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We investigate dynamics of an inference algorithm termed the belief propagation (BP) when employed
in spin glass (SG) models and show that its macroscopic behaviors can be traced by recursive updates of
certain auxiliary field distributions the stationary state of which reproduces the replica symmetric
solution offered by the equilibrium analysis. We further provide a compact expression for instability
condition of the BP’s fixed point which turns out to be identical to that of instability for breaking the
replica symmetry in equilibrium when the number of couplings per spin is infinite. This correspondence
is extended to the case of finite connectivity to determine the phase diagram, which is numerically
validated.
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1. Introduction

Recently, there is growing interest in a similarity between
researches on spin glass (SG) and information processing
(IP).1) Since employment of methods from SG theory
provided significant progresses for several problems related
to IP such as machine learning,2) error-correcting3–6) and
spreading codes,7,8) it is natural to expect that the opposite
direction might be possible.
The purpose of this paper is to show such an example.

More specifically, we will show that investigating dynamics
of an iterative inference algorithm termed the belief
propagation (BP), which has been developed in IP re-
search,9,10) provides a new understanding about thermody-
namical properties of SG when it is employed in SG models.
This paper is organized as follows. In the next section, we

introduce BP to a family of SG models. This model family
covers a variety of SG models actively studied in the past,
which is convenient for connecting results obtained here to
the existing knowledge. In §3, we investigate macroscopic
behavior of BP in the SG models. We show that the replica
symmetric (RS) solution known in the equilibrium analysis
can be characterized as a macroscopically stationary state in
BP. However, this does not imply that BP microscopically
converges to a certain state. In §4, we provide a compact
expression of the microscopic instability condition around
the fixed point in the BP dynamics, which turns out to be
identical to that of instability for breaking the replica
symmetry in equilibrium termed the de Almeida–Thouless
(AT) instability11) when the number of connectivity per spin
is infinite. Efficacy of this expression for a sparsely
connected SG model is also numerically confirmed. The
final section is devoted to summary.

2. Belief Propagation in Spin-Glass Models

We here take up a family of Ising SG models define by
Hamiltonian

HðS j JÞ ¼ �
XM
�¼1

J�
Y

l2Lð�Þ
Sl; ð1Þ

where Lð�Þ denotes a set of indices which are connected to
a quenched coupling J�. We assume that each coupling is
independently generated from an identical distribution

PðJ�Þ ¼
1þ J0=ð

ffiffiffiffi
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We further assume that for each �, Lð�Þ is composed of
randomly selected K 
 Oð1Þ spin indices and each spin
index l is concerned with C couplings the set of which is
denoted asMðlÞ. J0 > 0 and J > 0 are parameters to control
the mean and the standard deviation of J�, respectively,
which naturally links the current system (1) to the
Sherrington–Kirkpatrick (SK) model12) in the case of K ¼
2 and C 
 OðNÞ, and to sparsely connected SG models13–15)
in general.
A major goal of statistical mechanics in the current system

is to calculate the microscopic spin average ml ¼
TrS Sl exp½��HðSjJÞ�=TrS exp½��HðSjJÞ� from given
Hamiltonian (1). This is formally identical to an inference
problem for a posterior distribution PðSjJÞ /

QM
�¼1 PðJ�jSÞ

derived from a conditional probability PðJ�jSÞ ¼
exp½�J�

Q
l2Lð�Þ Sl�=

P
J�¼�J=

ffiffiffi
C

p exp½�J�
Q

l2Lð�Þ Sl� and a
uniform prior, which can be expressed in a bipartite graph
as Fig. 1(a). In this expression, spins and couplings are
denoted as two different types of nodes and are linked by

SlSlSl
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Jµ2

Jµ3
Jµ4

Sl12 3

(a) (b)

Fig. 1. (a) Graphical expression of SG models in the case of K ¼ 3 and

C ¼ 4. In this expression, each spin Sl denoted as � is linked to C ¼ 4

couplings J� (�), each of which is connected to K ¼ 3 spins. Lð�Þ and
MðlÞ represent sets of indices of spins and couplings that are related to J�
and Sl, respectively. In the figure, Lð�Þ ¼ fl1; l2; l3g and MðlÞ ¼ f�1;

�2; �3; �4g. (b) Cycles in a graph. A cycle is composed of multiple paths
to link an identical pair of nodes. It is shown that BP can provide the

exact spin averages in a practical time scale if a given graph is free from

cycles.9)�E-mail: kaba@dis.titech.ac.jp
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edges when they are directly connected, which is useful to
explicitly represent statistical dependences between estima-
tion variables (spins) and observed data (couplings).
BP is an iterative algorithm defined over the bipartite

graph to calculate the spin average for a given set of
couplings J ¼ ðJ�Þ.9,10) In the current system, this is
performed by passing beliefs (or messages) between the
two types of nodes via edges at each update as

m̂mtþ1
�l ¼ tanh �J�

� 	 Y
k2Lð�Þnl

mt
�k; ð3Þ

mt
�l ¼ tanh

X
�2MðlÞn�

tanh�1 m̂mt
�l

 !
; ð4Þ

where beliefs mt
�l and m̂mt

�l are parameters to represent
auxiliary distributions at tth update as PðSljfJ� 6¼�gÞ ¼ ð1þ
mt

