Conference on Structure and Dynamics in Soft Matter and

 Biomolecules: From Single Molecules to Ensembles
4-8 June 2007

Computational studies of the early steps of protein aggregation using the OPEP

 coarse-grained energy modelPhilippe DERREUMAUX
Institut de Biologie Physico Chimique CNRS
13 rue Pierre et Marie Curie
75005 Paris
FRANCE

Computational studies of the early steps of protein aggregation using the OPEP coarse-grained energy model.

Philippe Derreumaux

Laboratoire de Biochimie Théorique UPR9080 CNRS, IBPC, Université Paris VII

Amyloid-fibril formation is often described by a polymerization-nucleation process. Once a nucleus is formed (highest free energy), maturation into fibrils is rapid. Often we see amorphous aggregates and annular species prior to the formation of protofibrils.

Structural characterization of the early oligomers (e.g tetramers and dodecamers of $\mathbf{A} \beta$ with the highest toxicity) is a challenging task from both the experimental and numerical fronts.

They are transient and in dynamic equilibrium between various oligomeric species. The lag phase is salt, concentration and sequence-dependent, and spans a time scale of hours unreachable by all-atom MD simulations (1-2fs timestep).

In the case of $A \beta$, monomer is described by random coils and the atomic fibril model is still under refinement and depends on agitation (strains for PrP), so standard pathway techniques cannot be used.

To better understand assembly through computer simulations, we must resort to coarse-grained models.

Four issues using coarse-grained simulations on amyloid-forming peptides: KFFE, $A \beta(16-22), \boldsymbol{\beta 2 m}(83-89), A \beta(11-25)$, NFGAIL (IAPP fragment), $A \beta(1-40)$ and $A \beta(1-42)$

1. What is the dynamics of self-assembly and the free energy surfaces for small oligomers (2- to 4-mers: building blocks for larger oligomers) ?
2. What are the mechanisms for oligomer growth and the paths from random states to fibrils? (4- to 12-mers)?
3. What are the equilibrium structures of full-length $A \beta$ dimers?
4. How do N-methylated peptides block fibrillogenesis?

Exploring conformations, phase space: ART-Nouveau OPEP simulations

- Activation :

- Bring a conformation outside its minimum;
- Direction is chosen randomly (in a 3N dimensional space);
- Follow this direction until eigenvalue becomes negative;
- Push along the corresponding eigenvector until total force is

Malek, Mousseau, PRE, 2000; approaching to zero (Saddle point); Wei, Mousseau, Derreumaux JCP, 2002

- Relaxation:
- Minimize with Steepest Descent
- Conformation is accepted/rejected by Metropolis criterion. not real T, no time scale, but moves of any complexity, physical paths

MD-OPEP simulations

- Molecular Dynamics at T constant:
- Berendsen bath (0.1 ps);
- timestep (1 - 2 fs); RATTLE

Derreumaux, Mousseau, J. Chem. Phys 126, 065101-7 (2007).

REMD-OPEP simulations

$$
P(1 \leftrightarrow 2)=\min \left(1, \exp \left[\left(\frac{1}{K_{B} T_{1}}-\frac{1}{K_{B} T_{2}}\right)\left(U_{1}-U_{2}\right)\right]\right)
$$

Dong, Derreumaux, Mousseau, in preparation

OPEP force field

(Optimized Potential for Efficient structure Prediction)

Coarse-grained off-lattice model

 between $\mathrm{C} \alpha$ and all-atom representationsGeneric model to be used for structure prediction, protein folding and protein aggregation of any sequence: H, O and Sc included, parameters are not tuned according to the problem, rugged energy surface.

Derreumaux: J. Chem. Phys: 1997,1998, 1999; Phys. Rev. Lett. 2000 ;
J. Chem. Phys. 2003, Structure 2004, JACS 2004, Proteins 2007

OPEP force field: implicit solvent, pH cannot be varied, no electrostatic charges

Potential for stereochemistry

- Harmonic terms for bond lengths, bond angles, and improper torsions
near their equilibrium values: $E_{L}=\Sigma K_{q}\left(q-q_{0}\right)^{2}$,
- Excluded volume-potential : $w_{M_{1} M} E_{M_{1} M}, w_{M, S C} E_{M, S C}$

