

SMR/1842-23

International Workshop on QCD at Cosmic Energies III

28 May - 1 June, 2007

Lecture Notes

T. Rogers The Pennsylvania State University Eberly College of Science University Park, USA

Fully Unintegrated Parton Correlation Functions

Ted Conant Rogers

The Pennsylvania State University

(In collaboration with J.C. Collins and A.M. Staśto.)

QCD at Cosmic Energies 3, Trieste, Italy 2007

May 29, 2007

<u>Overview</u>

 Looking at details of final state interactions requires precise kinematics.
 (Already noted by, e.g., Watt, Martin, and Ryskin)

Eur.Phys.J. C31,73 (2003))

• Exact kinematics forces us to consider PCFs (nonperturbative objects) in both the initial and final states.

(fully unintegrated PDFs, soft factor, jet factors)

- Without usual approx., standard methods for disentangling soft/collinear gluons do not work.
- Problems even at lowest order.

Relevance to Cosmic Rays

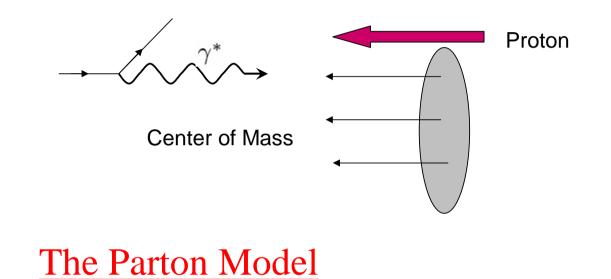
Standard approximations used in event generators.

(Pythia, Herwig, DPMJET, QGSJET, etc...)

• How does extrapolation of cross sections to higher energies work?

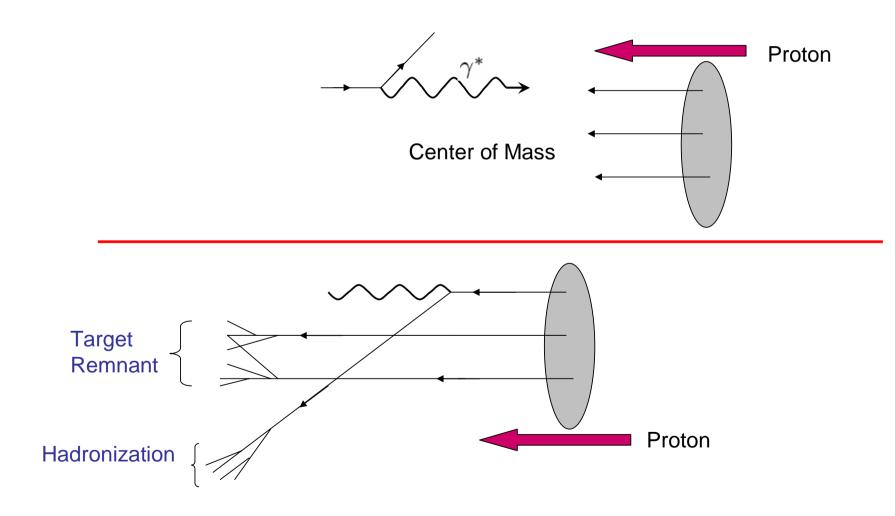
Leading Order DIS:

Conventional Intuition

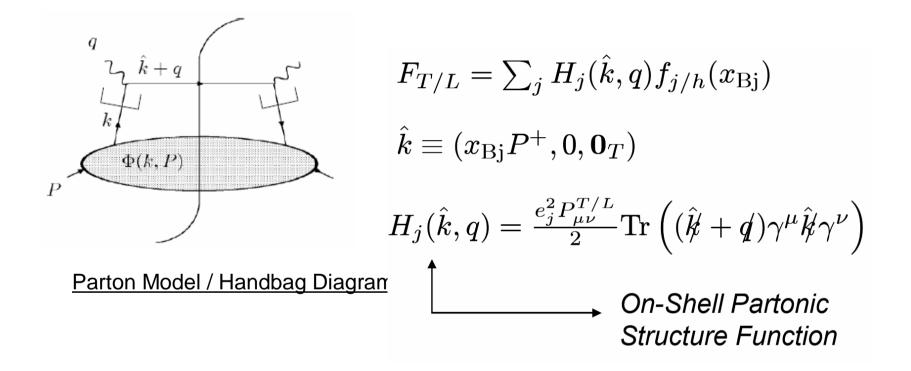


Leading Order DIS:

Conventional Intuitive



Conventional Diagrammatic Formalism



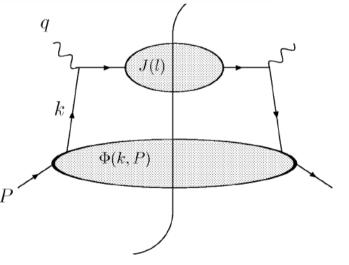
Cannot be the complete picture even at LO...

