β/α
)
+ 1

2 P̈ · [γ2+σ(2β/α γ+β∂αγ)+β/α ∂αβ
]
+ . . .

= αP1 + α2 · (σ P1Ṗ1 + β0) + O(
α3

)
.
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GLR beyond the 1st loop

Examine the “reciprocity respecting equation” (RRE) by feeding in the
one-loop parton “Hamiltonian”, P(α) � αP1 :

γ[α] = P + Ṗ · (σγ+β/α
)
+ 1

2 P̈ · [γ2+σ(2β/α γ+β∂αγ)+β/α ∂αβ
]
+ . . .

= αP1 + α2 · (σ P1Ṗ1 + β0) + O(
α3

)
.

The difference between time- and space-like anomalous dimensions,
1
2

[
P(T ) − P(S)

]
= α2 · P1Ṗ1 + O(

α3
)
,

in the x -space corresponds to the convolution

1
2

[
P

(2),T
qq − P

(2),S
qq

]
=

∫ 1

0

dz

z

{
P

(1)
qq

(x

z

)}
+
· P

(1)
qq (z) ln z ,

responsible for GLR violation in the 2nd loop non-singlet quark anomalous
dimension, as found by Curci, Furmanski & Petronzio (1980)
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Examine the “reciprocity respecting equation” (RRE) by feeding in the
one-loop parton “Hamiltonian”, P(α) � αP1 :

γ[α] = P + Ṗ · (σγ+β/α
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2 P̈ · [γ2+σ(2β/α γ+β∂αγ)+β/α ∂αβ
]
+ . . .

= αP1 + α2 · (σ P1Ṗ1 + β0 + P2) + O(
α3

)
.

The difference between time- and space-like anomalous dimensions,
1
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[
P(T ) − P(S)
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= α2 · P1Ṗ1 + O(
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)
,

in the x -space corresponds to the convolution
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[
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(2),T
qq − P
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]
=

∫ 1

0

dz

z
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P

(1)
qq
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z

)}
+
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responsible for GLR violation in the 2nd loop non-singlet quark anomalous
dimension, as found by Curci, Furmanski & Petronzio (1980)

=⇒ the genuine P2 does not contain σ, is GLR respecting
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GLR respecting evolution
GLR beyond the 1st loop

Examine the “reciprocity respecting equation” (RRE) by feeding in the
one-loop parton “Hamiltonian”, P(α) � αP1 :

γ[α] = P + Ṗ · (σγ+β/α
)
+ 1

2 P̈ · [γ2+σ(2β/α γ+β∂αγ)+β/α ∂αβ
]
+ . . .

= αP1 + α2 · (σ P1Ṗ1 + β0 + P2) + O(
α3

)
.

The difference between time- and space-like anomalous dimensions,
1
2

[
P(T ) − P(S)

]
= α2 · P1Ṗ1 + O(

α3
)
,

in the x -space corresponds to the convolution

1
2

[
P

(2),T
qq − P

(2),S
qq

]
=

∫ 1

0

dz

z

{
P

(1)
qq

(x

z

)}
+
· P

(1)
qq (z) ln z ,

responsible for GLR violation in the 2nd loop non-singlet quark anomalous
dimension, as found by Curci, Furmanski & Petronzio (1980)

More generally, a renormalization scheme transformation as a cure
for/against GLR violation was proposed by Stratmann & Vogelsang (1996)
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RREE applications
large x

Another important aspect of the RREE is the “double nature” of the
perturbative expansion — in αphys and, at the same time, in (1−x):

γ[α] = P + Ṗ ·(σγ+β/α
)
+ 1

2 P̈ ·(γ2+σ(2β/α γ+β∂αγ)+β/α ∂αβ
)

+ . . .

= α ln N + α2 · (1/N)
+ α3 · (1/N2

)
+ α4 · (1/N3

)
+ . . .
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subleading corrections in all orders !
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perturbative expansion — in αphys and, at the same time, in (1−x):

γ[α] = P + Ṗ ·(σγ+β/α
)
+ 1
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)

+ . . .
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)
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subleading corrections in all orders !

γ(x)=
A x

(1−x)+
+ Bδ(1−x) + C ln(1−x) + D + O((1−x) logp(1−x))

A gap between classical radiation (Low–Burnett–Kroll wisdom)
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and quantum fluctuations
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RREE applications
large x

Another important aspect of the RREE is the “double nature” of the
perturbative expansion — in αphys and, at the same time, in (1−x):

γ[α] = P + Ṗ ·(σγ+β/α
)
+ 1

2 P̈ ·(γ2+σ(2β/α γ+β∂αγ)+β/α ∂αβ
)

+ . . .

= α ln N + α2 · (1/N)
+ α3 · (1/N2

)
+ α4 · (1/N3

)
+ . . .

In the x → 1 limit (large moments N) inherited structures determine first
subleading corrections in all orders !

γ(x)=
A x

(1−x)+
+ Bδ(1−x) + C ln(1−x) + D + O((1−x) logp(1−x))

Generated: D-r, Marchesini & Salam (2005)

C = −σA2 — relation observed by MVV in 3 loops
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RREE applications
large x

Another important aspect of the RREE is the “double nature” of the
perturbative expansion — in αphys and, at the same time, in (1−x):

γ[α] = P + Ṗ ·(σγ+β/α
)
+ 1

2 P̈ ·(γ2+σ(2β/α γ+β∂αγ)+β/α ∂αβ
)

+ . . .

= α ln N + α2 · (1/N)
+ α3 · (1/N2

)
+ α4 · (1/N3

)
+ . . .

In the x → 1 limit (large moments N) inherited structures determine first
subleading corrections in all orders !

γ(x)=
A x

(1−x)+
+ Bδ(1−x) + C ln(1−x) + D + O((1−x) logp(1−x))

Generated: D-r, Marchesini & Salam (2005)

C = −σA2 — relation observed by MVV in 3 loops

D = −σA B + O(β) — another all-order relation
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RREE relates two long-standing puzzles :

DIS (space-like evolution). Look at small x that is, N � 1

BFKL : γN =
αs
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+ 0 ·

(αs

N

)2
+ 0 ·
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N

)3
+

(αs
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e+e− annihilation (time-like cascades) — a similar story:

1 → 1 + 2 =⇒ Exact Angular Ordering still intact !