Pairwise Potential between side chains 20AA, 210 terms
A 12-6 potential if $\epsilon_{i j}>0$ and a 6-potential if $\epsilon_{i j}<0$:
$E_{S C, S C}=\epsilon_{i j}\left(\left(\frac{r_{i j}^{0}}{r_{i j}}\right)^{12}-2\left(\frac{r_{i j}^{0}}{r_{i j}}\right)^{6}\right) H\left(\epsilon_{i j}\right)-\epsilon_{i j}\left(\frac{r_{i j}^{0}}{r_{i j}}\right)^{6} H\left(-\epsilon_{i j}\right)$

Two-body Potential for one H -bond

$$
\begin{aligned}
& \qquad E_{h b}=\varepsilon_{h b}\left[5\left(\frac{\sigma}{r_{i j}}\right)^{12}-6\left(\frac{\sigma}{r_{i j}}\right)^{10}\right] \cos ^{2} \alpha_{i j} \\
& \sigma \text { the O..H distance and } \alpha_{i j} \text { the NHO angle. }
\end{aligned}
$$

Cooperative energy between two H -bonds ij and kl

$$
E_{2 h b}=\varepsilon_{2 h b} \exp \left(-\left(r_{i j}-\sigma\right)^{2} / 2\right) \exp \left(-\left(r_{k l}-\sigma\right)^{2} / 2\right)
$$

ij and kl must satisfy $\boldsymbol{\alpha}$-helix and $\boldsymbol{\beta}$-sheet patterns

How do we optimize the parameters: r^{0} and q_{0} (from structure analysis), kq (from vibrational modes), the $210 \mathrm{Sc}-\mathrm{Sc} \varepsilon$ terms and the H-bond ε terms (from decoys of 30 proteins with α, β and α / β structures)

OPEP discriminates native from decoys

set	M	L	Number of Decoys				cRMSd (A)		TM-score		$\begin{array}{r} \hline \alpha \text {-helix } \\ \% \end{array}$	β-strand \%
			MD	TH	GR	TOT	min	max	min	max		
Full Training Set												
1ABZ	1	38	49	281	278	608	2.6	11.9	0.14	0.58	46.9	5.82
Betanova	-	20	347	299	283	930	0.7	12.2	0.01	0.59	10.36	23.87
1DV0	1	45	118	209	275	602	1.9	13.6	0.16	0.76	35.81	4.91
1E0M	1	37	59	213	183	451	1.5	12.8	0.14	0.82	17.14	17.33
1ORC	1	64	79	89	262	430	0.9	13.6	0.22	0.92	26.69	20.00
1PGB	1	56	67	179	289	535	0.9	36.9	0.12	0.92	26.57	20.41
1PGBF	1	16	28	276	300	604	0.2	11.1	0.01	0.99	10.31	15.05
1QHK	1	47	59	189	277	525	3.3	31.1	0.13	0.78	24.22	10.03
1SHG	1	57	41	601	286	928	1.3	41.7	0.12	0.85	16.99	21.98
1SS1	1	60	90	128	212	430	2.2	13.8	0.19	0.85	39.77	4.49
1VII	1	36	45	250	270	565	1.6	10.9	0.13	0.68	37.41	4.33
2 CI 2	6	65	30	166	298	494	2.2	34.9	0.11	0.87	21.52	16.33
2 CRO -fisa ${ }^{\dagger}$	3	65	25	-	-	525	2.2	12.3	0.23	0.99	61.75	0.02