Struck Quark Must Hadronize (at least...)

$$W^{\mu\nu}(q,P) = \sum_{j} \frac{e_j^2}{4\pi} \int \frac{d^4k}{(2\pi)^4} \operatorname{Tr}\left(\gamma^{\mu} J_j(k+q)\gamma^{\nu} \Phi_j(k,P)\right)$$

□ Massless, Collinear approx:

$$k^+ = xP^+ + \frac{M_J^2 + k_T^2}{2(k^- + q^-)} \rightarrow xP^+$$

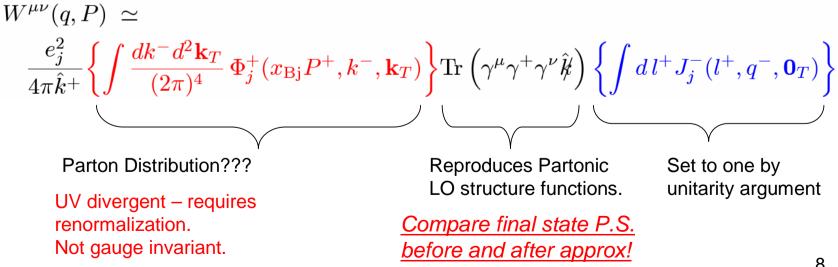


Steps to Reproduce Parton Model:

- Substitute hatted variables in hard scattering (e.m. vertex).
- For performing integrals, make a substitution in the bubbles:

$$k \longrightarrow (x_{\rm Bj}P^+, k^-, \mathbf{k}_T)$$
$$l \longrightarrow \left(l^+, \frac{Q^2}{2x_{\rm Bj}P^+}, \mathbf{0}_T\right)$$

Integrate over small components:



The Standard PDFs

Operator definition:

(Reproduces integral form up to c.t.)

$$f_j(x_{\rm Bj},\mu) = \int \frac{d\,y^-}{4\pi} e^{-ix_{\rm Bj}p^+y^-} \langle p | \bar{\psi}(0,y^-,\mathbf{0}_T) V_y^{\dagger}(n) \gamma^+ V_0(n) \psi(0) | p \rangle_R$$

Light-like Wilson lines for gauge invariance:

$$V_y(n) = P \exp\left(ig_s \int_0^\infty d\lambda \, n \cdot A(y+\lambda n)
ight)$$

$$n \equiv (0, 1, \mathbf{0}) \implies \underline{\text{Light-like!}}$$
$$V_y^{\dagger}(n)V_0(n) = P \exp\left(ig_s \int_0^{y^-} d\lambda \, n \cdot A(\lambda n)\right)$$

<u>Summary of LO Deeply Inelastic Scattering</u> in the Conventional Treatment:

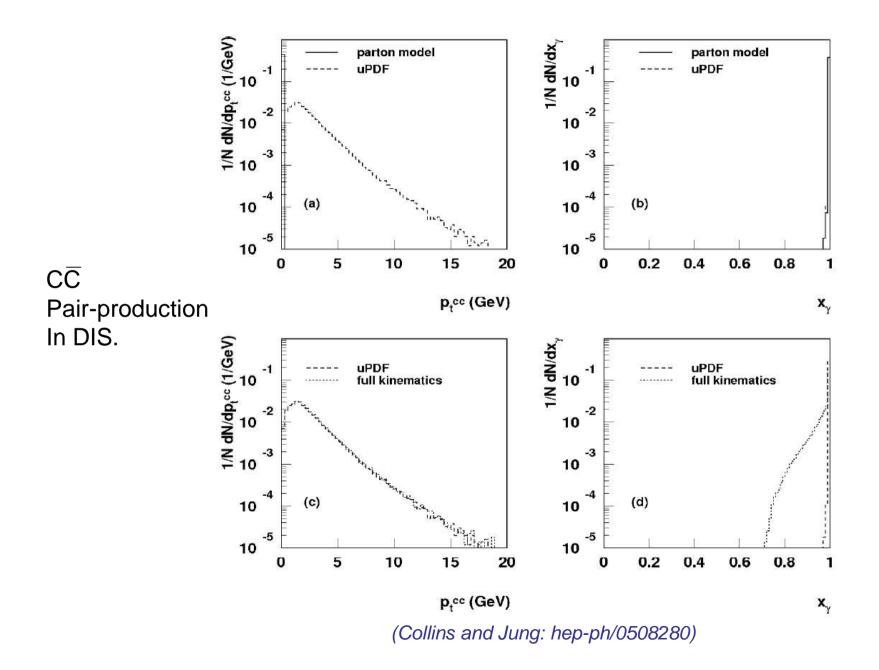
- There is a re-assignment of final state kinematics.
- Can be large.
- These kinematical approximations are necessary for reproduction of standard LO DIS expression (parton model).