1 → 1 + 2 + 3 =⇒ (1 → 1 + 2) ⊗ (2 → 2 + 3)

1 → 1 + 2 + 3 + 4 =⇒ (1 → 1 + 2) ⊗ (2 → 2 + 3) ⊗ (3 → 3 + 4)

so-called “Malaza puzzle”
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RREE applications
small x chart

α 3/2

α 1/2

α 2
α 5/2

α 3

1 2 3 4 5 6

0

1

2

3

4

5

BFKL

N−BFKL6

7

1 k

N
( )

αp

α

Solid – BFKL (black)
and N-BFKL (green)
known in all orders.

Dashed blue –
γ+ terms generated by
α/N and α.

Yellow – unknown.
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Maximally super-symmetric N =4 YM allows for a compact analytic
solution of the GLR problem in 3 loops (∀N) D-r & Marchesini (2006)

Moreover, the most resent result, still smoking : in N =4
✗ GLR holds for twist 3, in 3+4 loops Matteo Beccaria et al. (2007)

What is so special about N =4 SYM ?

This QFT has a good chance to be solvable — “integrable”.
Dynamics can be fully integrated if the system possesses a sufficient
(infinite!) number of conservation laws, — integrals of motion.

Recall an old hint from QCD ...
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Relating parton splittings

z

1−z
= CF · 1 + z2

1 − z

z

= CF · 1 + (1−z)2

z
z

= TR · [
z2 + (1−z)2

]
z

= Nc · 1 + z4 + (1−z)4

z(1 − z)

Four “parton splitting functions”

q[g ]
q (z) ,

g [q]
q (z) ,

q[q̄]
g (z) ,

g [g ]
g (z)
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z

= TR · [
z2 + (1−z)2

]
z

= Nc · 1 + z4 + (1−z)4

z(1 − z)

� Exchange the decay products : z → 1 − z
� Exchange the parent and the offspring : z → 1/z (GLR)
� The story continues, however : CF = TR = Nc : Super-Symmetry

All four are related ! ≡ infinite number of conservation laws !

wq(z) =
q[g ]
q (z) +

g [q]
q (z) =

q[q̄]
g (z) +

g [g ]
g (z) = wg (z)
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from Bookkeeping to Solving

The integrability feature manifests itself already in certain sectors of QCD,
in specific problems where one can identify QCD with SUSY-QCD :

✓ the Regge behaviour (large Nc )
Lipatov

Faddeev & Korchemsky (1994)

✓ baryon wave function
Braun, Derkachov,Korchemsky,

Manashov; Belitsky (1999)

✓ maximal helicity multi-gluon operators

Lipatov (1997)

Minahan & Zarembo

Beisert & Staudacher (2003)
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The integrability feature manifests itself already in certain sectors of QCD,
in specific problems where one can identify QCD with SUSY-QCD :

✓ the Regge behaviour (large Nc )
Lipatov

Faddeev & Korchemsky (1994)

✓ baryon wave function
Braun, Derkachov,Korchemsky,

Manashov; Belitsky (1999)

✓ maximal helicity multi-gluon operators

Lipatov (1997)

Minahan & Zarembo

Beisert & Staudacher (2003)

The higher the symmetry, the deeper integrability. N =4 — the extreme:

✗ Conformal theory β(α) ≡ 0

✗ All order expansion for αphys Beisert, Eden, Staudacher (2006)

✗ Full integrability via AdS/CFT
Maldacena; Witten,

Gubser, Klebanov, Polyakov (1998)

And here we arrive at the second — Divide and Conquer — issue
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Divide and Conquer

Low-Burnett-Kroll wisdom
LBK wisdom

Recall the diagonal first loop anomalous dimensions:

γ̃q→q(x)+g =
CFαs

π

[
x

1 − x
+ (1 − x) · 1

2

]
,

γ̃g→g(x)+g =
CAαs

π

[
x

1 − x
+ (1 − x) · (x + x−1

)]
.
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Divide and Conquer

Low-Burnett-Kroll wisdom
LBK wisdom

Recall the diagonal first loop anomalous dimensions:

γ̃q→q(x)+g =
CFαs

π

[
x

1 − x
+ (1 − x) · 1

2

]
,

γ̃g→g(x)+g =
CAαs

π

[
x

1 − x
+ (1 − x) · (x + x−1

)]
.

The first component is independent of the nature of the radiating particle
— the Low–Burnett–Kroll classical radiation =⇒ “claglons”.
The second — “quaglons” — is relatively suppressed as O(

(1 − x)2
)
.

Classical and quantum contributions respect the GL relation, individually:

−xf (1/x) = f (x)

Let us look at the rôles these animals play on the QCD stage



Perturbative QCD (36/71)

Divide and Conquer

Low-Burnett-Kroll wisdom
Gluenatomy

Clagons :

✗ Classical Field

✓ infrared singular, dω/ω

✓ define the physical coupling

✓ responsible for

➥ DL radiative effects,

➥ reggeization,

➥ QCD/Lund string (gluers)

✓ play the major rôle in evolution

Quagons :

✗ Quantum d.o.f.s (constituents)

✓ infrared irrelevant, dω · ω
✓ make the coupling run

✓ responsible for conservation of
➥ P-parity,

➥ C -parity,
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Clagons :

✗ Classical Field

✓ infrared singular, dω/ω

✓ define the physical coupling

✓ responsible for

➥ DL radiative effects,

➥ reggeization,

➥ QCD/Lund string (gluers)

✓ play the major rôle in evolution

Quagons :

✗ Quantum d.o.f.s (constituents)

✓ infrared irrelevant, dω · ω
✓ make the coupling run

✓ responsible for conservation of
➥ P-parity,

➥ C -parity,

➥ colour

}
in

decays,
production

✓ minor rôle

In addition,

✗ Tree multi-clagon (Parke–Taylor) amplitudes are known exactly

✗ It is clagons which dominate in all the integrability cases
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everyone in the ajoint representation.

d

d lnµ2

(
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)−1

QCD

= −11

3
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∫ 1

0
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Now, N =4 SUSY :

CA
−1 d

d lnµ2

(
α(µ2)

4π

)−1

= −11

3
+

4

2
·
∫ 1

0
dx 2[x2 + (1−x)2] +

6

2!
·
∫ 1

0
dx 2x(1−x)

� β(α) ≡ 0 in all orders ! =⇒ γ ⇒ x

1 − x
+ no quagons !