1BBA-lmds ${ }^{\dagger}$	1	36	-	-	-	500	0.9	9.2	0.41	0.82	47.33	0.00
1CTF-4state ${ }^{\dagger}$	2	68	-	-	-	616	0.5	12.5	0.24	0.88	33.56	4.09
1 CTF -lattice ${ }^{\dagger}$	2	68	-	-	-	977	5.1	10.5	0.25	0.51	34.65	0.26
1CTF-Imds ${ }^{\dagger}$	2	68	-	-	-	489	3.3	15.1	0.28	0.68	51.28	21.16
1CTF-semfold ${ }^{\dagger}$	2	68	-	-	-	996	4.4	9.2	0.28	0.59	50.70	0.63
1F4I	1	45	11519^{*}	-	-	11519	0.1	36.9	0.12	0.99	4.74	7.37
1 FSD	1	28	84	319	290	693	1.4	10.7	0.13	0.80	34.49	4.68
1 KHM -semfold \dagger	1	73	-	-	-	998	3.9	7.9	0.32	0.58	44.31	2.22
1R69	1	63	72	99	281	452	0.1	27.7	0.23	0.99	46.81	3.51
1R69-4state ${ }^{\dagger}$	1	63	-	-	-	670	0.8	11.4	0.25	0.94	36.63	0.36
1R69-rosetta ${ }^{\dagger}$	1	61	-	-	-	998	0.2	14.9	0.27	0.99	63.13	0.00
1S04-CASP6 ${ }^{\dagger}$	1	110	27	-	-	213	0.6	56.5	0.15	0.98	28.19	15.66
1TE7-CASP6 ${ }^{\dagger}$	1	103	18	-	-	222	1.8	38.3	0.18	0.88	22.69	21.79
$1 \mathrm{UBI}-\mathrm{lmdsv} 2{ }^{\dagger}$	1	76	61	-	-	361	2.0	15.4	0.22	0.81	15.54	30.44
2CRO-4state ${ }^{\dagger}$	3	65	25	-	-	697	0.1	9.3	0.25	0.99	36.33	0.19
2CRO-lmds \dagger	3	65	25	-	-	525	0.1	12.9	0.25	0.99	63.85	0.06

OPEP and DOPE (Sali et al., JMB 2006) have similar performances and outperform Rosetta force field (Maupetit, Tuffery, Derreumaux, Proteins, 2007 in press).

MD-OPEP provides good dynamical properties

(a) protein \mathbf{G}

(d) protein G

(b) betanova

(e) betanova

(c) protein \mathbf{A}

(f) protein A
coarse-graining does not have an uniform effect on all modes, increases the clock by 1-2 orders of magnitude.
derreumaux, Mousseau, JCP 2007.

Four examples of ab initio prediction

1PGB(41-56)
(Wei et al., Proteins 2004)

Family II

$A \beta(21-30)$ monomer
(Chen et al., JCP 2006)

Figure 5. Final mean structures for the $A \beta(21-30)$ conformers. The geometric average structure for each family of the $A \beta(21-30)$ structures was determined using Analysis (InsightII) and minimized using Discover (InsightII). The entire backbone (black) and all residue side chains are shown. The side chains of residues Glu22, Val24, and Lys28, are colored red, gray, and blue, respectively.
(Teplow et al., Protein Science 2005)

One local minimum for 6-chains of $A \beta(16-22)$: two-layer β-sheets

Equatorial and meridional reflections in the diffraction patterns of most amyloid fibers

Mousseau, Derreumaux, Acc. Chem. Res. 2006

Question 1: Thermodynamics and dynamics for small oligomers

dimer $A \beta(16-22)$

REMD-OPEP, 8 replicas, each

 of 50 ns7 clusters from parallel sheets, cross conformations, amorphous and antiparallel sheets.

Boltzmann probabilities of AH: 59\%, Pmax (state F) = 21\%, $P(G+H)>P(B+A)$,
Overall 64\% RC at 310 K

Wei, Mousseau, Derreumaux, Prion, 1:1-6 (2007)

Figure 1: Free energ sufface (in koalimol) of 32 mn (8389) at 310 K as a finction of: (a) munber of irter-peptide sidechain cortacts and mumber of inter-peptide H -bond; (b) frection of ratine irter-peptide side-chain cortacts (Qe) and radis of gration (ra) of the backbone Ca atoms.

4-mers of $\beta 2 m(83-89)$ 20 MD , each of 100 ns at $310 \mathrm{~K}+$ REMD
-> 6 clusters. Amorphous states share similar H-bond and Sc-Sc contacts with amyloid-competent states (Boltzmann prob: 17\%)
-> Annular disordered forms occur
-> Small free energy barriers

Song, Wei, Mousseau, Derreumaux, J. Chem. Phys. in revision (2007)

random

10.20 ns

16.15 ns

100 ns

100 ns

ring

86.96 ns

100 ns

Figure 3. Three MD-OPEP simulations at 310 K starting from a randomly chosen state (Run 1 and Run 2) or the ring-like state generated by Run 1 (Run 3). Repressentative snapshots are shown between 0 and 100 ns .