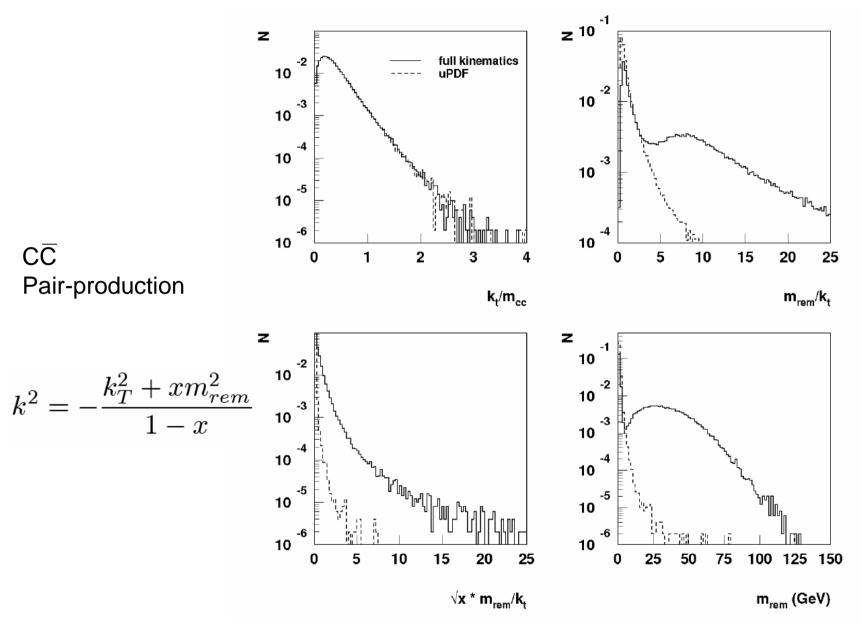
Important Distinctions!

• Integrated PDFs:

- Standard PDFs of classic LT factorization theorems.

- Unintegrated PDFs:
 - Depend on k_T , but still integrated over invariant energy.
- Parton Correlation Functions (Including *Fully Unintegrated* PDFs):
 - Differential in all components of four-momentum.





What is Needed?

- Exact overall kinematics of initial and final states.
- Explicit factors representing final states.
- NP factors differential in all components of fourmomentum.
- Hard scattering calculated with on-shell Feynman graphs.
- Factorization formula.
- Approximations should be consistent with gauge invariance! (Ward identities.)

Strategy Overview

- Define gauge invariant PCFs.
- Consider extra soft/collinear gluon attachments.
 - Characterize regions, R, of gluon momentum.
 - Apply Consistent Approximations.
 - Sum over graphs, Γ, apply Ward identities.
 - Obtain factorized form:

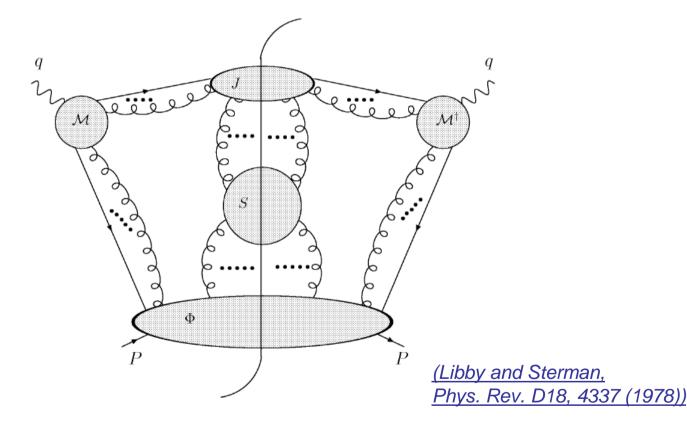
$$\sum_{R,\Gamma} C_R \Gamma = \text{factorized form + p.s. corrections}$$

- Identify contributions to PCFs.

