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Statistical Mechanics+Rigidity Theory

Thermodynamics and the connection with energy landscape formalism
Effects in hard-core systems, colloids, gels, etc.
Effects in the glass transition.

Relaxation and Rigidity

Non-linear mode coupling and relaxation
Energy cascade mechanism
Simulations




Glass and [amming transition

i mmom/m What factors determine glass transition?
I g — Cooling speed (Dynamical process)
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Chemical composition
History (ageing)
External restrictions (pressure, etc.)
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Example: experimental results in colloids from the group of David Weitz (Harvard)
High volume fraction supercooled fluid

Glass: volurme fraciion 0.60

dynamic light scattering:
van Megen et al., PRL 70, 2766 (1993)
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Granular media, hard-spheres, etc.

Mechanical stability against shear and isotropic deformation

Temperature

(a)

Loose grains,
bubbles, droplets

1/Density



Rigidity of a solid against collective motion contained in the DOS




Low frequency modes and glass transition

g(E) ~ E (E = 1)
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Chumakov et. al., Phys. Rev. Lett. 92, 245508 (2004) Kamitakahara et. al., Phys. Rev. B 44, 94 (1991)

-However, in these theories, low-frequency modes anomalies do not play a “lead role”, even if all glasses
present such anomaly. (Maybe because some crystals present a Boson peak, but...)




Glass transition and rigidity: networks

(J.C. Phillips, J. Non-Cryst. Solids 34, 153 (1979), M.F. Thorpe, J. of Non-Cryst. Solids 57, 355 (1983)
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./ C. R. Chimie 5 (2002) 713-724
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Self-organization: Thorpe, et. al., J Pl

Non-Cryst. Solids 266, 859 (2000).
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Fig. 10. Compositional trends of the non-reversing heat flow in (a)
the Si,Se,_, binary, the Geg 255€0.7s.,], ternary, and (b) the As,Se, .
binary glasses, revealing thermally reversing windows of varying
widths and centroid. These wind are identified with intermediate
phases.
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Boolchand et. al., J. of Non-Cryst.
Solids 293, 348 (2001).
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P. Boolchand et. al., J. of Optoelectronics W
and Advanced Materials Vol. 3, 703 (2001)).
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Fig. 12. Compositional trends in non-reversing heat flow in ternary
Ge,As,Se, 5, glasses revealing a wide thermally reversing window
with an onset near x(1)=0.09 or r(1)=227 and an end near
x(2) =0.14 or r.(2)=2.42. There is no cvidence of any anomalies
near r=2.67 or x=0.22.



With N hindges, how many bars do | need to make the system
rigid?

1 0 -1
4x (2 freedom degrees)-(# constraints)=# flexible movements

f =(3N-constraints)/3N Fraction of “floopy modes”

f=# of normal modes of vibration with zero frequency/3N
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Maxwell Counting (1860)




Floopy modes at zero frequency

Phonons in a solid are described as 3N independent oscillators

3N 3N
1
H(P,....Py, Q. Qy ) =D P’ +ZEma)i2Qi2 _E
i=1 i=1

When 3Nf oscillators are at zero frequency,

3N 3N (1-1)




Energy Landscape




Interpretation in terms of energy landscapes

E-V(Q,..,Q,)=K=>0

V(Ql’QZ) - 4

Naumis, Phys. Rev. E 71, 026114 (2005)). Naumis, J. of Non-Cryst. Solids 352, 4865 (2006).




Glasses and protein folding
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Flg. 1. The fractional number of floppy modes. + = F/30 in a glass as a function of the maan coodination, (ri. The Massall approcimation Eq. 3 is shoar
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folding unfolding takes placa.

Taken from Rader, Hespenheide, Khun, Thorpe, PNAS 99, 3540 (2002)



© © Attractive colloids (soft-disks)

Huerta, Naumis, Phys. Rev. B66, 184204, (2003).

Hard-core potentials: dynamical contacts

Huerta, Naumis, Phys. Rev. Lett. 90, 145701, (2003).




In 2 Dimensions




Effects on the glass transition: variation of Tqg

Lindemann criteria valid for glasses: <u? p 0.01a° ~< u? >4
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Using this model for the density of states:

0.01ma?
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g( ) 3k N
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In the Maxwell approximation:

Naumis, Phys. Rev. B73, 172202 (2006).
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This result can be transformed into the empirically modified Gibbs-DiMarzio law:

. - T,(<r>=2) B =5 /(20 +6)
o(<T>) = 1-B(<r>-2) B =0.67+0.06; 3, . =0.69+0.02; 4, =0.72+0.03

Neutron scattering (Kamitakahara et. al., Phys. Rev. B 44, 94 (1991))
Lamb-Mo6ssbauer factor (P. Boolchand, in Insulating and Semiconducting Glasses,
Edited by P. Boolchand, World Scientific, Singapore 2000).



Modified Gibbs-DiMarzio equation: Naumis, Phys. Rev. B73, 172202 (2006).




Pressure effects
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Some other relationships...

 Empirical Tanaka law  |inT, ~16(r)+23

T, (<r>=2)
1-B(<r>-2)

T,(<r>)=

ST (<r>=2)(1+ f(< > -2)) InT, z0_7<l’>+4.1

 Empirical 2/3 Law




Themmal relaxation aned Hexioiiy
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Figure 10. The glass-forming difficulty (or inverse glass-forming tendency) in Ge,Se;_, alloys
(Azoulay er al 1975), 1o which we have added a broken curve which omits the effects of
compound stoichiometries. The minimum of the curve falls close to x = 0.20.
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Figure 13. Tensile stress relaxation ¥(r)/ ¥ (0) for the indicated temary alloy (Ty ~ 400 K) at ’ 2.2 Z4 26
six temperatures (left to right) from 430 K to 385 K (Bohmer and Angell 1992). Average coordination number <r>
Flexible »| Rigid
Figure 5. Flot of stress relaxation Kohlrausch exponent § against the average coordination
number (r} in chalcogenide glass alloys GerAs,Ser—c.y with (r) = 24 y + 2x. Note that B

is linear in {{r} — 2.0 initially and that it saturates near () = 2.4. This figure (Béhmer and
Y(t) / Y(O) = e><p(—(t / ’Z' )ﬂ(<r>)) Angell 1992) is reproduced here for the reader's convenience,




Why are important for relaxation?
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Second, third , etc. harmonics are excited:

W, = 20, > 3w, >



Leads to an energy cascade mechanism...

ENERGY ‘ Low-frequency modes ‘
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Energy transferred to shorter scales, number of degrees of freedom increases
with decreasing scale.
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Now we include non-linear interaction

k k - S
V(Xl""’XN) :VHARM (Xy---’ XN)+Z42(Xj+1_Xj )4 +Z4®p(1’ J +2)Z(Xj+2 — X )4-
. ]

_i[v(xl,..., Xy )| = 70X, +17, ()

J

(7,®) = 0;(17;®)m; (t)) = 2 KT St 1)

Once thermalized, the bath is shut down. A damping term is add at the end of the chain







Rigidity theory is a benchmark tool to understand the effects of
low-frequency modes in glass transition.

The glass transition temperature changes due to the increased
average quadratic displecement

Thermal Relaxation depends also in the number of floppy
modes

These ideas are also useful to understand other systems likes
colloids, gels, proteins, etc.