MD analysis:

Species are in dynamic equilibrium

Song,Wei, Mousseau, Derreumaux, J. Chem. Phys. in revision (2007)

Figure2. Transitions and rates (in ns^{-1}) between the four most populated predicted topologies at 310 K . The β-sheet composition is not constant within each topology, and overall the population of β-sheet for all conformations is 42% (vs. 58% of random coil) by using the DSSP program. ${ }^{26}$ For simplicity, we only show the parallel bilayer β-sheet (but orthogonal β-sheets exist), and the monolayer β-sheet with parallel chains (but various H -bond registries and mixed parallel/antiparallel organizations exist).

Timescales within 100-500 ns by all-atom MD

Question 2: Paths and mechanisms from random to fibrillar-like states (3-mers to 12-mers).

Two elementary oligomer growth mechanisms:

1. Reptation move.
2. Dock and lock.

1. Reptation mechanism

Reptation move observed by ART-OPEP consistent with isotope-edited IR spectroscopy study on Aß(16-22) (Petty and Decatur, PNAS 2005).

2. Dock and lock process

4Aß16-22, MD-OPEP, timescale: ~100 ns
Derreumaux, Mousseau, JCP 2007.

A two-step aggregation mechanism

Fig. 2 A generic aggregation picture derived from ART- and MD-OPEP simulations. Starting from a randomly chosen state, the peptides form amorphous aggregates. From there, the outcome changes with the oligomer size (OS) and chain length (L). For $\mathrm{OS}<9$ and $\mathrm{L}<8$, rapid aggregation proceeds directly to ordered β-sheets or indirectly through β-barrels. The double arrows indicate reversibility. For larger OS or L, aggregation into β-barrels and ordered β-sheets is very slow and rare.

Models: KFFE, $\mathbf{A (1 6 - 2 2) , ~} \boldsymbol{\beta 2 m}(83-89), \mathbf{A} \boldsymbol{\beta}(11-25)$, NFGAIL from 4-mers to 12 -mers.

β-barrel: a non-obligatory intermediate

7 chains of $\boldsymbol{\beta} 2$-microglobulin (83-89):
MD_OPEP, $310 \mathrm{~K}, 5 \mu \mathrm{~s}$, timescale 500 ns
This barrel intermediate has never been detected experimentally. Question: impact of all-atom force field and explicit solvent? Next: GROMOS-SPC, REMD, 16 replicas of $\mathbf{6 0} \mathbf{~ n s}$.

Figure 7. Representative structures of the sampling. a) elliptic barrels. b) open barrels. c) amorphous aggregates. d) 6 -chains barrels. The main chain is shown by sticks and cyan ribbons. Yellow Van der Waals spheres represents the hydrophobic residues.

The $\boldsymbol{\beta}$-barrel is also found in equilibrium with the steric zipper!!

Figure 8. Steric zippers. a) Parallel beta-sheets. b) Orthogonal beta-sheets.
A. De Simone, P. Derreumaux, in preparation

Question 3: What are the equilibrium structures of full-length $A \beta$ dimers?

. FRET and gel filtration chromatography suggests stable dimers at low concentration (Glabe et al., JBC, 1997)
. Formation of the loop 23-28 might nucleate folding of $A \beta$ monomer (Teplow et al., Prot. Sci., 2005) and be the rate-limiting step in A β fibrillogenesis (Meredith et al., Biochemistry, 2005)

Microscopie électronique

RMN 13C 2D

Structure des fibres amyloïdes D'après R. Tycko et al.
Curr. Op. Struct. Biol. 2004, 14:96-103

REMD-OPEP A $\beta(1-42)$
32 replicas between 300 and $700 \mathrm{~K}, 120 \mathrm{~ns} /$ replica

(a)

(c)

(b)

(d)

FIG. 2: Dimers of A $\beta 42$. The four most populated REMD-OPEP structures are essentially random coil in character, but display local structures: (a) short α-helices at positions Glu23-Asn27 and Asp22-Ser26 and a β-sheet at Ala2-Arg5 in both chains; (b) two parallel β-strands at positions 11-14; (c) two short parallel β-sheets in the terminal residues and (d) a short α-helix at positions Gly21-Ser26 in chain 1 and a three-stranded parallel β-sheet. Chain 1 is in green, chain 2 in yellow. Residues 2-5 are colored in blue, residues $17-21$ in purple and residues $22-28$ in red. The positions of the side chains of Phe19, Glu22 and Lys28 are indicated by balls.