• Reproduce, BFKL, DLGAP, etc... in appropriate kinematical limits.

Generalized Factorization:

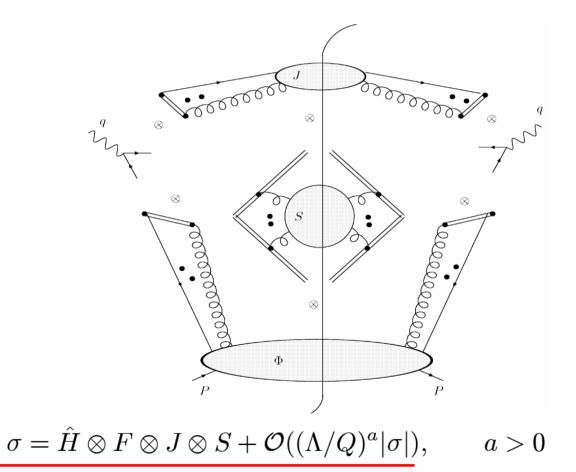
Should start with:



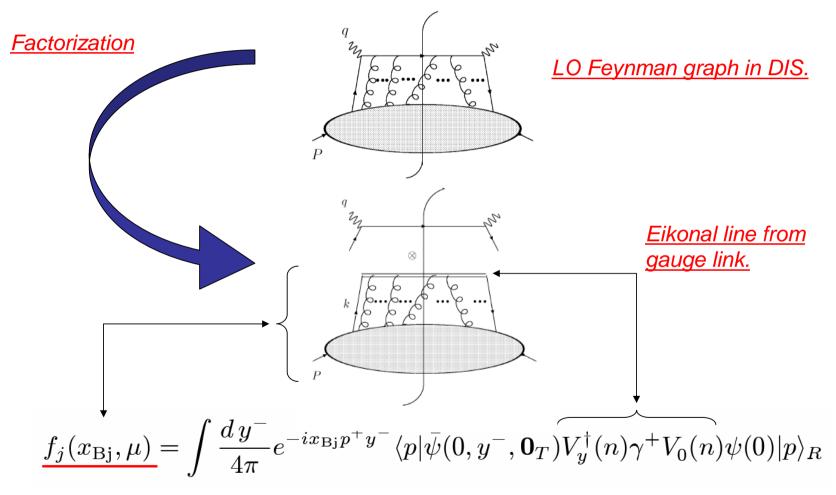
Must disentangle soft and collinear gluons to get...

Generalized Factorization:

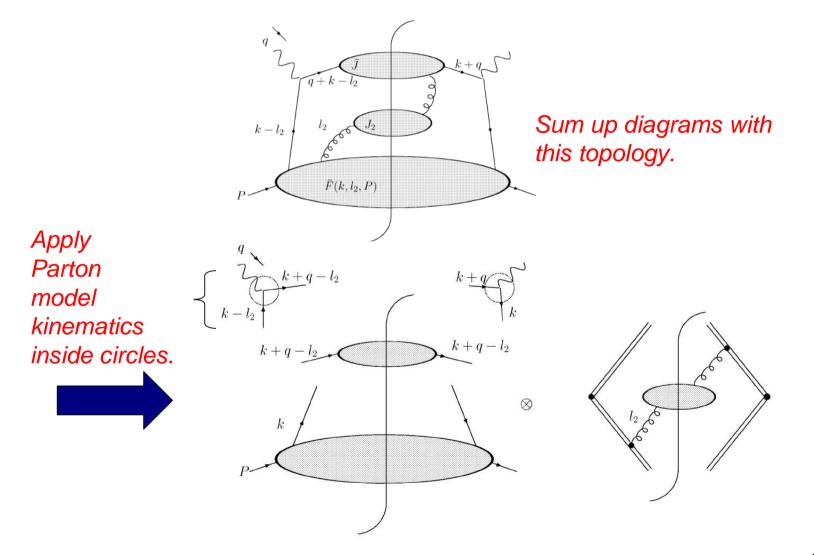
At lowest order in hard scattering...



