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INTRODUCTION

Simplicity, speed of operation, flexible requirements for
sample preparation

Immediate analytical results (important for interactive
measurement programmes, €.g., study of contaminated
sites, remediation activities)

Non-destructive analysis (e.g., museum samples, works of
art, archaeological samples)

Multi-elemental capabilities

Good sensitivity

Local and bulk analysis

Portability




DESIGN CRITERIA
Excitation sources

Radioisotope

Half-live
VEEIR))

X- or y-ray
energy (keV)

Photons per
disintegration

>Fe

2.7

MnK x-rays
(5.9, 6.9)

0.28

109Cd

AgK x-rays
(22, 25)
88

59.5




DESIGN CRITERIA
Excitation geometries

Three geometries for

radioisotope-excited X-ray

fluorescence analysis:

a) annular source
b) central source
c) side source




DESIGN CRITERIA
Excitation sources

Typical excitation geometries
for an X-ray tube:

1) direct excitation

2) secondary target excitation
3) transmission geometry




DESIGN CRITERIA
Detectors

Selection of detectors - parameters to be taken into
account:

@ question to be answered (single or multi X-ray lines)

= energy of X-rays to be detected
= required energy resolution

= required efficiency

@ portability

@ costs, not only of the detector but also of the related
electronics and of the eventual cooling system




DESIGN CRITERIA
Detectors

= Room temperature and Peltier-cooled
semiconductor detectors:

Hgl, Si-PIN Si-drift CdTe




DESIGN CRITERIA
Development

Sample in a plastic
Lead shield holder

Revolving
source holder '“Cd annular

\ |- source

NN
N

Housing with
handle

*Fe /
annular \ \

Si-PIN detector— |

Detector
mounting plate—_|
and heat

Power supply
and signal lines




EXAMPLES of FPXRF SYSTEMS

= Portable XRF unit with thermoelectrically
cooled SiI-PIN detector




EXAMPLES of FPXRF SYSTEMS

= Portable XRF unit with liquid nitrogen cooled
Si(Li) (or HpGe) detector




EXAMPLES of FPXRF SYSTEMS

Direct/secondary excitation in Direct excitation, vacuum
air, Si-PIN detector, pinhole attachment, SD detector,
collimator polycapillary optics/collimator




EXAMPLES of FPXRF SYSTEMS

laser pointer

illumination diode ==

silicon drift detector=

laser pointere

Ceramic reference material SARM

Si (66.5% of Si0,)

Pd scatter
Al (188% of AL OR)

Pb-free bronze sample

Cu

measurement in:
B vacuum

air

Bi

) U !
U W o

- polycapillary lens

- collimator

lens/collimator
motorized holder

miniature camera

- Pd-anode X-ray tube
(50W), direct excitation in
vacuum or air

- pollycapillary lens and
brass collimator,

- silicon drift detector,
thermoelectrically cooled,
10 mm2 active area, 300
micrometers nominal
thickness, 140 eV FWHM at
5.9 keV, 1 microsecond
shaping,

- 2 laser pointers,

- CMOS camera with

- mechanical positioning
system




X-ray beam profile, polycapillary
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X-ray detector performance
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ADJUSTMENTS

Object not in the optimum measuring position




ADJUSTMENTS

Object in the optimum measuring position
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ADJUSTMENTS




ANALYTICAL PERFORMANCE

= capable of detecting chemical elements with
the atomic number >= 11 (sodium)

= detection limits in the PPM range
= pbeam spot diameter: 0.1 mm, 1 mm
= local and bulk analysis capability




PARAMETERS OF IN-SITU
MEASUREMENTS

= Critical penetration depth (information depth)

“Sample thickness from which 99% of a
fluorescence signal originates”

derit = My P = 4.61/(pygy)

ot = H(Eg)csc¥y + p(Ej)csct,




PARAMETERS OF IN-SITU
MEASUREMENTS

Element Information thickness, pm
=25 Z=15
P 12 79
Ca 50 32
Zn 540
Pb 930




PARAMETERS OF IN-SITU
MEASUREMENTS

= 50 % of d_;; = 90% of fluorescence signa
= 35 % of d;;, = 80% of fluorescence signa
= 15 % of d;;, = 50% of fluorescence signa

