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Organization of this talk

1. Disordered Materials

2. Molecular Dynamics

3. Activation-Relaxation Technique (ART)

4. Bond-exchange à la Wooten-Winer-Weaire

5. Results

work done in collaboration with Normand Mousseau, Richard Vink,
Liesbeth Huisman, Kees Storm, Werner van der Weg, Partha Biswas,
. . .



Disordered materials were not always appreciated:

“To many persons here a block of ice may seem of no more interest
and beauty than a block of glass; but in reality it bears the same
relation to glass that orchestral harmony does to the cries of the
marketplace. The ice is music, the glass is noise; the ice is order,
the glass confusion.”

(J. Tyndall, “Heat – A Mode of Motion”, Longmans, Green, London, 1863)

Still, many disordered materials are important:

amorphous silicon (a-Si): Staebler-Wronski effect
SiO2 glass: Stability if used for storage of nuclear waste
metallic glasses: aging of stainless steel
proteins: Folding



Metalic glasses

Computer configuration of Ni80P20

Well approximated by Dense Random Packed (DRP) model



Network-forming glasses

Computer configuration of a-Si
Well approximated by Continuous Random Network (CRN) model



Glassy and amorphous materials

crystalline state
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Questions:

• nature of dynamics:
is it local?

• glass transition

• anomalous relaxation
+ ”aging”

• Structure + microscopic
details

• ”universality”?



Hand-built Dense Random Packing (DRP) models

• Bernal (1960): pour thousands of steel balls into a flexible con-
tainer, placed on an irregular surface;

• Knead to maximise the density;

• Pour wax or paint over the balls to fix the configuration.

• Modern approach: colloidal particles, confocal microscopy

Hand-built Continuous Random Network (CRN) models:

• Bell and Dean (1966), Polk (1971), Polk and Boudreaux (1973)

Weak points:

• not many atoms (∼ 500), ⇒ many atoms at the surface

• building rules rather arbitrary



Molecular Dynamics

Principle of Molecular Dynamics (MD): integrate Newton’s law

�X(t + ∆t) = �X(t) + ∆t · ∂ �X

∂t
+

1

2
(∆t)2 · ∂ �X

∂t
+ . . .

or in a more practical representation:

�x(t + ∆t) = �x(t) + ∆t · �v(t)

�v(t + ∆t) = �v(t) + ∆t · �F (t)/m

More accurate schemes:

• leap-frog

• Verlet

• velocity-Verlet

• Gear algorithms

• · · ·



Size limitations in MD

• For simple short-range potential (e.g., Lennard Jones):

N can be as large as millions of atoms

One force calculation takes ∼ Nµs of CPU-time

• If Coulombic forces are present:

Either the program scales as N 2, or a complicated scheme

(Ewald summation, multipole expansion) is required;

Slowing down by one or two orders of magnitude

• If gravitational forces are present:

even worse, no shielding

• For ab-initio computations:

N ∼ 1000 atoms

One force calculation takes minutes to days of CPU-time



Time limitations in MD

Molecular Dynamics simulates “natural” dynamics of system
Allows for studying dynamical properties:

• Self-diffusion

• Structural relaxation

• Adaptation under strain and stress

Nature limits the time step:

Time step ∆t is limited by
phonon frequency

∆t ∼ 1 to 10 femtoseconds.

10 to 50 femtoseconds
one phonon time
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Experimental cooling rates

Structure of glasses depends on cooling rate

g TmT

fast cooling

en
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gy

temperature

slow cooling

Two important temperatures:
Tg is the temperature where the viscosity crosses 1012 Poise
Tm is the melting temperature (from the crystalline phase).
Between Tg and Tm: undercooled liquid



Cooling rates

Experimental cooling rates: For metallic glasses, simulations need:
∼ (1000 K) / (105 K/s) = 0.01 second
= 1013 time steps

For network glasses:
∼ (1000 K) / (10−1 K/s) = 104 second =
1019 time steps

Achievable: up to 10 µs or 1010 time
steps
⇒“true” relaxation outside reach of
MD.



Cause of slow evolution

Activated dynamics makes MD slow

• At low temperatures, the long-time dynamics is activated.

• The time evolution can be characterized by a sequence of hops between local

energy minima (basins).

• Rate of hop i with energy barrier Bi:

ri = νi exp (−Bi/kbT )

• This forms the basis for transition state theory (TST).



Complex energy landscapes
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• No symmetry, curved trajectories

• high dimensions: if n atoms are involved, the trajectory is located in a 3n-

dimensional sub-space.

• How can we explore the energy landscape?

We want a method that brings the configuration from

one minimum (say, B) to another (e.g., A or C).



Activation-relaxation technique (ART), Barkema & Mousseau 1996

• Converge to a first-order saddle point (activation),

• go down on the other side (relaxation).

Minimum – Saddle point – Minimum trajectory

�
Complex atomistic rearrangement
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These mechanisms are not imposed a priori, but

are determined by the constructed trajectory.

