

SMR/1845-3

Conference on Structure and Dynamics in Soft Matter and Biomolecules: From Single Molecules to Ensembles

4 - 8 June 2007

Computer Simulation of Structural Glasses

G.B. BARKEMA

Faculty of Mathematics and Natural Sciences University of Leiden 2300 RA Leiden THE NETHERLANDS

Computer simulation of structural glasses

Gerard T. Barkema Institute for Theoretical Physics, University of Utrecht & Lorentz-Institute for Theoretical Physics, University of Leiden The Netherlands

Trieste, June 5, 2007

- 1. Disordered Materials
- 2. Molecular Dynamics
- 3. Activation-Relaxation Technique (ART)
- 4. Bond-exchange à la Wooten-Winer-Weaire
- 5. Results

work done in collaboration with Normand Mousseau, Richard Vink, Liesbeth Huisman, Kees Storm, Werner van der Weg, Partha Biswas, ... "To many persons here a block of ice may seem of no more interest and beauty than a block of glass; but in reality it bears the same relation to glass that orchestral harmony does to the cries of the marketplace. The ice is music, the glass is noise; the ice is order, the glass confusion."

(J. Tyndall, "Heat – A Mode of Motion", Longmans, Green, London, 1863)

Still, many disordered materials are important:

amorphous silicon (a-Si): Staebler-Wronski effect SiO₂ glass: Stability if used for storage of nuclear waste metallic glasses: aging of stainless steel proteins: Folding

Metalic glasses

Computer configuration of $Ni_{80}P_{20}$ Well approximated by Dense Random Packed (DRP) model

Network-forming glasses

Computer configuration of *a*-Si Well approximated by Continuous Random Network (CRN) model

Glassy and amorphous materials

position

Questions:

- nature of dynamics: is it local?
- glass transition
- anomalous relaxation + "aging"
- Structure + microscopic details
- "universality"?

Hand-built Dense Random Packing (DRP) models

- Bernal (1960): pour thousands of steel balls into a flexible container, placed on an irregular surface;
- Knead to maximise the density;
- Pour wax or paint over the balls to fix the configuration.
- Modern approach: colloidal particles, confocal microscopy

Hand-built Continuous Random Network (CRN) models:

- Bell and Dean (1966), Polk (1971), Polk and Boudreaux (1973) Weak points:
 - not many atoms (~ 500), \Rightarrow many atoms at the surface
 - building rules rather arbitrary

Principle of Molecular Dynamics (MD): integrate Newton's law

$$\vec{X}(t + \Delta t) = \vec{X}(t) + \Delta t \cdot \frac{\partial \vec{X}}{\partial t} + \frac{1}{2} (\Delta t)^2 \cdot \frac{\partial \vec{X}}{\partial t} + \dots$$

or in a more practical representation:

$$\vec{x}(t + \Delta t) = \vec{x}(t) + \Delta t \cdot \vec{v}(t)$$

$$\vec{v}(t + \Delta t) = \vec{v}(t) + \Delta t \cdot \vec{F}(t)/m$$

More accurate schemes:

- \bullet leap-frog
- Verlet
- velocity-Verlet
- Gear algorithms
- • •

- For simple short-range potential (e.g., Lennard Jones):
 N can be as large as millions of atoms
 One force calculation takes ~ Nμs of CPU-time
- If Coulombic forces are present: Either the program scales as N², or a complicated scheme (Ewald summation, multipole expansion) is required; Slowing down by one or two orders of magnitude
- If gravitational forces are present: even worse, no shielding
- For *ab-initio* computations:
 - $N\sim 1000~{\rm atoms}$

One force calculation takes minutes to days of CPU-time

Molecular Dynamics simulates "natural" dynamics of system Allows for studying dynamical properties:

- Self-diffusion
- Structural relaxation
- Adaptation under strain and stress

time

Structure of glasses depends on cooling rate

Two important temperatures:

 T_q is the temperature where the viscosity crosses 10^{12} Poise T_m is the melting temperature (from the crystalline phase). Between T_g and T_m : undercooled liquid

Cooling rates

For metallic glasses, simulations need: \sim (1000 K) / (10⁵ K/s) = 0.01 second = 10¹³ time steps

For network glasses: \sim (1000 K) / (10⁻¹ K/s) = 10⁴ second = 10¹⁹ time steps

Achievable: up to 10 μ s or 10^{10} time steps

 \Rightarrow "true" relaxation outside reach of MD.

