The Abdus Salam
United Nations
Scientific and
Cultural Organization

SMR/1845-10

Conference on Structure and Dynamics in Soft Matter and Biomolecules: From Single Molecules to Ensembles

4-8 June 2007

Common large-scale movements in enzymatic superfamilies

Common large-scale movements in enzymatic superfamilies

Cristian Micheletti - SISSA (Trieste)

Outline:

Large-scale movements in enzymes:

- coarse-grained models and all-atom MD
- long-range mechanical couplings in enzymes
- common large-scale movements in proteases and other enzymatic families

Mutations causing resistance to inhibiting drugs are located at a few sites: 36, 46, 63, 71, 84.
Elastic properties of HIV-1 PR: Jacobs et al. Proteins (2001); Kurt et al., Proteins (2003), Piana et al. J Mol Biol (2002), Micheletti et al. Proteins (2004)

MD simulations

Piana et al., JMB, 2002

HIV-1 Protease with inhibiting peptide

Simulation at 300 K with explicit solvent

Clip time-span: 150 ps

Analysis of MD trajectories

Covariance Matrix: degree of dynamical correlation of all pairs of residues

$$
C_{i j}=\left\langle\delta \vec{x}_{i}(t) \cdot \delta \vec{x}_{j}(t)\right\rangle
$$

Amadei et al., Proteins, 1993; Garcia, PRL, 1992

The top eigenvectors of Cidentify the concerted movements that most contribute to the enzyme's fluctuations (principal components analysis).

MD trajectory projected along the first principal component:

Gaussian distribution for $P(x)$ suggests that the collective motion occurs in an effective quadratic potential, $V(x)$:

$$
P(x) \propto e^{-\beta V(x)}
$$

$$
V(x)=\frac{k}{2} x^{2}
$$

Quasi-harmonic free energy approx. : Pontiggia et al., PRL 2007

> | VOLUME 77, NUMBER 9 | PHYSICAL REVIEW LETTERS |
| :--- | :--- |

Large Amplitude Elastic Motions in Proteins from a Single-Parameter, Atomic Analysis

Department of Membrane Research and Biophysics, Weizmamn Institute of Science, Rehovot 76100, Israel

Detailed potential...

$$
\begin{align*}
E_{p}= & \frac{1}{2} \sum_{\text {bonds }} K_{b}\left(b-b_{0}\right)^{2}+\frac{1}{2} \sum_{\text {angles }} K_{\theta}\left(\theta-\theta_{0}\right)^{2} \\
& +\frac{1}{2} \sum_{\text {dihedrals }} K_{\phi}[1+\cos (n \phi-\delta)] \\
& +\sum_{\text {non bonded pairs }}\left[\frac{A}{r^{12}}-\frac{B}{r^{6}}+\frac{q_{1} q_{2}}{D r}\right] . \tag{1}
\end{align*}
$$

replaced by a quadratic one:

$$
E\left(\mathbf{r}_{a}, \mathbf{r}_{b}\right)=\frac{C}{2}\left(\left|\mathbf{r}_{a, b}\right|-\left|\mathbf{r}_{a, b}^{0}\right|\right)^{2}
$$

FIG. 1. The fraction of the total number of modes up to frequency $\omega\left(\mathrm{cm}^{-1}\right)$ for the slowest 150 modes of the G-actin:ADP:Ca Ca^{++}system. The dashed line pertains to data obtained using the L79 potential, while the four solid curves are obtained using R_{C} values of $1.1,1.5,2.0$, and $2.5 \AA$. The $R_{c}=1.1 \AA$ curve is nearest the dashed line at higher frequencies, with the fit progressively worsening for the higher cutoff values.