- 20 clusters with Prob between 0.10 and 0.02 .
- Averaged β-sheet: 0.2 , α-helix: 0.05 vs. exptl: $10-20 \%,<10 \%$
- Probability of Glu22-Lys28 and Asp23-Lys 28 contacts: intra: 0.36 and 0.42 , inter: 0.14 and 0.24
\rightarrow These salt bridges form in a minority of structures and can act as a seed in higher-order species.
- But fibril formation requires Lys28 tobe buried. Tarus et al. estimated a free energy cost of $7 \mathrm{kcal} / \mathrm{mol}$.
\rightarrow We propose that the formation of a multimeric beta-sheet spanning amino acids $\mathbf{1 7 - 2 1}$ is an contributes to the rate-limiting step

Melquiond, Dong, Mousseau, Derreumaux, Current Alzheimer Disease, 2007

Question 4: Inhibiting mechanisms of NME-A $\beta 16$-22 Ac-K-(NmeL)V(NmeF)F(NmeA)E-NH2

Ultracentrifugation and CD suggest NMe-A $\beta(16-22)$ is monomeric and a β-strand (Meredith, 2001).

MD-OPEP : $($ RC, β-strand) $\%=$ $(75,25)$ in wt and $(10,90)$ in inh

Figure 2. Histograms of the end-to-end distances of $\mathrm{A} \beta_{16-22}$ and NMe $A \beta_{16-22}$ at 300 K .

As a first step towards studying the dynamics of the interactions between fibrils and inhibitors:

```
6 chains of A }\mp@subsup{\beta}{16-22}{(wt)
```

6 chains of $A \beta_{16-22}(w t)+4$ chains
of N-methylated $A \beta_{16-22}$ (inh)

Properties of the N -methylated chains

P2 (nematic order parameter) describes the orientational order of the system and discriminates between ordered and disordered conformations.

$$
\begin{gathered}
\overline{P_{2}}=\frac{1}{N} \sum_{i=1}^{N} \frac{3}{2}\left(\hat{z}_{i} \cdot \hat{d}\right)^{2}-\frac{1}{2} \quad \begin{array}{l}
\hat{z}_{i}=\text { end- to-end molecular vector } \\
N=\text { number of moleculesin the simulation box } \\
\hat{d}
\end{array}=\text { unit vector defining the preferred direction } \\
\text { of alignement (eigenvector associated to the } \\
\text { largesteigenvalueof the ordering matrix } Q \text {) }
\end{gathered}
$$

Interaction sites

Conclusions

. Free energy surfaces of 4(-7) mers reveal all the transient oligomers reported experimentally for large proteins. The low population of fibril-like states indicates the nucleus associated with fibril growth is larger than 4-(7)-mers for peptides. Sequencedependent must be however considered
. Fibril formation is a two-step mechanism dominated by both H-bonds and hydrophobic interactions in the early steps (amorphous states) and then by H-bonds in the late steps (barrel or fibrillar-like).
. The region 23-28 does not drive folding of A $\boldsymbol{\beta} 42$ dimers, formation of a multimeric sheet at positions 17-21 is a very important factor contributing to the rate-limiting step.
. Simulations indicate longitudinal and lateral associations between oligomers and inhibitors blocking fibril extension, but destabilization of fibrils is a slow process.

We are currently studying tetramers and dodecamers of $\operatorname{PrP}(125-231) \mathrm{A} \beta 40$ and $\mathrm{A} \beta 42$.
N. Mousseau, J-F. Saint Pierre (Univ. Montreal, Canada)
W. Chen, X. Dong (IBPC, Univ Montreal)
S. Santini (Univ. Bruxelles)
G. Wei, W. Song (Univ. Fudan, Shanghai, China)
A. Melquiond, J-C. Gelly (IBPC, Paris)
P. Aucouturier (Hopital Saint-Antoine, Paris)
A. De Simone (CNR, Napoli, Italy)

Alzheimer Society of Canada, CNRS,
Université Paris VII, 6th European PCRD