- At low temperatures, the long-time dynamics is activated.
- The time evolution can be characterized by a sequence of hops between local energy minima (basins).
- Rate of hop i with energy barrier B_i :

 $r_i = \nu_i \exp\left(-B_i/k_b T\right)$

• This forms the basis for transition state theory (TST).

Complex energy landscapes

- No symmetry, curved trajectories
- high dimensions: if n atoms are involved, the trajectory is located in a 3n-dimensional sub-space.
- How can we explore the energy landscape?

We want a method that brings the configuration from one minimum (say, B) to another (e.g., A or C). Activation-relaxation technique (ART), Barkema & Mousseau 1996

- Converge to a first-order saddle point (activation),
- go down on the other side (relaxation).

Minimum – Saddle point – Minimum trajectory

Complex atomistic rearrangement

These mechanisms are not imposed *a priori*, but are determined by the constructed trajectory.

- events can involve few or hundreds of atoms
- activation energies can be meV to many eV

Obtaining well-relaxed structures with ART

- 1. Generate one ART event
- 2. If the energy decreases, accept it
- 3. If the energy increases, accept it with probability

 $P_{acc} = \mathbf{Min} \left[1, \exp\left(-\Delta E/k_b T\right) \right]$ (Metropolis acceptance ratio)

4. Iterate 1-3

Analysis of ART-events in a-Si: dominant mechanism is a so-called bond transposition

- Four atoms A, B, C, and D are involved;
- Before, bonds AB, BC, and CD exist
- After, bonds AC, BC, and BD exist: bonds AB and CD are replaced by bonds AC and BD

Elementary mechanisms in network glasses (2)

- Top and bottom: colored atoms change their bonding
- middle: colored atoms move more than 0.1 Å(typical amplitude of vibrations)
- \bullet energy difference is 0.57 eV
- energy barrier is 3.47 eV
- \bullet total displacement is 2.27 Å

- 1. Start: a periodic diamond cubic structure
- 2. Randomization through bond transpositions at $T = \infty$
- **3.** Simulated annealing (successively lower T)

Keating potential:

$$E = \frac{3}{16} \frac{\alpha}{d^2} \sum_{l,i} \left(\mathbf{r}_l i \cdot \mathbf{r}_{l,i} - d^2 \right)^2 + \frac{3}{8} \frac{\beta}{d^2} \sum_{l\{i,i'\}} \left(\mathbf{r}_l i \cdot \mathbf{r}_{l,i'} + \frac{1}{3} d^2 \right)^2$$

- α , β are bond-stretching, bond-bending force constants
- d = 2.35 Å is the Si-Si bond length in crystal
- Usual values: $\alpha = 2.965 \text{ eV}/\text{\AA}^2$ and $\beta = 0.285 \alpha$.

In one move:

- 1. reconnect atoms (bond transposition)
- 2. relax configuration
- 3. accept/reject, Metropolis algorithm: $P_{acc} = \mathbf{Min} \left[1, \exp \left(-(E_{\mathbf{aft}} - E_{\mathbf{bef}})/k_b T \right) \right]$

Our improvements (Barkema & Mousseau, PRB 2000):

- 1. Quit relaxing a.s.a.p.
- 2. Start truly random
- 3. first local relaxation
- 4. efficient quenching