<u>Compare Classic DIS Factorization</u> <u>Graphical structure in arb. gauge:</u>



Example: a single soft gluon:

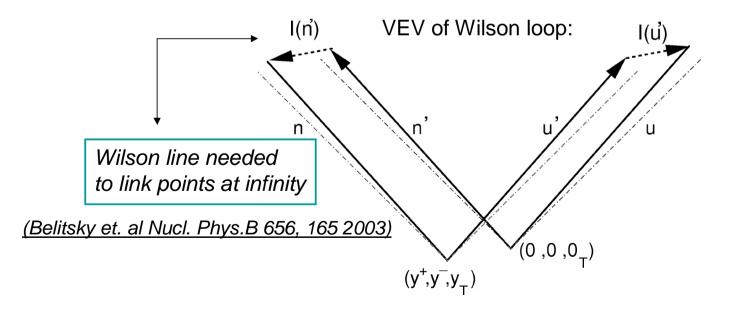


Definitions

Start with smallest region: <u>All components of parton momentum</u> <u>are small.</u>

Soft factor (coordinate space)

 $\tilde{S}(y,\eta_1,\eta_2,\mu) = \langle 0|I_{u';y,0}^{\dagger}V_y(u')V_y^{\dagger}(n')I_{n';y,0}V_0(n')V_0^{\dagger}(u')|0\rangle_R$



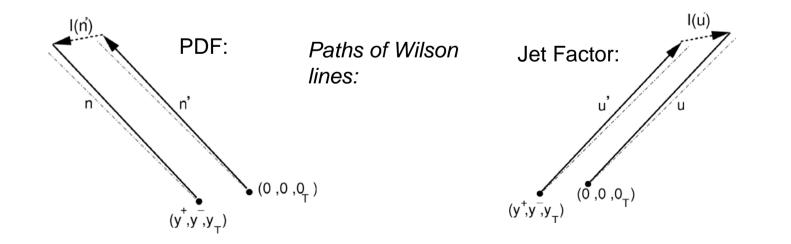
Definitions

PDF:

$$\tilde{F}^{+}(y,\eta_{1},\eta_{2},\mu) = \frac{\langle p|\bar{\psi}(y)V_{y}^{\dagger}(n')I_{n';y,0}\gamma^{+}V_{0}(n')\psi(0)|p\rangle_{R}}{\langle 0|I_{u';y,0}^{\dagger}V_{y}(u')V_{y}^{\dagger}(n')I_{n';y,0}V_{0}(n')V_{0}^{\dagger}(u')|0\rangle_{R}}$$

Jet Factor:

$$\tilde{J}^{-}(y,\eta_{1},\eta_{2},\mu) = \frac{\langle 0|\psi(0)V_{0}(u')\gamma^{-}I_{u';y,0}V_{y}^{\dagger}(u)\bar{\psi}(y)|0\rangle_{R}}{\langle 0|I_{u';y,0}^{\dagger}V_{y}(u')V_{y}^{\dagger}(n')I_{n';y,0}V_{0}(n')V_{0}^{\dagger}(u')|0\rangle_{R}}$$



21

Notes on Ward Identities and Factorization

- The above arguments work for Abelian gauge theory.
- Ward identity relations need to be more explicit for non-Abelian case:
 - Classic factorization theorems rely on unitarity cancellations.
 - Ward identities not always exact extra terms possibly violate factorization.

(See recent work of Collins and Qiu.)

Conclusions:

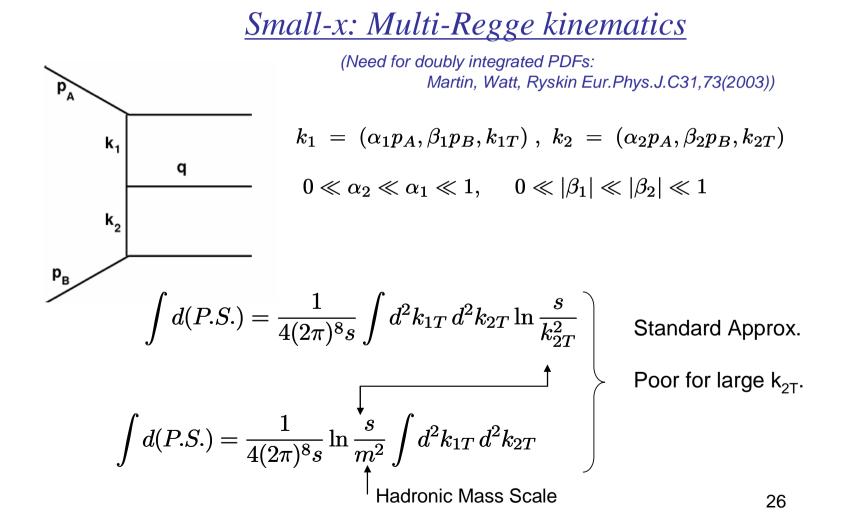
- Exact kinematics needed. (Unintegrated PDFs not enough.) (Basic program outlined for scalar theory by Collins and Zu (2005))
- Requires exact definitions for parton correlation functions.
- We have defined parton correlation functions and derived a factorization formula for the case of an Abelian gauge theory. (Strongly suggestive of a structure for the non-Abelian case.)

Outlook:

- Much work needed:
 - Full factorization theorem and implementation at NLO in non-Abelian case?
 - Evolution?
 - Unitarity?
 - Large-x, small-x, implementation in MCEGs?

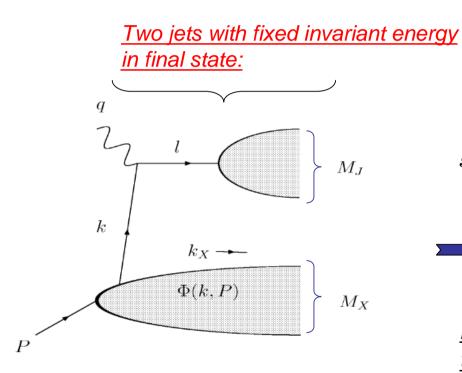
Backup slides

Kinematics and Final States



Kinematics and Final States

Large-x

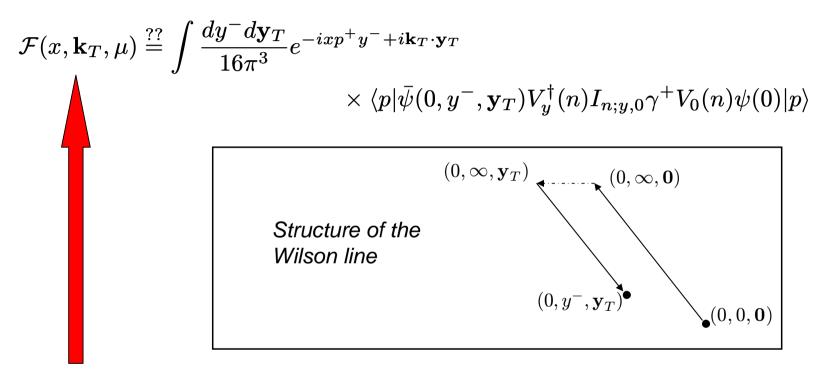


$$s = (1-x)M_p^2 + \frac{Q^2}{x}(1-x)$$

$$\implies k_T^2 < \frac{(1-x)}{4}M_p^2 + \frac{Q^2}{4x}(1-x)$$

But $k_{\underline{T}}$ runs to order Q^2 in the def. of the PDF!

Structure of the complete gauge link:



- <u>Definition</u> has divergences at infinite '-' rapidity even with massive gluon!!
- Not an appropriate definition.

Dealing with light cone divergences:

- Divergence is result of using light-like Wilson line in definition
- Use non-light-like Wilson lines?
- Use a type of generalized renormalization?
- We want to use fully unintegrated objects (PCFs) rather than the unintegrated PDF anyway.

Complications with typical unintegrated PDFs

$$\mathcal{F}(x,k_T^2) \stackrel{??}{=} Q^2 \frac{\partial}{\partial Q^2} x g(x,Q^2)$$

$$xg(x,Q^2) \stackrel{??}{=} \int_0^{Q^2} \frac{dk^2}{k^2} \mathcal{F}(x,k_T^2)$$

- **Positivity:** $\mathcal{F}(x, k_T^2) > 0$?
- Scale dependence in $\mathcal{F}(x, k_T^2)$?
- Consistent operator definitions of UI PDFs? Will discuss later...