. . . makes one think of a classical nature (?) of the SYM-4 dynamics
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Universal anomalous dimension
Euler–Zagier harmonic sums

In spite of having many states (s = 0, 1
2 , 1), the SYM-4 parton dynamics is

built of a single “universal” anomalous dimension:

γ+(N + 2) = γ̃+(N + 1) = γ0(N) = γ̃−(N − 1) = γ−(N − 2) ≡ γuni(N)

with the 1st loop given by

γ
(1)
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)
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k=1
1
k

= ψ(N + 1) − ψ(1).

In higher orders enter m > 1,

Sm(N) =
∑N

k=1
1

km = (−1)m

Γ(m)

∫ 1
0 dx xN lnm−1 x

1−x
+ ζ(m),

as we as multiple indices — nested sums

Sm,�ρ (N) =
∑N

k=1
S�ρ (k)

km (�ρ = (m1,m2, . . . ,mi )),
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Universal anomalous dimension
negative indices

Starting from the 2nd loop, one encounters also negative indices,
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N∑
k=1

(−1)k

km
.
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Starting from the 2nd loop, one encounters also negative indices,

S−m(N) =

N∑
k=1

(−1)k

km
.

The origin of these oscillating sums — the s → u crossing:

(b)(a)

x
1−x

·ln2 x → S3(N) x
1+x

·φ2(x) → Y−3(N)

(a) ↔ (b)

P → −P
x → −x

pqq̄(x) = α2
s (1

2CA − CF ) pqq(−x) · φ2(x), pqq(x) =
1 + x2

2(1 − x)
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Transcedentality
RR evolution kernel

In terms of the perturbative expansion in the physical coupling,

aph = a
(
1 − 1

2ζ2a + 11
20ζ2

2a2 + . . .
)
,

P1 = − S1;

P2 = 1
2 Ŝ3 − 1

2 Ŷ−3 + B2;

P3 = − 1
2 Ŝ5 + 3

2 Ŷ−5 + B3 + ζ2 · 1
2 Ŝ3

+ S1 ·
[
Ŷ−4 − 1

2

(
Ŝ−4 + Ŝ2

−2

)
+ ζ2 · 1

2 Ŝ−2

]
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2 Ŝ3 − 1
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2 Ŝ−2

]
Notation:
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2 Ŝ3 − 1
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N = 4 Super–Yang–Mills

Beyond leading Twist
Twist-3

The sl(2) sector of planar N =4 SYM contains single trace states which
are linear combinations of the basic operators

Tr {(Ds1 Z ) · · · (DsL Z )} , s1 + · · · + sL = N,

where Z is one of the three complex scalar fields and D is a light-cone
covariant derivative. The numbers {si} are non-negative integers and N is
the total spin. The number L of Z fields is the twist of the operator, i.e.
the classical dimension minus spin.
The anomalous dimensions of these states are the eigenvalues γL(N; g) of
the dilatation operator — integrable Hamiltonian.
These values were obtained by solving numerically the Bethe Ansatz
equations (BAE), order by order in g2, and guessing the answer in terms
of harmonic sums of transcedentality τ = 2n−1, at n loops.
Since wrapping problems, delayed by supersymmetry, appear at L+2 loop
order for twist-L operators, the BAE for twist-3 are reliable up to four
loops (including, at the fourth loop, the dressing factor).



Perturbative QCD (42/71)

N = 4 Super–Yang–Mills

Beyond leading Twist
Twist-3

The sl(2) sector of planar N =4 SYM contains single trace states which
are linear combinations of the basic operators

Tr {(Ds1 Z ) · · · (DsL Z )} , s1 + · · · + sL = N,

where Z is one of the three complex scalar fields and D is a light-cone
covariant derivative. The numbers {si} are non-negative integers and N is
the total spin. The number L of Z fields is the twist of the operator, i.e.
the classical dimension minus spin.
The anomalous dimensions of these states are the eigenvalues γL(N; g) of
the dilatation operator — integrable Hamiltonian.
These values were obtained by solving numerically the Bethe Ansatz
equations (BAE), order by order in g2, and guessing the answer in terms
of harmonic sums of transcedentality τ = 2n−1, at n loops.
Since wrapping problems, delayed by supersymmetry, appear at L+2 loop
order for twist-L operators, the BAE for twist-3 are reliable up to four
loops (including, at the fourth loop, the dressing factor).



Perturbative QCD (42/71)

N = 4 Super–Yang–Mills

Beyond leading Twist
Twist-3

The sl(2) sector of planar N =4 SYM contains single trace states which
are linear combinations of the basic operators

Tr {(Ds1 Z ) · · · (DsL Z )} , s1 + · · · + sL = N,

where Z is one of the three complex scalar fields and D is a light-cone
covariant derivative. The numbers {si} are non-negative integers and N is
the total spin. The number L of Z fields is the twist of the operator, i.e.
the classical dimension minus spin.
The anomalous dimensions of these states are the eigenvalues γL(N; g) of
the dilatation operator — integrable Hamiltonian.
These values were obtained by solving numerically the Bethe Ansatz
equations (BAE), order by order in g2, and guessing the answer in terms
of harmonic sums of transcedentality τ = 2n−1, at n loops.
Since wrapping problems, delayed by supersymmetry, appear at L+2 loop
order for twist-L operators, the BAE for twist-3 are reliable up to four
loops (including, at the fourth loop, the dressing factor).



