

The Abdus Salam International Centre for Theoretical Physics

SMR/1843-3

X-Ray Emission Techniques for Forensic Applications

28 May - 1 June, 2007

X-ray Tube-Based Micro-Analytical Techniques at the IAEA Laboratories in Seibersdorf

> Dariusz Wegrzynek IAEA, Vienna

X-ray Tube-Based Micro-Analytical Techniques at the IAEA Laboratories in Seibersdorf

Dariusz Wegrzynek

Outline

Our laboratory

- What are the micro-analytical techniques at our disposal
- Micro-beam X-ray spectrometry focusing X-rays
- Our X-ray tube based micro-beam spectrometer
- Applications
- Synchrotron is better than X-ray tube
- Conclusions
- Acknowledgement

IAEA Seibersdorf Laboratories

The IAEA Laboratories are located about 35 km south of Vienna, Austria

X-Ray Fluorescence Group

- The XRF Group is part of the Instrumentation Unit which belongs to Physics, Chemistry, Instrumentation (PCI) Laboratory.
- It is a small team of 3 persons.
- Main activities include support to the IAEA Technical Cooperation Projects, training of the Agency's fellows, provision of in-house analytical services, development of equipment and software for selected applications.

Micro-Analytical X-Ray Techniques

- Two types of micro-analytical X-ray tube based techniques available:
- total reflection X-ray fluorescence spectrometry
- micro-beam, scanning X-ray fluorescence and absorption spectrometry

Focusing X-ray radiation

In a similar fashion like visible light, X-rays are refracted and reflected at an interface between two media.

The "inverted" picture of the phenomenon for Xrays as compared to the picture for visible light is due to distinct values of the refractive index for Xrays and visible light in e.g. glass.

Refraction and reflection

Total internal (light) and external (X-rays) reflection

• for visible light: medium 1 – glass, medium 2 – air, $(\alpha_1)_{crit} \approx 49^{\circ}$

• for 17.5keV X-rays: *medium* 1 – air, medium 2 – glass, $(\alpha_1)_{crit.} \approx 89.9^{\circ}$

X-ray fluorescence and absorption mapping

X-ray confocal microscopy

X-ray focusing optics

Polycapillary lens

X-ray focusing optics

Refractive lens

Micro-beam X-ray Setup Scheme

spatial resolution: 15 - 40 μm

The Micro-Beam X-ray Scanning **Spectrometer** Si drift detector optical (fluorescence) microscope X-ray tube on a stage Si(Li) detector (confocal) transmission detector stage sample stage optical bench

Measuring geometry

polyCCC (confocal detector)

sample in measuring position

polycapillary (primary beam) 15

Detection Limits of Elements

40 μm t = 1000s

Data acquisition software

SPECTOR-LOCATOR: microscopic image of the sample (×150) and the collected X-ray absorption/fluorescence images

EA

Identification of minerals

Two "similar" garnets: almandine-spessartine (left) and almandine (right)

Identification of minerals

- Based of the cumulative X-ray fluorescence spectrum of the MERCK CertiPUR standard the sensitivity curve is established. The thickness of the standard residue, confirmed by the data from transmission measurements, was well within the "thin sample" approximation – the sensitivity values were calculated assuming a "thin sample" model.
- The sensitivities obtained in step 1 are used to calculate the element concentrations in the dried residue samples prepared from the candidate RM. The obtained concentrations are corrected for absorption, using the data from transmission measurements.

