

SMR/1845-11

Conference on Structure and Dynamics in Soft Matter and Biomolecules: From Single Molecules to Ensembles

4 - 8 June 2007

Network glasses, terminal atoms intermediate phases

P. BOOLCHAND

The University of Cincinnati Department of Electrical and Computer Engineering and Computer Science 814 Rhodes Hall, ML0030 Cincinnati, OH 45221-0030 U.S.A. Network glasses, terminal atoms intermediate phases.* F. Wang, M. Micoulaut,K.A.Jackson, B. Goodman and P. Boolchand. University of Cincinnati

J.C. Phillips, Rutgers University M.F. Thorpe, Arizona State University

* Supported by NSF grant DMR-04-56472

Nature of glass transition

Glass transitions are usually hysteretic.

 But in select compositional windows, T_gs become non-hysteretic.

 These windows occur when network connectivity or mean r resides in the 2.30 < r < 2.50 range typically.

Modulated Differential Scanning Calorimetrya probe of the nature of glass transitions

D.G. Georgiev, P.Boolchand, M.Micoulaut Phys. Rev B 62, R9228 (2000)

MDSC permits probing glass transitions more accurately than traditional DSC

- far more sensitive (AC versus DC method)
- separates reversing (vibrational or thermodynamics) from non-reversing (Configurational or structural arrest, aging, and history related) events.
- Obtain scan-rate independent T_g s and ΔC_p from reversing heat flow.
- Feedback from MDSC has been crucial to optimize sample synthesis

Relevant Part of the Periodic Table for Chalcogen based glasses

	IV	V	VI	VII
	Si	Р	S	C
	Ge	As	Se	Br
	Sn	Sb	Te	I
:N	4	3	2	1
	s²p²	s²p³	s²p4	s²p ⁵

Three types of glass transitions observed in the Ge-Se binary

<r> = 2 (1 + x)

Type 1: △H_{nr} finite, narrow, hysteretic and ages;<r> = 2.30

Type 2:△H_{nr} minuscule ~ 0 , does not age;<r> = 2.44

Type 3: ΔH_{nr} is broad, hysteretic and ages; **(r) = 2.67**

The 3 types of glass transitions are signatures of 3 distinct elastic phases.

- Narrow T_gs with symmetric ΔH_{nr} profiles that age: Flexible
- Reversing T_g profiles (ΔH_{nr} ~ 0) that do not age : Intermediate
- Wide Tgs with asymmetric ΔH_{nr} profiles that age : Stressed-Rigid

Reversibility windows are centered around r = 2.4

• This is not a coincidence. Early studies* showed this magic number to be signature of the onset of stressedrigidity in *random* networks.

 More recent work shows that networks usually self-organize, i.e., display two transitions, a rigidity- and a stresstransition that define an intermediate phase.

*J.C.Phillips JNCS 34,153 (1979); M.F.Thorpe JNCS 57,355 (1983)

M.F. Thorpe et al. J.Non Cryst. Solids 266-269,859 (2000).

 (\bigcirc)

Collapse of Reversibility windows in networks with terminal atoms*.

•What is the experimental evidence?

•Why do windows collapse ?

•We shall see that even in these narrow windows, atom size mismatch plays an important role as networks self-organize to minimize stress.

*Fei Wang ,PB, K.A.Jackson, M.Micoulaut, J.Phys.:Condens. Matter 19, 226201(2007).

Networks with terminal atoms

Mean-field rigidity transition occurs when,

 $r = 2.40 - 0.4(n_1/N) *$ $Ge_{0.25}S_{0.75-y}I_y \quad \text{taking CN of Ge,S and I as}$ 4,2 and 1, $r = 4 \times 1/4 + 2(3/4-y) + 1(y) = 2.4-0.4y$ or y = 1/6

* PB and MFT , Phys. Rev B <u>50</u>, 10366 (1994).

 Mean-Field Rigidity Transition predictions do not distinguish between S or Se.

 Thermal results would appear to be consistent with mean-field results. But there is more!

 Raman scattering provides more clues. Atom sizes play a role in relieving network stress as networks selforganize.

Raman Scattering

 $Ge_{25}S_{75-y}I_{y}$

Y. Wang et al. PRL <u>87</u>, 18, 5503 (2001).

F. Wang et al. J Phys. Condens. Matter <u>19</u>, 226201 (2007).

Stochastic networks and m-unit concentrations from combinatorics

 $P(m, y) = [4! y^{m} (1-y)^{4-m}] / [m! (4-m)!] \qquad 0 < m < 4 , 0 < y < 1$

Structural re-organization in the IP

Photo-melting of the IP in chalcohalides

Conclusions

- Terminal atoms collapse IPs of base networks rather dramatically. This is a fairly general observation.
- Characteristic rings where isostatic rigidity is nucleated are perhaps cut by terminal atoms.
- In real systems atom size mismatch plays an important role in the way network stress is relieved locally and globally as networks self-organize.

Intermediate phases in glasses

- <u>Chalcogenide glasses (1996- present)</u>
 Covalent systems are ideal because *r* is estimated directly.
- <u>Chalcohalide glasses (2002-present)</u>

Halogens terminate networks, and collapse IP in a rather striking fashion. Interm. Range order is implicated in IP.

- <u>Alkali-Germanates and Silicates (2001-present</u>)
 CN of Alkali atoms and effective constraints of networks are less obvious. However, T_gs provide a good guide on network connectivity.
- Solid electrolyte glasses (2005-present)

AgI, Ag_2S , Ag_2Se as additives in base oxide and/or chalcogenide glasses are Fast Ion conductors. Wide IPs are observed and FIC is promoted qualitatively once networks become flexible.

DSC and Modulated-DSC (MDSC)

Network Forming Units:

Group V centered LS

Group IV centered LS

Intermediate Phase in Ge_xSe_{1-x} glasses P.B, X.W.Feng and W J.Bresser, J.N.C.S, <u>293</u>,348 (2001).