Perturbative QCD (42/71)

N = 4 Super–Yang–Mills

Beyond leading Twist
Twist-3

The sl(2) sector of planar N =4 SYM contains single trace states which
are linear combinations of the basic operators

Tr {(Ds1 Z ) · · · (DsL Z )} , s1 + · · · + sL = N,

where Z is one of the three complex scalar fields and D is a light-cone
covariant derivative. The numbers {si} are non-negative integers and N is
the total spin. The number L of Z fields is the twist of the operator, i.e.
the classical dimension minus spin.
The anomalous dimensions of these states are the eigenvalues γL(N; g) of
the dilatation operator — integrable Hamiltonian.
These values were obtained by solving numerically the Bethe Ansatz
equations (BAE), order by order in g2, and guessing the answer in terms
of harmonic sums of transcedentality τ = 2n−1, at n loops.
Since wrapping problems, delayed by supersymmetry, appear at L+2 loop
order for twist-L operators, the BAE for twist-3 are reliable up to four
loops (including, at the fourth loop, the dressing factor).



Perturbative QCD (42/71)

N = 4 Super–Yang–Mills

Beyond leading Twist
Twist-3

The sl(2) sector of planar N =4 SYM contains single trace states which
are linear combinations of the basic operators

Tr {(Ds1 Z ) · · · (DsL Z )} , s1 + · · · + sL = N,

where Z is one of the three complex scalar fields and D is a light-cone
covariant derivative. The numbers {si} are non-negative integers and N is
the total spin. The number L of Z fields is the twist of the operator, i.e.
the classical dimension minus spin.
The anomalous dimensions of these states are the eigenvalues γL(N; g) of
the dilatation operator — integrable Hamiltonian.
These values were obtained by solving numerically the Bethe Ansatz
equations (BAE), order by order in g2, and guessing the answer in terms
of harmonic sums of transcedentality τ = 2n−1, at n loops.
Since wrapping problems, delayed by supersymmetry, appear at L+2 loop
order for twist-L operators, the BAE for twist-3 are reliable up to four
loops (including, at the fourth loop, the dressing factor).



Perturbative QCD (43/71)

N = 4 Super–Yang–Mills

Beyond leading Twist
Twist-3 : Answer

γ
(1)
3 = 4S1 ,

γ
(2)
3 = −2 (S3 + 2S1S2)

γ
(3)
3 = 5S5 + 6S2 S3 − 8S3,1,1 + 4S4,1 − 4S2,3 + S1(4S2

2 + 2S4 + 8S3,1),

γ
(4)
3 = 1

2 S7 + 7S1,6 + 15S2,5 − 5S3,4 − 29S4,3 − 21S5,2 − 5S6,1

−40S1,1,5 − 32S1,2,4 + 24S1,3,3 + 32S1,4,2 − 32S2,1,4 + 20S2,2,3

+40S2,3,2 + 4S2,4,1 + 24S3,1,3 + 44S3,2,2 + 24S3,3,1 + 36S4,1,2

+36S4,2,1 + 24S5,1,1 + 80S1,1,1,4 − 16S1,1,3,2 + 32S1,1,4,1

−24S1,2,2,2 + 16S1,2,3,1 − 24S1,3,1,2 − 24S1,3,2,1 − 24S1,4,1,1

−24S2,1,2,2 + 16S2,1,3,1 − 24S2,2,1,2 − 24S2,2,2,1 − 24S2,3,1,1

−24S3,1,1,2 − 24S3,1,2,1 − 24S3,2,1,1 − 24S4,1,1,1 − 64S1,1,1,3,1

−8β S1 S3.

The last term, with β = ζ3, is the contribution from the dressing factor
that appears in the BAE at the fourth loop.
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N = 4 Super–Yang–Mills

Beyond leading Twist
Twist-3 : features

The twist-3 anomalous dimension has two characteristic features:

1. All harmonic functions S�a are evaluated at half the spin, Sa ≡ Sa (N/2).
On the integrability side, this does not look unwarranted, since only
even N belong to the non-degenerate ground state of the magnet.

2. No negative indices appear at twist-3, while in the case of twist-2
negative index sums were present starting from the second loop.

At the N → ∞ limit, the minimal anomalous dimension γ (corresponding
to the ground state) must exhibit the universal (LBK-classical) lnN
behaviour which depends neither on the twist, nor on the nature of fields
under consideration. Computing analytically the large N asymptotics yields

γ3(N)

lnN
= 4 g2 − 2π2

3
g4 +

11π4

45
g6 −

(
4ζ2

3 +
73π6

630

)
g8 + O(

g10
)
,

which matches the four-loop cusp anomalous dimension — the physical
coupling. This is a non-trivial check, since the derivation was based on
experimenting with finite values of the spin N.
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N = 4 Super–Yang–Mills

Beyond leading Twist
Twist-3 : Evolution Kernel (rough)

After processing thru γ = P(N + 1
2γ) , in series in g2 = Ncα

2π ,

P(1) = 4S1,

P(2) = −2S3 − 4 ζ2 S1,

P(3) = S5 + 2 ζ2 S3 + 4 (S3,2 + S4,1 − 2S3,1,1)

+ 4S1 (2S3,1 − S4 + 4 ζ4) − 4S2
1 (S3 − ζ3).

The fourth loop kernel we split into two terms: P(4) = P
(4)
S + P

(4)
ζ .