II Spector - V./Scam/2709/Loff/good_s1.det											
			- 3 M	Au [] 18			14 KS(aba al33	101 J	- ((00)	7
Demolotives 1 Demoletions 2 Demoletions 2 Map 1 Map 1 Map 2 Map 3 Map 4 Map 4 Map 4 Map 3 Map 3 Map 5 Map 5 2 Map 5 Map 5 2 Map 5 2											
Bur [0.45]	# 105-05-Map-2		101-01-00	nnalest I			9-12			np H	
ztort r.ton pause Sontinue			a James	nduman.	÷						
restart recet	Tolul Sum ROI Sum	ROI#	Tolol Som 64	F(O) Saan aaaa	ROI# (Tolol Som 099285241	ROI Sum anan	ROJ#	Totel Fam 174890	ROI Sum aaaa	ROI#
24039.43	@ III.on(etc.gc.)		0 100-0000	nontral perce 1	al Di Xi	V. 114634645	40.11	aloi xi	# 108-00M	an N	aloi al
ReutTime 0.00					2				-	•••	
ScauDoon 100.0004			-				• •				
X Position 127	Total Sum ROI Sum 37912	ROIM	Total Sum 7952010	ROI Sum 96437	ROM X 10010 (Total Sum 96437	ROI Sum	ROI#	Total Sum 101028	ROI Sum	ROI#
Y Position	🖗 subcubs rankiareks	<u>م الالم</u>	W 11021030	872	_IQ 3	W I LUCLION	NATE: N		W 19709129	up-1	
Angle O	\land		8	• •	H		• •			•	
RealTime	e. / \		Band	OKCE			00		-		
LiveTione 1.00	Total Gian ROLGian 62110	ROI# (Total Sum 97896	ROI Sum	ROI#	Total Sum 753950	HOI Sum	ROI#	1 obel 1 anni 1 83035	ROI Sum	ROM#
BealTime?	102+62-Crossedative: 2		W 100-0004			W 112-12-04	nat -		g toshester	m 1	
0.82 LiveTime? 0.30		-					000			-	
	Total Sum ROI Sum 08028024108028024	TX01# 10 10200 C	Total Sum 250063	ROI Sum	R01#	Total Sum 4207477	ROI Sum	ROI#	Total Sum 220200	ROI Sum	ROI#

• Determination of the sensitivity calibration curve:

$$(I)_{S} = S(Z)m$$

$$(I)_{x} \approx S(Z_{x})m_{x}F(E_{eff},E_{x})$$
$$c_{x} = \frac{m_{x}}{m_{u}}$$

 $F(E_{eff}, E_x) = \frac{1 - \exp\{-((\mu \rho d)_{eff} + (\mu \rho d)_x)\}}{(\mu \rho d)_{eff} + (\mu \rho d)_x}$

 Estimation of the absorption correction factor

	Known Concentration	Determined Concentration
Ti	0.884% (0.082)	0.82 % (0.055)
Cr	352 ppm (22)	288 ppm (50)
Mn	1757 ppm (58)	1670 ppm (90)
Fe	7.91 % (0.24)	6.8 % (0.3)

CT Principle – Parallel Beam Projections

2D/3D CT scan (absorption and/or fluorescence)

"Replay" of the scan with optimised ROI's, export of the sinogram data

Absorption correction of the fluorescence sinograms

Construction of interpolated sinograms for 3D scans

Reconstruction of the object cross-section(s) by filtered back projection algorithm

Volumetric rendering, 3D reconstruction, 3D mapping of element distribution, volume and area measurements

CT Absorption and XRF Imaging

Simultaneous X-ray absorption and X-ray fluorescence imaging in a "pencil" beam geometry

CT Absorption and XRF Imaging

Reconstructed volumetric models of an osteoporotic bone fragment (left) and a shell fossil (right). CT absorption scan mode.

Depleted Uranium Particle

Reconstructed volumetric model (left) of a DU grain (right) obtained in absorption mode

Depleted Uranium Particle

Reconstructed volumetric models of a DU grain (left to right): absorption, U-La not corrected for absorption and U-La corrected

Depth profiling of element distribution with confocal setup

a) - g) distributions of the intensities of scatter peaks, K-Ka, Ca-Ka, Mn-Ka, Fe-Ka, Zn-Ka, and U-La obtained from cross-sectional confocal X-ray fluorescence scan through the root tip. Scan parameters: step size dx = 22.124 μ m, dy = 20.000 μ m, scan size 19x21 pixels, spectra acquisition time per pixel = 500s for "live pixels", 1 s for others, spatial resolution of the confocal setup FWHM = $60 \mu m$, Mo-anode X-ray tube operated at 45kV/40 mA; h) cumulative X-ray spectrum (sum of all individual pixel spectra) collected during the confocal scan; i) photograph of the indian mustard root.