Essential in the analysis of heterogeneous
samples (mineralogy effects), samples of
iIrregular surface or with surface
contamination




PARAMETERS OF IN-SITU
MEASUREMENTS

Accuracy

= Analysis of standard reference materials

= Analysis of confirmatory samples by using
the reference (confirmatory) laboratory
method considered as standard analytical

method (minimum 10 % of total number of
analyzed samples)

if r2 between 0.7 and 0.9 — screening level
if 2> 0.9 PXRF and confirmatory data equivalent




PARAMETERS OF IN-SITU
MEASUREMENTS

Detection Limit

Interference-free detection limit not fully adequate for in-situ
applications

Precision-based DL determined as 3 times st. dev. of the results for
replicate analyses of low-concentration samples (5-10 x estimated

DL):
(I) site specific calibration standards, (ii) appropriate SRMs, and (iii)
clean sample matrix spiked with low concentration of target analytes

Field or performance-based DL — analysis of low concentration
outliers on data cross plots for log transformed PXRF results vs. log
transformed confirmatory results — DL where the linearity
disintegrates




PARAMETERS OF IN-SITU
MEASUREMENTS

= Blank samples
1. Instrument blank
- to verify that no contamination exists in the

spectrometer or on the probe window, e.g.,
Teflon block, quartz block, clean sand,
lithium carbonate

- daily analysis before and after
measurements




PARAMETERS OF IN-SITU
MEASUREMENTS

2. Method blank

- to monitor for laboratory-induced (sample
preparation) contaminants or interferences

e.g., clean silica or lithium carbonate that
undergoes the same sample preparation
procedure as analyzed samples

- (at least) daily analysis




PARAMETERS OF IN-SITU
MEASUREMENTS

Total uncertainty
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Interfering effects affecting accuracy
of XRF analysis

= Physical matrix effects

A. Particle size effects
e.d., Crin soil: 1 cm? irradiated area,
penetration depth 0.2 mm, DL=200 mg/kg
U
8.4 nug Cr in the information layer
(single grain of diameter of 135 um)




Interfering effects affecting accuracy
of XRF analysis

Solution: grounding and sieving to a uniform
and small particle size fraction

B. Heterogeneity of materials

(preliminary and simple procedure to
homogenize the material is recommended —
important during validation of XRF results
through confirmatory analysis)




Interfering effects affecting accuracy
of XRF analysis

C. Surface irreqularity effects

- detected X-ray fluorescence intensities are
systematically lower that those observed
from flat samples

- theoretical model to calculate unevenness
factor (source-sample distance, surface
peak-valley amplitude, frequency number
of convex and concave surfaces)




Interfering effects affecting accuracy
of XRF analysis

D. Mineralogy effects (dependence on
mineral assemblage — size, distribution and
position of minerals - present in the excited
volume (information volume):
- grain size (vs. volume from which the
fluorescence signal originates)
- excitation-detection efficiency




Interfering effects affecting accuracy
of XRF analysis

E. Chemical matrix effects
- Absorption
- Enhancement

F. Spectral interferences
- insufficient energy resolution of detector
- overlap of characteristic X-ray lines of two
or more elements (first identify all possible
spectral interferences and then apply spectrum
evaluation software)




Correction procedures for the
interfering effects

= Physical matrix effects
A. Surface irreqularity
1. Use of Compton and Rayleigh scattered
primary radiation

corrected ~ 'measured X Breference / Bmeasured

(for silicate rocks effective correction up to
about 3 mm only)




Correction procedures for the
interfering effects

2. Use of a special calibration procedure
based on relative instrumental calibration
factors

| — analyte; k — reference element




Correction procedures for the
interfering effects

= B. Mineralogy effects
- From experiments for representative (flat)
samples the rel. st.dev. of the average
concentration (R) is calculated

R =100(%) (s/n®°)/ C
U
n=[(100xs)/(RxC

mean

mean)]




Correction procedures for the
interfering effects

= Chemical matrix effects

A. Methods based on scattered primary radiation
(reduces also surface irregularity and moisture
effects)

l. /' lcom VS. cONcentration

for synthetic calibration samples or site-specific
calibration samples analysed by reference
analytical method