P
(4)
S = −8

[
S3,3 + S1,5 + 2S2,4 − 4(S2,1,3 + S1,2,3 + S1,1,4) + 8S1,1,1,3

]
S1

+ 3
2 S7 − 16

(
S1,6 + S4,3

) − 24
(
S2,5 + S3,4

)
+ 48

(
S1,1,5 + S1,3,3 + S3,1,3

)
+ 64

(
S2,2,3 + S2,1,4 + S1,2,4

)
− 128

(
S1,1,1,4 + S2,1,1,3 + S1,2,1,3 + S1,1,2,3

)
+ 256S1,1,1,1,3 ,

P
(4)
ζ = 8ζ4 S3

1 − 4
[
ζ2ζ3 + 8ζ5

]S2
1 − [

4(ζ3 + 2β)S3 + 49ζ6

]S1

+ (8S1,1,3 − 4S1,4 − 4S2,3 − S5) ζ2 − 8S3 ζ4.
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N = 4 Super–Yang–Mills

Beyond leading Twist
RR harmonic functions

Let �m = {m1,m2, . . . ,m�}, and examine the recurrence relation

Φ̃b,�m(x) = −[Γ(b)]−1 x

x − 1

∫ 1

x

dz (z + 1)

z2
lnb−1 z

x
· Φ̃�m(z),

where the single index function coincides with the image of the standard
harmonic sum,

Φ̃a(x) = [Γ(a)]−1 x

x − 1
lna−1 1

x
= S̃a(x).
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At the base of the recursion, we have (the weight w ≡ τ − � )

Φ̃a(x) =

(
− x Φ̃a(x

−1)

)
· (−1)a−1 ≡

(
− x Φ̃a(x

−1)

)
· (−1)w [a].
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An iteration increases transcedentality τ =
∑�

i=1 |mi | of the function by b,
and the length � of the index vector by one, so that

w [�m] + b − 1 = w [b, �m].
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Beyond leading Twist
RR harmonic functions

Let �m = {m1,m2, . . . ,m�}, and examine the recurrence relation
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where the single index function coincides with the image of the standard
harmonic sum,

Φ̃a(x) = [Γ(a)]−1 x

x − 1
lna−1 1

x
= S̃a(x).

For an arbitrary index vector (the weight w ≡ τ − � )

Φ̃�m(x) =

(
− x Φ̃�m(x−1)

)
· (−1)w [�m]

An iteration increases transcedentality τ =
∑�

i=1 |mi | of the function by b,
and the length � of the index vector by one, so that

w [�m] + b − 1 = w [b, �m].
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N = 4 Super–Yang–Mills

Beyond leading Twist
Twist-3 : Evolution Kernel (beautified)

Then, in terms of the physical coupling,

g2
ph ≡ Nc αph

2π = g2 − ζ2 g4 + 11
5 ζ2

2 g6 − (
73
10ζ3

2 + ζ2
3

)
g8 + . . . ,

the perturbative series for the kernel, P =
∑

n=1 g2n
ph P(n)

ph , becomes

P(1)
ph = 4S1,

P(2)
ph = −2S3,

P(3)
ph = 3S5 − 2Φ1,1,3 + ζ2 · (−2S3),

P(4)
ph = 4S1 · Â4 + B4 + 2 ζ2 ·

(
3S5 − 2Φ1,1,3

)
,

where

Â4 = 2 Φ̂1,1,1,3 − (Φ̂1,5 + Φ̂3,3) − ζ3 Ŝ3,

B4 = 16Φ1,1,1,1,3 − 4
(
Φ3,1,3 + Φ1,3,3 + Φ1,1,5

) − 5
2 S7.

Since all harmonic functions involved have even weights w ,
the evolution kernel is Reciprocity Respecting.
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N = 4 Super–Yang–Mills

Beyond leading Twist
Twist-3 vis a vis Twist-2

This result can be compared with the evolution kernel that generates the
twist-2 universal anomalous dimension :

P(1)
ph = 4S1;

P(2)
ph = −4S3 + 4Φ1,−2;

P(3)
ph = 8S5 − 24Φ1,1,1,−2 − 8 ζ2 S3

−8S1 ·
[
2 Φ̂1,1,−2 + Φ̂−2,−2 − Ŝ−4 + ζ2 Ŝ−2

]
.

similar pattern of the single log N enhancement.
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P(1)
ph = 4S1;

P(2)
ph = −4S3 + 4Φ1,−2;

P(3)
ph = 8S5 − 24Φ1,1,1,−2 − 8 ζ2 S3

−8S1 ·
[
2 Φ̂1,1,−2 + Φ̂−2,−2 − Ŝ−4 + ζ2 Ŝ−2

]
.

similar pattern of the single log N enhancement.
Remark : in general, the GL parity is

Φ̃�m(x) =

(
− x Φ̃�m(x−1)

)
· (−1)w [�m] · (−1)# of negative indices

since
x

x − 1
=⇒ x

x + 1



Perturbative QCD (49/71)

N = 4 Super–Yang–Mills

Beyond leading Twist
Logs in γ and P

General structure of the RR Evolution Kernel

P(N) = S1 ·
(
αph + Â

)
+ B, Â = O(

1/N2
)
.

This feature is in a marked contrast with the anomalous dimension per se,
whose large N expansion includes growing powers of log N:

γ(N) = a lnN +

∞∑
k=0

1

Nk

k∑
m=0

ak,m lnm N.

Easy to see from

γσ = P(N + σγ) =⇒ γσ(N) =
∞∑

k=1

1

k!

(
σ

d

dN

)k−1 [P(N)
]k

,

Physically, the reduction of singularity of the large N expansion shows that
the tower of subleading logarithmic singularities in the anomalous
dimension is actually inherited from the first loop — the LBK-classical
γ(1) = P(1) ∝ S1, and the RREE generates them automatically !
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N = 4 Super–Yang–Mills

Recent progress
Fresh results

� RRE as a natural consequence of the conformal invariance
“Anomalous dimensions of high-spin operators beyond the leading order”

Benjamin Basso & Gregory Korchemsky hep-th/0612247

� “N=4 SUSY Yang-Mills: three loops made simple(r)”

D-r & Pino Marchesini hep-th/0612248

� “Anomalous dimensions at twist-3 in the sl(2) sector of N=4 SYM”

Matteo Beccaria 0704.3570 [hep-th]

� Bethe Ansatz fails (“maximally”) at 4 loops for twist-2
“Dressing and Wrapping”

Kotikov, Lipatov, Rej, Staudacher & Velizhanin 0704.3586 [hep-th]

� twist-3 gaugino = twist-2 “universal”
“Universality of three gaugino anomalous dimensions in N=4 SYM”

Beccaria 0705.0663 [hep-th]

� “Twist 3 of the sl(2) sector of N=4 SYM and reciprocity respecting evolution”

Beccaria, D-r & Marchesini
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Serving QCD
N = 4 SYM serving QCD

N =4 SYM has already demonstrated viability of the “inheritance” idea.