Distribution of elements in human bone obtained by confocal scanning

AEA

36

Fe-rich plaque covering rice root

red – iron yellow – potassium

Individual Particles

Individual Particles

Loading the needle with a selected POI in the µ-manipulation system

DU particle from a contaminated soil, loaded on a sharpened graphite needle

Accelerators

Diagrams of a cyclotron accelerator and a synchrotron storage ring **IAEA**

Synchrotron light

- for a 3 GeV synchrotron storage ring: $\frac{v_e}{c} = 0.999999985$
- angular divergence (< 1 mrad): $\Delta \theta \propto \frac{1}{\gamma} = \sqrt{1 \left(\frac{v_e}{c}\right)^2}$
- the intensity of the emitted light (radiated power) increases rapidly with the electron energy:

$$P \propto \left(\frac{E}{m_{e}c^{2}}\right)^{4} \frac{1}{R^{2}} = (\gamma)^{4} \frac{1}{R^{2}} = \frac{1}{\left(1 - \left(\frac{v_{e}}{\beta}\right)^{2}\right)^{2}} \frac{1}{R^{2}}$$

Synchrotron light

emission of synchrotron radiation by accelerated electrons in a bending magnet

Insertion devices

Bending magnet, wiggler, and undulator **AEA**

Angstrom Quelle Karlshure (ANKA)

The IAEA set-up at the synchrotron beamline

Refractive lens - beam profile

Horizontal and vertical beam dimension after focusing with compound refractive lens (CRL) optics.

Pu/U-rich particles – X-ray tomography

Reconstructed volumetric distributions of elements in individual "hot particles": left - plutonium rich particle (blue) attached to a coral matrix (yellow) and right – a U/Pu rich particle (green/blue) embedded in sediment matrix (red)

Pu/U-rich particles – X-ray tomography

Uranium (left) and plutonium (right) distribution in a U/Pu rich particle

Pu and U profiles

Individual particle U and Pu profiles

Mosquito organ's imaging – possible?

Probocsis of a female mosquito (Anopheles), tomographic reconstruction (left), anatomical drawing (right – Aedes aegypti)

X-ray phase-contrast enhanced micro tomography

Experimental setup established at the ANKA synchrotron Fluo-Top beam line for investigating the morphology of malaria transmitting mosquitoes

X-ray phase-contrast enhanced micro tomography

Left: single X-ray phase-contrast enhanced projection image of an abdomen of irradiated male mosquito; right: reconstructed volumetric model through the mosquito abdomen

Phase-contrast X-ray imaging of live specimens

Summary and conclusions

- X-ray tube based micro-analytical techniques are well suited for characterization of minute samples, and heterogeneous objects.
- Quantitative analysis is possible however much more difficult as compared to the analysis of bulk samples.
- The micro-beam X-ray techniques provide additional information about the microscopic structure of bulk material.
- When combined with synchrotron radiation very low amount of substance can be detected, coherent beam allows performing phase-contrast imaging of weakly absorbing objects, e.g. tissue, biomedical samples.

Acknowledgements

The results presented were obtained with collaboration of many people :

- A. Markowicz, E. Chinea-Cano, S. Bamford, IAEA Laboratories Seibersdorf
- P. Wobrauschek, C. Streli, N. Zoeger, Vienna University of Technology, Atominstitut, Austria
- M. Eriksson, M. Betti, S. Toeroek, European Commission Joint Research Center, Institute for Transuranium Elements, Karlsruhe, Germany
- R. Simon, S. Staub, T. Weitkamp, A. Rack, Forschungszentrum Karlsruhe GmbH, Institute for Synchrotron Radiation, Eggenstein-Leopoldshafen, Germany

Thank you for your attention!