Properties of our a-Si samples

	$ \mathbf{DTW}^{(1)} $	$\mathbf{DTW}^{(2)}$	Conf. 2	Conf. 3	4096
E(eV)/atom	0.336	0.367	0.267	0.264	0.304
$ ho/ ho_0$	1.000	1.000	1.043	1.040	1.051
$\langle r angle / r_0$	0.996	0.997	0.982	0.982	0.980
$\Delta r/r_0$ (%)	2.52	2.65	3.94	3.71	4.17
$\langle heta angle$	109.24	109.25	109.30	109.27	109.28
$\Delta heta$	10.51	11.02	9.21	9.20	9.89
$\operatorname{Rings}/\operatorname{atom}$					
4	0.015	0.000	0.000	0.000	0.000
5	0.491	0.523	0.472	0.480	0.490
6	0.698	0.676	0.761	0.750	0.739
7	0.484	0.462	0.507	0.515	0.467
8	0.156	0.164	0.125	0.116	0.148
9			0.034	0.033	0.035

DTW=Djordević, Thorpe and Wooten, PRB 52, 5685 ('95) other confs: Barkema & Mousseau, PRB (2000)

After minimization with modified SW potential

	Sample 2	Sample 3	4096
E(eV)/atom (mSW)	-4.026	-4.034	-3.990
E(eV)/atom (SW)	-4.126	-4.133	-4.106
$ ho/ ho_0$	0.947	0.950	0.936
$\langle r angle / r_0$	1.018	1.017	1.020
$\Delta r/r_0$ (%)	2.9	2.7	3.2
$\langle heta angle$	109.25	109.24	109.20
$\Delta heta$	9.77	9.70	10.51
Rings/atom			
4	0.000	0.000	0.001
5	0.472	0.480	0.489
6	0.840	0.847	0.830
7	1.011	1.023	0.979
8	2.025	2.002	2.064

comparison with ART: -4.14 eV/atom (SW) and -4.04 eV/atom (mSW) with 0.5% three-fold and 1.1% five-fold coordinated atoms comparison with MD: -4.088 eV/atom (SW)

*calculation by S. Nakhmanson

dashed line: sample 3, relaxed with mSW, scaled by 0.99 solid line: experiment

- Tetrahedrally coordinated network with two types of atoms
- no bonds between like atoms

Silica glass (vitreous SiO₂), Vink & Barkema 2003

- Start with a large, well-relaxed fourfold coordinated CRN
- place oxygen atoms in the middle of each bond
- continue bond-exchanges with the Tu-Tersoff potential
- relax the configuration with an interatomic potential for silica (BKS)

Results on silica vs. expt (Wright 1994)

Obtained after temperature- and Fourier-broadening

$$T_b(r) = r + \frac{2}{\pi} \int_{Q=0}^{Q=Q_{max}} M(Q)Qi(Q)\sin(Qr)dQ \quad \text{with} \quad M(Q) = \frac{Q_{max}}{\pi Q}\sin\left(\frac{\pi Q}{Q_{max}}\right)$$

Results on silica vs. MD (Horbach&Kob)

	3k	60k	300k	\mathbf{MD}
\overline{N}	3000	60,000	300,000	1002
E	-58.12	-58.10	-58.09	—
ρ	2.20^{*}	2.20^{*}	2.20^{*}	2.27 - 2.37
Si-O				
mean	1.606	1.608	1.606	1.595
rms	0.010	0.011	0.011	—
O-Si-O				
mean	109.44	109.43	109.43	108.3
rms	3.95	4.59	4.32	—
FWHM	8.3	9.3	9.8	12.8
Si-O-Si				
mean	153.89	153.57	153.00	152
rms	11.75	11.72	11.94	—
FWHM	34	33.3	34.5	35.7
z_4	100%	100%	99.997%	99.8%
z_2	100%	100%	99.998%	99.8%
R_{χ}	-	4.7%	4.9%	9%

Results on silica: long-range correlations?

Si-Si radial distribution function

smoothed Si-Si radial distribution function, plotted differently

- semiflexible polymers, connected by crosslinkers
- \Rightarrow Tetrahedrally coordinated network, with pair-wise preferred angle of 180°

Summary

- sufficiently long time scales can only be reached with a crude simulation of the microscopic dynamics
- ART is an alternative for MD, for structural relaxation
- for network glasses (a-Si, silica, ...) high-quality sample configurations can be obtained with bond-switching simulations

Future work

- What makes glass so glassy?
- Understanding ART better
- Generation of undercoordinated networks
- mechanical properties of crosslinked polymer networks