Perturbative QCD (51/71)

N = 4 Super–Yang–Mills

Serving QCD
N = 4 SYM serving QCD

N =4 SYM has already demonstrated viability of the “inheritance” idea.

A deeper understanding of the s → u crossing (x → −x symmetry)
should turn the “viability of” into the “power of” (negative index sums)



Perturbative QCD (51/71)

N = 4 Super–Yang–Mills

Serving QCD
N = 4 SYM serving QCD

N =4 SYM has already demonstrated viability of the “inheritance” idea.

A deeper understanding of the s → u crossing (x → −x symmetry)
should turn the “viability of” into the “power of”

N =4 SYM dynamics is classical, in certain sense.



Perturbative QCD (51/71)

N = 4 Super–Yang–Mills

Serving QCD
N = 4 SYM serving QCD

N =4 SYM has already demonstrated viability of the “inheritance” idea.

A deeper understanding of the s → u crossing (x → −x symmetry)
should turn the “viability of” into the “power of”

N =4 SYM dynamics is classical, in uncertain sense



Perturbative QCD (51/71)

N = 4 Super–Yang–Mills

Serving QCD
N = 4 SYM serving QCD

N =4 SYM has already demonstrated viability of the “inheritance” idea.

A deeper understanding of the s → u crossing (x → −x symmetry)
should turn the “viability of” into the “power of”

N =4 SYM dynamics is classical, in a not yet completely certain sense



Perturbative QCD (51/71)

N = 4 Super–Yang–Mills

Serving QCD
N = 4 SYM serving QCD

N =4 SYM has already demonstrated viability of the “inheritance” idea.

A deeper understanding of the s → u crossing (x → −x symmetry)
should turn the “viability of” into the “power of”

N =4 SYM dynamics is classical, in certain sense.
If so, the final goal — to derive γ from γ(1), in all orders !



Perturbative QCD (51/71)

N = 4 Super–Yang–Mills

Serving QCD
N = 4 SYM serving QCD

N =4 SYM has already demonstrated viability of the “inheritance” idea.

A deeper understanding of the s → u crossing (x → −x symmetry)
should turn the “viability of” into the “power of”

N =4 SYM dynamics is classical, in certain sense.
If so, the final goal — to derive γ from γ(1), in all orders !

QCD and SUSY-QCD share the gluons.



Perturbative QCD (51/71)

N = 4 Super–Yang–Mills

Serving QCD
N = 4 SYM serving QCD

N =4 SYM has already demonstrated viability of the “inheritance” idea.

A deeper understanding of the s → u crossing (x → −x symmetry)
should turn the “viability of” into the “power of”

N =4 SYM dynamics is classical, in certain sense.
If so, the final goal — to derive γ from γ(1), in all orders !

QCD and SUSY-QCD share the gluons.

Importantly, the maximal transcedentality (clagon) structures
constitute the bulk of the QCD anomalous dimensions.



Perturbative QCD (51/71)

N = 4 Super–Yang–Mills

Serving QCD
N = 4 SYM serving QCD

N =4 SYM has already demonstrated viability of the “inheritance” idea.

A deeper understanding of the s → u crossing (x → −x symmetry)
should turn the “viability of” into the “power of”

N =4 SYM dynamics is classical, in certain sense.
If so, the final goal — to derive γ from γ(1), in all orders !

QCD and SUSY-QCD share the gluons.

clever 2nd loop

clever 1st loop
< 2%

(
Heavy quark fragmentation

D-r, Khoze & Troyan , PRD 1996

)
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N = 4 Super–Yang–Mills

Serving QCD
N = 4 SYM serving QCD

N =4 SYM has already demonstrated viability of the “inheritance” idea.

A deeper understanding of the s → u crossing (x → −x symmetry)
should turn the “viability of” into the “power of”

N =4 SYM dynamics is classical, in certain sense.
If so, the final goal — to derive γ from γ(1), in all orders !

QCD and SUSY-QCD share the gluons.

Importantly, the maximal transcedentality (clagon) structures
constitute the bulk of the QCD anomalous dimensions.

Employ N =4 SYM to simplify the essential part of the QCD dynamics
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Conclusions

� A steady progress in high order perturbative QCD calculations is worth
accompanying by reflections upon the origin and the structure of higher
loop correction effects

� Reformulation of parton cascades in terms of Gribov–Lipatov reciprocity
respecting evolution equations (RREE)
� reduces complexity by (at leat) an order of magnitude
� improves perturbative series (less singular, better “converging”)
� links interesting phenomena in the DIS and e+e− annihilation channels

� The Low theorem should be part of theor.phys. curriculum, worldwide

� Complete solution of the N =4 SYM QFT should provide us with a
one-line-all-orders description of the major part of QCD parton
dynamics

� Long live QFT, and perturbative QCD !
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Colour and Hadrons Back to Physics

Colour dynamics in pp, pA, AB

� Colour in quark scattering

� Colour in hadron scattering

� Colour in multiple collisions

� Baryon Stopping and Strangeness

� Confinement in strong Colour field
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Colour and Hadrons Colour in Quark scattering

Quark inelastic scattering scenario: gluon exchange

l   e g  u 

g  ul   e 

u

dg  u l   e 
π +

u

d

Feynman plateau
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Colour and Hadrons Colour in Quark scattering

Meson inelastic scattering scenario: gluon exchange

g  u l   e 

= two “quark chains”
= Pomeron

Look now at the proton projectile:
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Colour and Hadrons Painting the proton