Correction procedures for the
interfering effects

= |./ (lc,m )° VS. CcOncentration
(L.G.Livingstone, X-Ray Spectrometry, 1982, 11, 89)

= For two samples with different matrices a
and b, and the same concentration of the
analyte, the optimum S from:

(Ii,b / Ii,a) / (Isct,b / Isct,a)S =1




Correction procedures for the
interfering effects

= B. Backscatter Fundamental Parameter
Method

0., 0,, and Q; (element mass per unit area) are unknown:

1exp{{2F/ +F, +FB} F :Qj[u‘j(Eo) N A{,(Ei)j
j (1+EE”h)S sin¥, sin¥,

I, = QiKi (Eo)

79

ZF] +FA + FB FA/B — QA/B luA./B(EO) 4 /uA./B(Ei)
’ sin ‘P, sin ‘Y,




EXAMPLES OF APPLICATIONS
(Inorganic pigments)

Test pattern A ared no. | areano. 1  Test pattern B

(chalk) (gypsum) \@

calcium
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I test pattern A

B testpattern B
sulphur |
(gypsum)

number of counts
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EXAMPLES OF APPLICATIONS

(Investigation of archeological objects from Kunsthistorisches
Museum, Vienna)

Egyptian and Near Eastern Collection: coal pot, small box
with lid (galena residue), wooden stele (pigment
identification), tweezers (alloy analysis), armlets (alloy
analysis)

Painting gallery: identification of pigments, priming coatings
Arms and Armour Collection: oriental saddle identification
of pigments and metal applications

Collection of Sculpture and Decorative Arts: bronze tondo,
small can, Venice glass (glass composition)

Museum of Entomology: Benin bronzes (alloy composition)




EXAMPLES OF APPLICATIONS

(Analysis of alloys — bronze tondo)

‘ !
¥
A
|

I b ‘

“Virgin and Child” by Donatello (Florence 1386 - 1466) - a bronze tondo
from Kunsthistorisches Museum’s (Vienna) collection.
Average composition of the bronze was used for documentation purposes.




EXAMPLES OF APPLICATIONS
(Oriental saddle)
|

Hg
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EXAMPLES OF APPLICATIONS
_ (Wooden stele)
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X-ray energy, kiloelectronvolts [keV]

|[dentification of Egyptian blue
(Ca0-Cu0-4Si0O) pigment in a wooden
stele from XXVI Dynasty, Thebes (640
B.C.).




ANALYSIS of SOIL

Concentrations of elements Concentrations of elements
determined in two locations, direct | determined in two locations,
in-situ measurements in-laboratory measurements
after processing the soil
Concentrations of elements in material
soil obtained from direct in-situ Location#1  Location#2 | Location#1 Location#2
measurements of the soil
surface layer and using the mg/g
powder soil samples after <pL? <DL 12
homogenization in the b
laboratory. The analyses were 37+5 47+5 + 66+3
performed with portable X-ray 161 +2 155+0.5 19.8+0.2
spectrometer system utilizing
the BFP method. The in-situ hg/s
concentrations were corrected 520 + 40
for the moisture contents.

6718 68+8

44+2 4712
a) - less than the detection limit (DL)

b) — the uncertainties due to counting 8417 81+3
statistics/range of results 119 +4 129+3

23 +2 19+3
640 +410 490 +130
45 5 45+7




Method Validation

Standards: NBS 1103, NBS 1108, NBS1115

B experimental data
ideal correlation line
obtained correlation line
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Determined versus certified concentration of elements in bronze standards




Conclusions

In situ X-ray fluorescence analysis of works of art and
objects of cultural heritage provides very valuable
information about inorganic composition of the objects in a
non-destructive manner

Analytical performance of the portable energy dispersive
XRF spectrometers is very similar to that of a laboratory
XRF system.

In situ measurements require max care and good
knowledge of XRF analysis to ensure a proper
interpretation of the analytical data

The application of external vacuum chamber (or helium
flash) is essential in the analysis of samples with low-Z
elements
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