

1845-18

Conference on Structure and Dynamics in Soft Matter and Biomolecules: From Single Molecules to Ensembles

4 - 8 June 2007

Simulations of Peptide Aggregation

Joan-Emma SHEA

Department of Chemistry & Biochemistry University of California, Santa Barbara Santa Barbara, CA 93106 U.S.A.

Simulations of Peptide Aggregation Direction of protofilament Fibril Model Protofilament Cross beta JOAN-EMMA SHEA, DEPARTMENT OF CHEMISTRY UNIVERSITY OF CALIFORNIA, SANTA BARBARA

PEPTIDE INHIBITORS OF ALZHEIMER $A\beta$ AGGREGATION

Alzheimer's disease (AD) is a neurodegenerative disease of the central nervous system.

ALZHEIMER DISEASE IS CHARACTERIZED BY THE PRESENCE OF NEUROFIBRILLAR TANGLES AND AMYLOID PLAQUES IN THE BRAIN

AMYLOID PLAQUES CONSIST OF AMYLOID BETA (Aβ) PEPTIDES GENERATED FROM THE PROTEOLYTIC CLEAVAGE OF THE APP TRANSMEMBRANE PROTEIN

Aβ40: DAEFRHDSGYEVHHQ¹⁶KLVFFA²²EDVGSNKGAIIGLMVGGVV

Aβ42: DAEFRHDSGYEVHHQ¹⁶KLVFFA²²EDVGSNKGAIIGLMVGGVVIA

Fibril

Amyloid Plaques

Aβ42: DAEFRHDSGYEVHHQK¹⁷LVFFA DVGSNKGAIIGLMVGGVV<mark>IA</mark> Bend region that nucleates Central Hydrophobic Core

J.-E Shea and co-workers: JACS (2005) 127: 2075-2084; Prot. Sci. (2006) 15: 420-428; Prot. Sci. (2006) 15: 1239-1247; JMB (2006), 362: 567-579; JMB (2007) 366: 275-285

the folding of $A\beta$

N-METHYLATED PEPTIDE INHIBITORS

N-methylated A β (16-20)m peptides can:

- 1) prevent the aggregation of A β 40/42 and A β 16-22 peptides
- 2) disassemble existing fibrils and possibly small oligomers.

 $\mathbf{A}\boldsymbol{\beta}\mathbf{40}$: Daefrhdsgyevhhq 16 KLVFF \mathbf{A}^{22} Edvgsnkgaiiglmvggvv

Fibrils of Aβ(1-40) peptides

After Incubation with Aβ(16-20)m peptides

Meredith and co-workers, J. Pep. Res. (2002) 60, 37-55

Structure of N-methylated Aβ(16-20)m Inhibitor Peptide

A β (16-20)m more rigid than A β (16-22), with β -strand content:

This pre-organization may allow $A\beta(16-20)m$ to successfully compete with free $A\beta(16-22)$ for binding to fibril.

Antiparallel arrangements from solid state NMR

Tycko et al. Biochemistry, 39 (45), 13748 -13759, 2000

PREDOMINANT STRUCTURE:

TWO A β 16-20m (Inhibitor) + ONE A β 16-22

MONOMER POPULATION DEPLETED

Aβ(16-22) KLVFFAE PROTOFILAMENT

INITIAL STRUCTURE:

Two parallel bilayers

Peptides in layer antiparallel

lys¹⁶ and glu²² point to solvent

leu¹⁷, phe¹⁹, ala²¹ point inside core

Aβ(16-22) KLVFFAE PROTOFILAMENT

INITIAL STRUCTURE:

Two parallel bilayers Peptides in layer antiparallel

lys¹⁶ and glu²² point to solvent

leu¹⁷, phe¹⁹, ala²¹ point inside core

GROMOS96 FORCE FIELD EXPLICIT SPC WATER (23000 atoms)

REACTION FIELD/PME

TWO 100 NS SIMULATIONS

REPRESENTATIVE $A\beta(16-22)$ PROTOFILAMENT

(100 NS SIMULATION)

Distance between bilayers: 0.93 nm (Tycko: 0.99nm)
Distance between peptides: 0.44-0.52 nm (Tycko: 0.47 nm)

Small solute (methane)

Large solute (cluster of methane)

Chandler, Nature (2005) 437, 640

(a)

Small solute: water can reorganize without sacrificing H-bonds

Large solute: Impossible to maintain full H-bond network

Water moves away from solute and creates interface around it

"Drying" leads to attraction of large hydrophobic surfaces

LUM et al., J. PHYS. CHEM. B. 1999 (103) 4570

400 peptides - Langevin Dynamics (H=S3b)