Single scattering scenario:

d
u
s

P Λ u
d

u

Coherent "diquark"

Coherence of the diquark ain’t
broken:

=⇒ a Leading Baryon: B(1) → B(2/3) + M(1/3) + . . .
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Colour and Hadrons Repainting the Proton

Kick it twice to break the Colour Coherence of the Valence Quarks:

ρ   K    π 
+       +         −

+ ... P −> 

d 

u P
u 

u

d 

s 

u 

d 

u 

Proton is “fragile”
Expect the baryon quantum number to sink into the sea :

B(1) → M(1/3) + M(1/3) + M(1/3) + . . . +B(0)
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Protons disappear from the fragmentation region in scattering of/off
Nuclei:

CERN
√
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� in p Pb collisions
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Colour and Hadrons Multiple Proton Scattering: pA, AB

Protons disappear from the fragmentation region in scattering of/off
Nuclei:

CERN
√

s = 17 GeV (NA49)

� in Pb Pb collisions

� in p Pb collisions
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ν — number of collisions

Known as Proton Stopping. Better be known as Proton Decay
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Colour and Hadrons Multiple scattering and strangeness

NA49: strangeness yield vs. target “thickness”

� Negative K to π yield

� Positive K to π yield

� The φ/π ratio versus the
“density of inelastic collisions”

� Strange baryons (Ξ) versus
the number of collisions

!!! Universal pattern:
� The Baryon “Stopping” and
� Lifting-off the Strangeness

Suppression

develop with the number of inelastic collisions;
be it in AA, pA (or even in pp)

thus making the QGP interpretation, . . . well, . . . unlikely



Perturbative QCD (60/71)

Colour and Hadrons Multiple collisions in pp



Perturbative QCD (60/71)

Colour and Hadrons Multiple collisions in pp

NA–49

φ to π
ratio in pp collisions

as a function of event multiplicity



Perturbative QCD (60/71)

Colour and Hadrons Multiple collisions in pp

NA–49

φ to π
ratio in pp collisions

as a function of event multiplicity



Perturbative QCD (60/71)

Colour and Hadrons Multiple collisions in pp

NA–49

φ to π
ratio in pp collisions

as a function of event multiplicity

A way to trigger on multiple collisions



Perturbative QCD (60/71)

Colour and Hadrons Multiple collisions in pp

NA–49

φ to π
ratio in pp collisions

as a function of event multiplicity

A way to trigger on multiple collisions
(or to select protons–perpetrators, if you wish)



Perturbative QCD (60/71)

Colour and Hadrons Multiple collisions in pp

NA–49

φ to π
ratio in pp collisions

as a function of event multiplicity

A way to trigger on multiple collisions
(or to select protons–perpetrators, if you wish)

Would have been extremely interesting to correlate enhanced strangeness
yield with stopping . . .
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One gluon exchange: Accompanying radiation
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]

� Secondary Gluon spectrum

� k⊥ < q⊥ =⇒ finite transverse momenta;

� dω/ω =⇒ rapidity plateau
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One gluon exchange: Accompanying radiation
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c = ifabcT
c·

[
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+
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(q⊥ − k⊥)2

]

� Particle density is universal — does not depend on the projectile:
Conservation of Colour at work

� Multiple scattering of a quark (or a qq̄ meson)

=⇒ NParticipant scaling
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Colour and Hadrons LPM effect in hA scattering

Inclusive spectrum of medium-induced gluon radiation:

ω dn

dω
� αs

π
·

[
L

λ

]
·
√

µ2λ

ω
, µ2λ < ω < µ2λ

[
L

λ

]2

The number of collisions of the projectile, nc = L/λ

nc

e
−η/2

η

np

2 ln nc

Coherent radiation = “Participant” scaling

Transition region, down to “Collision” scaling;
occupies finite rapidity range (fragmentation of the nucleus)



Perturbative QCD (63/71)

Colour and Hadrons Colour capacity

g  u l   e 

+ 11 8

Multiple collisions
of a (2-quark) pion



Perturbative QCD (63/71)

Colour and Hadrons Colour capacity

g  u l   e 

+10+27

3*3

8*8= 1+8+8+10

=1+8

Consider double scattering (two gluon exchange)
In meson scattering only two colour representations can be realized



Perturbative QCD (63/71)

Colour and Hadrons Colour capacity

g  u l   e 

+10+27

=1+8+8+10

8*8= 1+8+8+10

3*3*3

Consider double scattering (two gluon exchange)
The (3-quark) proton is more capacious, but still . . .



Perturbative QCD (63/71)

Colour and Hadrons Colour capacity

g  u l   e 

+10+27

=1+8+8+10

8*8= 1+8+8+10

3*3*3

Consider double scattering (two gluon exchange)
The (3-quark) proton is more capacious, but still . . .

Calculate the average colour charge of the two-gluon system:

1

64
· 0 +

8 + 8

64
· 3 +

10 + 10

64
· 6 +

27

64
· 8 = 6 = 2 · 3 =⇒

double density
of hadrons
=2 Pomerons



Perturbative QCD (63/71)

Colour and Hadrons Colour capacity

g  u l   e 

+10+27

=1+8+8+10

8*8= 1+8+8+10

3*3*3
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The (3-quark) proton is more capacious, but still . . .

Calculate the average colour charge of the two-gluon system:
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· 3 +

10 + 10
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· 8 = 6 = 2 · 3 =⇒

double density
of hadrons
=2 Pomerons

Cannot be realized on the valence-built proton:
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· 6 = 4
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Colour and Hadrons Colour coherence and breathing projectiles

Coherent picture of hadron accompaniment applies to the bulk of multiplic-
ity (small transverse momentum hadrons) and implies relatively “compact”
projectiles (on the penetrator side).
This destructive coherence invalidates the multi-Pomeron exchange picture !
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Colour and Hadrons Colour coherence and breathing projectiles

To have N Pomerons produce (up to) N times enhanced density of the
hadron plateau, one must be able to find
N independent (incoherent) partons inside the projectile.

