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Interest:
-ability to simulate folding by molecular
dynamics (speed limited by diffusion)

-if physics is barrier-free, what
causes barriers?




Thermodynamic measurements may not be sufficient:
Downbhill folding usually disappears under stress (denaturation)
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How do you measure such fast kinetics: relaxation a la Manfred Eigen
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(14 ns dead time, 250 ps time resolution)

Fluorescence intensity analysis
(14 ns dead time)
Fluorescence spectral analysis
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Infrared spectral analysis . . .
Time course analyzed by singular value decomposition or

(SVD; 300 ns dead time) nonorthogonal linear decomposition



The full range: exponential to complex to simple as
thermodynamic stress 1s relieved by T, mutation or solvent :

A 6-85

See also:
Oas & Co.
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Distinguishing intermediates from downhill folders: smooth correlation of the molecular

Phase k_ and the activated phase k:

Experiment:
Downbhill dyna- Mixed downhill dyna- Activated
mics (exp. or mics/activated kine- kinetics
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Theory:

Langevin dynamics on a double-
well surface that becomes down-
hill when native bias (stability)
increases yields this

result: B
T, ~ 1 us, so

at > 20 us, A¢_gs
behaves as an

apparent 2-state
folder
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Ma & Gruebele, JCC 2006



Another key behavior: the faster the dynamics becomes,
the more it shows only a viscosity-dependence:
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o Y22W/A37G
Similarly,
The difference between probes is also tuned by stress:
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Thus, in the BO&W scenario, downhill folding turns to 2-state folding under stress.

Possible reasons: energy required to expel a sheet of water upon hydrophobic core formation,
or nonadditive forces? [see posters by Badasyan & Ferguson from Chan group!]

Possible ‘cure’: weakening the hydrophobic core/packing while maintaining very fast folding:

Ls.2sQG: 30 ps 2-state folder: His33 A ¢s: 10 ps folder at T, , which is
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Whether protein folding barriers are absent, or merely small, the consequence is the same:

We can tune proteins to fold by any mechanism!
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We have also tuned through all possible scenarios with a beta sheet protein, WW domain.
(Liu & Gruebele, tbs 2007)

exp[-G(x)/kgT] 1s a sensitive function of G(x) !

Makes sense from a perspective of evolutionary robustness



We have seen this smooth tuning behavior and speedup of folding for several proteins,
a-helical, o /P and B-sheet.

Physical principles allow the same fold to form witout a TS, with 1 TS, or with many TS...

..how come natural globular protein domains fold over a barrier?
Answer: evolution for function and against aggregation

Reason # 1: Energetic frustration caused by evolution for function (Gruebele, COSB 2002)

Stability change Rate change

kJ/mole

Jager et al. JMB 2001; collaboration with Kelly/Noel groups at Scripps



Crystal structure

Variant B4 B> Ba

HEOOJaaU&sEWNDE

In (Kfolding)
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KLPPGWEKRMS-ADGRVYYFNHITNASQWERPSG
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Biology is back in the picture: function
causes energetic frustration
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Jager et al., PNAS 2006
(with Kelly and Noel groups)



And we find? The more stable the

Reason # 2 (F X Schmid, M Oliveberg, C ‘downhill’ folder, the more it aggregates

Dobson,...):

Evolution against aggregation
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Biology is back in the picture: Proteins that
fold faster also unfold faster and are more
prone to aggregation.
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