• events can involve few or hundreds of atoms

• activation energies can be meV to many eV



Obtaining well-relaxed structures with ART

1. Generate one ART event

2. If the energy decreases,

accept it

3. If the energy increases,

accept it with probability

Pacc = Min [1, exp (−∆E/kbT )]

(Metropolis acceptance ratio)

4. Iterate 1-3

Much more efficient than MD:
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Elementary mechanismns in network glasses

Analysis of ART-events in a-Si:

dominant mechanism is a so-called bond transposition

C

D D

C

B

A

B

A

• Four atoms A, B, C, and D are involved;

• Before, bonds AB, BC, and CD exist

• After, bonds AC, BC, and BD exist:

bonds AB and CD are replaced by bonds AC and BD



Elementary mechanismns in network glasses (2)
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• Top and bottom: colored atoms change

their bonding

• middle: colored atoms move more than

0.1 Å(typical amplitude of vibrations)

• energy difference is 0.57 eV

• energy barrier is 3.47 eV

• total displacement is 2.27 Å



Wooten–Winer–Weaire (WWW) approach (1985)

1. Start: a periodic diamond cubic structure

2. Randomization through bond transpositions at T = ∞
3. Simulated annealing (successively lower T )

Keating potential:

E =
3

16

α

d2

∑
l,i

(
rli · rl,i − d2

)2
+

3

8

β

d2

∑
l{i,i′}

⎛
⎝rli · rl,i′ +

1

3
d2

⎞
⎠

2

• α, β are bond-stretching, bond-bending force constants

• d = 2.35 Å is the Si-Si bond length in crystal

• Usual values: α = 2.965 eV/Å2 and β = 0.285 α.



WWW approach (continued)

In one move:

1. reconnect atoms (bond transposition)

2. relax configuration

3. accept/reject, Metropolis algorithm:

Pacc = Min
[
1, exp

(
−(Eaft − Ebef)/kbT

)]

Our improvements (Barkema & Mousseau, PRB 2000):

1. Quit relaxing a.s.a.p.

2. Start truly random

3. first local relaxation

4. efficient quenching



Properties of our a-Si samples

DTW(1) DTW(2) Conf. 2 Conf. 3 4096

E(eV)/atom 0.336 0.367 0.267 0.264 0.304

ρ/ρ0 1.000 1.000 1.043 1.040 1.051

〈r〉/r0 0.996 0.997 0.982 0.982 0.980

∆r/r0 (%) 2.52 2.65 3.94 3.71 4.17

〈θ〉 109.24 109.25 109.30 109.27 109.28

∆θ 10.51 11.02 9.21 9.20 9.89

Rings/atom

4 0.015 0.000 0.000 0.000 0.000

5 0.491 0.523 0.472 0.480 0.490

6 0.698 0.676 0.761 0.750 0.739

7 0.484 0.462 0.507 0.515 0.467

8 0.156 0.164 0.125 0.116 0.148

9 0.034 0.033 0.035

DTW=Djordević, Thorpe and Wooten, PRB 52, 5685 (’95)

other confs: Barkema & Mousseau, PRB (2000)



After minimization with modified SW potential

Sample 2 Sample 3 4096

E(eV)/atom (mSW) -4.026 -4.034 -3.990

E(eV)/atom (SW) -4.126 -4.133 -4.106

ρ/ρ0 0.947 0.950 0.936

〈r〉/r0 1.018 1.017 1.020

∆r/r0 (%) 2.9 2.7 3.2

〈θ〉 109.25 109.24 109.20

∆θ 9.77 9.70 10.51

Rings/atom

4 0.000 0.000 0.001

5 0.472 0.480 0.489

6 0.840 0.847 0.830

7 1.011 1.023 0.979

8 2.025 2.002 2.064

comparison with ART: -4.14 eV/atom (SW) and -4.04 eV/atom (mSW) with

0.5% three-fold and 1.1% five-fold coordinated atoms

comparison with MD: -4.088 eV/atom (SW)



Electronic density of states (EDOS)
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Radial Distribution Function (RDF)

Experiment

Config. 3 - mSW
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dashed line: sample 3, relaxed with mSW, scaled by 0.99

solid line: experiment



Bond Angle Distribution

Keating
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Connell-Temkin networks (a-GaAs)

• Tetrahedrally coordinated network with two types of atoms

• no bonds between like atoms



Silica glass (vitreous SiO2), Vink & Barkema 2003

• Start with a large, well-relaxed fourfold coordinated CRN

• place oxygen atoms in the middle of each bond

• continue bond-exchanges with the Tu-Tersoff potential

• relax the configuration with an interatomic potential for silica (BKS)



Results on silica vs. expt (Wright 1994)
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Results on silica vs. expt (Wright 1994)
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Results on silica vs. MD (Horbach&Kob)

3k 60k 300k MD

N 3000 60,000 300,000 1002

E -58.12 -58.10 -58.09 –

ρ 2.20∗ 2.20∗ 2.20∗ 2.27-2.37

Si-O

mean 1.606 1.608 1.606 1.595

rms 0.010 0.011 0.011 –

O-Si-O

mean 109.44 109.43 109.43 108.3

rms 3.95 4.59 4.32 –

FWHM 8.3 9.3 9.8 12.8

Si-O-Si

mean 153.89 153.57 153.00 152

rms 11.75 11.72 11.94 –

FWHM 34 33.3 34.5 35.7

z4 100% 100% 99.997% 99.8%

z2 100% 100% 99.998% 99.8%

Rχ - 4.7% 4.9% 9%



Results on silica: long-range correlations?
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Results on silica: long-range correlations? (2)
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Results on silica: long-range correlations? (3)
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Crosslinked polymer networks (actin skeleton)

• semiflexible polymers, connected by crosslinkers

• ⇒ Tetrahedrally coordinated network, with pair-wise preferred angle of 180o



Summary

• sufficiently long time scales can only be reached with a crude simulation of

the microscopic dynamics

• ART is an alternative for MD, for structural relaxation

• for network glasses (a-Si, silica, ...) high-quality sample configurations can be

obtained with bond-switching simulations

Future work

• What makes glass so glassy?

• Understanding ART better

• Generation of undercoordinated networks

• mechanical properties of crosslinked polymer networks