Recall the good old Amati-Fubini-Stanghellini puzzle.
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To have N Pomerons produce (up to) N times enhanced density of the
hadron plateau, one must be able to find
N independent (incoherent) partons inside the projectile.

Successive scatterings of a parton do
not produce branch points in the com-
plex angular momentum plane (Reggeon
loops). It is the Mandelstam construction
that generates “Reggeon cuts”, with
Pomerons attached to separate — coex-
isting — partons.

=0

Two ways to break colour coherence:
� Look for perpetrators (hadron projectiles broader than usual);
� Increase the colour capacity of the projectile by increasing resolution.

Compare the number of collisions nc with the number of resolved partons

C (xh,Qres) =

∫ xproj

xh

dx

x

[
xGproj(x ,Q2

res )
]

C increases fast with Qres (hadron transverse momenta),

drops in the fragmentation region, etc
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Colour and Hadrons Confinement in Multiple Collisions

In the framework of the standard hadron (multi-Pomeron) picture
(e.g., in the successful Dual Parton Model of Capella & Kaidalov et al.)
one includes final state interactions to explain spectacular heavy ion
phenomena like J/ψ suppression, enhancement of strangeness and alike.
“Final state interaction” is a synonym to “non-independent fragmentation”
— cross-talking Pomerons, overlapping strings, “string ropes”, . . .

From the point of view of the colour dynamics, in pA and AA
environments we face an intrinsically new, unexplored, question:
After the pancakes separate, at each impact parameter we have the colour
field strength that corresponds to np/fm

2 ∝ A1/3 strings.
How does the vacuum break up in stronger than usual colour field?

1 fm 2 fm

successive screening

The question is, Does it go
� like BOOOOM (4 Pomerons)

� or rather like TA-TA–TA—TA?
(new hadron abundances)
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QCD–Cosmic Overview

QCD at Terrestrial
and

Cosmic Energies
QCD is far from over

� on theory side: new fascinating hopes for an analytic progress

� on pheno side: explore QCD performance in new environment
multiple scattering; fragile proton; hadronization in large colour fields, ...

important news for terrestrial/cosmic experimenters :

M.Cacciari and G.Salam, hep-ph/0512210
http://www.lpthe.jussieu.fr/~salam/fastjet/
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off-diagonal GLRR
non-diagonal transitions

Second loop G → G [quark box] (nf TR CF )

P
(S)
G = 8x − 16 +

20

3
x2 +

4

3
x−1 − (6 + 10x) ln x − 2(1 + x) ln2 x ,

P
(T )
G = 12x−4−164

9
x2+

92

9
x−1+(10+14x+

16

3
[x2+x−1]) ln x+2(1+x) ln2 x ;

Non-singlet F → F [via 2 gluons] (nf TR CF )

P
(S)
F = 12x − 4− 112

9
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40

9
x−1 + (2 + 10x +

16

3
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Extras

Integrability
Integrability

1. anomalous dimensions ⇒ eigenvalues of the dilatation operator

2. subset of composite operators su(2) = trace(XXXYYXYXXXYYY) can
be mapped onto a spin 1/2 system (X = spin up, Y = spin down)

3. At one loop, it is the Hamiltonian of the integrable XXX spin 1/2 chain

4. At higher loops, a more complicated spin chain, but with spins
interacting at neighbouring sites (up to a certain distance)

5. At all loops, there are conjectures for the all loop spin Hamiltonian,
exploiting the string results, assuming AdS/CFT duality.

6. Integrability = an infinite number of invariants (conserved quantities).
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Gluons at large angles
gluons in-between-jets

2- and 3-prong colour antennae are sort of ”trivial”: coherence being taken
care of, the answers turned out to be essentially additive

The case of 2 → 2 hard parton scattering is more involved (4 emitters),
especially so for gluon–gluon scattering.
Here one encounters 6 (5 for SU(3)) colour channels that mix with each
other under soft gluon radiation

The difficult quest of sorting out large angle gluon radiation in all orders in
(αs log Q)n was set up and solved by George Sterman and collaborators.

Recent (fall 2005) addition to the problem (G.Marchesini & YLD)
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Gluons at large angles
Puzzle of large angle Soft Gluon radiation

Soft anomalous dimension ,

∂

∂ lnQ
M ∝
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−Nc ln

(t u

s2

)
· Γ̂

}
· M, Γ̂Vi = EiVi .

6=3+3. Three eigenvalues are ”simple”.
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Gluons at large angles
Puzzle of large angle Soft Gluon radiation

Soft anomalous dimension ,

∂

∂ lnQ
M ∝

{
−Nc ln

(t u

s2

)
· Γ̂

}
· M, Γ̂Vi = EiVi .

6=3+3. Three eigenvalues are ”simple”.
Three ”ain’t-so-simple” ones were found to satisfy the cubic equation:[

Ei − 4

3

]3

− (1 + 3b2)(1 + 3x2)

3

[
Ei − 4

3

]
− 2(1 − 9b2)(1 − 9x2)

27
= 0,

where

x =
1

N
, b ≡ ln(t/s) − ln(u/s)

ln(t/s) + ln(u/s)



Perturbative QCD (71/71)

Extras

Gluons at large angles
Puzzle of large angle Soft Gluon radiation

Soft anomalous dimension ,

∂

∂ lnQ
M ∝

{
−Nc ln

(t u

s2

)
· Γ̂

}
· M, Γ̂Vi = EiVi .

6=3+3. Three eigenvalues are ”simple”.
Three ”ain’t-so-simple” ones were found to satisfy the cubic equation:[

Ei − 4

3

]3

− (1 + 3b2)(1 + 3x2)

3

[
Ei − 4

3

]
− 2(1 − 9b2)(1 − 9x2)

27
= 0,

where

x =
1

N
, b ≡ ln(t/s) − ln(u/s)

ln(t/s) + ln(u/s)

Mark the mysterious symmetry w.r.t. to x → b: interchanging internal
(group rank) and external (scattering angle) variables of the problem . . .