Structure-based approach

Gaussian network approximation:

Penalize quadratically deviations of centroids from native pair distances.
$\begin{aligned} \mathcal{H} & =K \sum_{i} \delta \vec{r}_{i, i+1} M_{1} \delta \vec{r}_{i, i+1}+\sum_{i, j} \Delta_{i, j} \delta \vec{r}_{i, j} M_{2} \delta \vec{r}_{i, j} \\ & =\frac{1}{2} \sum_{i, j} \delta \vec{r}_{i} M_{i j} \delta \vec{r}_{j}\end{aligned}$
See e.g. Atilgan et al. Biophys. J. (2001); Delarue and Sanejouand, JMB (2002); CM, Banavar and Maritan. Phys. Rev. Lett. (2001).
CM, Carloni and Maritan Proteins (2004) - BetaGM code available unon neaunat Thermodynamic characterization by inversion of $M_{i}\left\langle\delta r_{i} \delta r_{j}\right\rangle=M_{i j}^{-1}$

HIV-1 PR Covariance Matrix

Normalised covariance matrix:

$$
\begin{aligned}
C_{i j} & =\left\langle\delta \vec{x}_{i} \cdot \delta \vec{x}_{j}\right\rangle /\left|\delta \vec{x}_{i}\right|\left|\delta \vec{x}_{j}\right| \\
& =M_{i j}^{-1} / \sqrt{M_{i i}^{-1} M_{j j}^{-1}}
\end{aligned}
$$

See poster by F. Pontiggia

Protease - substrate coupling

Positive correlation: $25,47,84$
Negative correlation: 15, 37, 59, 63

Mutations: 36, 46, 63, 71, 84

Front view

Top view

Proteases

Proteases Recognize β Strands Aspartic proteases
Chemical Reviews, 2005, Vol. 105, No. 3975

Serine
proteases

Cysteine proteases

(f)
(g)

Figure 1. Seven common structurau ions among proteases. From top left are secondary structure representations of the (a) pepsin-like aspartic protease β-barrel (1pso), (b) retropepsin aspartic protease β-barrel (7hvp), (c) trypsin-like fold β-barrel (1cqq), (d) subtilisin-like and caspase-like $\alpha \beta \alpha$ sandwich or Rossman fold (lice), (e) herpes virus serine protease $\alpha \beta$ barrel (1 cmv), (f) papain-like cysteine protease $\alpha \beta$ complex fold (pap), (g) thermolysin-like catalytic domain (1mmq). Catalytic residues shown in green; the zinc atom is shown as an orange ball (thermolysin). Figures were generated using Molscript 2.0^{176} and Raster3D v2.3. ${ }^{177}$

Beta-secretase and HIV-1 protease:
-Conserved residues in the loops containing ASP dyad
-Similar large scale movements in "visually-matching" regions

Rawlings et. al. Methods Enzymol. (1995), Blundell et al. PNAS (1996), Cascella et. al. JACS (2005)

Different structure similar motion?

Pick residues in putative correspondence calculate their effective large scale movements calculate the hybrid structural/dynamical score

Use a stochastic optimization technique to identify the alignment providing the best score (and measure its statistical significance).

BACE - HIV dynamical alignment

BACE (pdb code: 1er8) - 330 residues
HIV-1 PR (pdb code: 1nh0) - 198 residues
150 aligned residues
RMSD $=5.5 \mathrm{~A} ; \mathrm{RMSIP}=0.72$

Proteases with similar near-native largescale movements

Carnevale et al. JACS 2006

Further examples

Hydroxynitrile lyase (PDB: 1yb7, length 256, EC: 4.1.2.39, CATH: 3.40.50.1820)
Haloalkane dehalogenase (PDB: 2had, length 310, EC: 3.8.1.5, CATH: 3.40.50.1820)
200 aligned residues, RMSIP $=0.81$ and RMSD $=4.5 \mathrm{~A}$

Further examples

exonuclease III (PDB: 1ako, length 268, EC: 3.1.11.2, CATH: 3.60.10.10) enoyl reductase (PDB: 1d7o, length 297, EC: 1.3.1.9, CATH: 3.40.50.720)

175 aligned residues, $\mathrm{RMSIP}=0.70, \mathrm{RMSD}=8.4$
d1

d2

Acknowledgements

- Paolo Carloni (Trieste)
- Enzo Carnevale (Trieste)
- Michele Cascella (Lausanne)
- Giorgio Colombo (Trieste)
- Arthur Lesk (Penn State)
- Henri Orland (Paris)
- Francesco Pontiggia (Trieste)
- Andrea Zen (Trieste)
- Ivet Bahar
- Martino Bolognesi
- Burak Erman
- Alessandro Laio
- Doriano Lamba
- Ed Lattmann
- Amos Maritan
- Henriette Molinari
- Stefano Piana