�lSlÞ=2 and PðJ�jSl; fJ� 6¼�gÞ ¼ TrSk 6¼l
PðJ�jSÞPðSjfJ� 6¼�gÞ /

ð1þ m̂mt
�lSlÞ=2, respectively. Lð�Þnl stands for a set of spin

indices which belong to Lð�Þ other than l and similarly for
MðlÞn�. Calculating m̂m�l iteratively, the estimate of the spin
average at tth update is provided as

mt
l ¼ tanh

X
�2MðlÞ

tanh�1 m̂mt
�l

 !
: ð5Þ

It is known that BP provides the exact spin averages by
the convergent solution when the bipartite graph is free from
cycles [Fig. 1(b)]. Actually, BP is a very similar scheme to
the transfer matrix method (TMM) and the Bethe approx-
imation16,17) which are frequently used in physics, and the
current statement can be regarded as a generalization of a
known property of TMM that offers the exact results for a
one dimensional lattice or a tree. However, BP still has a
possibility to introduce something new into physics since it
is explicitly expressed as an algorithm and such view point
has been rare in the research on matters. This strongly
motivates us to examine its dynamical properties, which we
will focus on hereafter.

3. Macroscopic Behavior and the Replica Symmetric
Solution

Let us first discuss the macroscopic behavior of the BP
dynamics (3) and (4). Although the current randomly
constructed system is not free from cycles, it can be shown
that the typical length of the cycles grows as OðlnNÞ with
respect to the system size N as long as C is Oð1Þ,18) which
implies that the self-interaction from the past state is
presumably negligible in the thermodynamic limit. On the
other hand, the self-interaction is also expected as suffi-
ciently small even if C is large since the strength of the
coupling becomes weak as OðC�1=2Þ. This and eqs. (3) and
(4) imply that the time evolution of the macroscopic
distributions of beliefs 	tðxÞ � ð1=NCÞ

PN
l¼1

P
�2MðlÞ �ðx�

mt
�lÞ and 	̂	tðx̂xÞ � ð1=NCÞ

PN
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P
�2MðlÞ �ðx̂x� m̂mt

�lÞ is likely
to be well captured by recursive equations
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Z YK�1
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XC�1
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 ! !
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where h� � �iJ represents the average with respect to J

following distribution (2).
The validity of the current argument and its link to the

replica symmetric (RS) ansatz in the equilibrium analysis
have been shown already for finite C.19,20) Here, we further
show that these can be extended to the case of infinite C

even if the AT stability of the RS solution is broken in
equilibrium.
When C becomes infinite, it is more convenient to deal

with an auxiliary field of finite strength ht�l �P
�2MðlÞn� tanh

�1 m̂mt
�l ’

P
�2MðlÞn� m̂m

t
�l rather than m̂mt

�l since
m̂mt

�l becomes infinitesimal. Due to the central limit theorem,
the distribution of the auxiliary field 
tðhÞ � ð1=NCÞPN
ł¼1

P
�2MðlÞ �ðh� ht�lÞ can be regarded as a Gaussian
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 !

’
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2Ft

� �
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where Et and Ft are the average and the variance to
parameterize the Gaussian distribution 
tðhÞ, respectively.
The expression in the middle implies 	tðxÞ ¼

R
dh
tðhÞ�

ðx� tanhðhÞÞ. Plugging this into eq. (6) and recursively
employing eq. (8), we obtain a compact expression for the
update of Et and Ft as

Etþ1 ¼ �J0 Mt
� 	K�1

;

Ftþ1 ¼ �2J2 Qt
� 	K�1

;
ð9Þ

Mt ¼
Z

Dz tanhð
ffiffiffiffiffi
Ft

p
zþ EtÞ;

Qt ¼
Z

Dz tanh2ð
ffiffiffiffiffi
Ft

p
zþ EtÞ;

ð10Þ

where Dz � exp½�z2=2�=
ffiffiffiffiffiffi
2	

p
and Mt and Qt can be

expressed as Mt ’ ð1=NÞ
PN

l¼1 m
t
�l ’ ð1=NÞ

PN
l¼1 m

t
l and

Qt ’ ð1=NÞ
PN

l¼1ðmt
�lÞ

2 ’ ð1=NÞ
PN

l¼1ðmt
lÞ
2, respectively,

due to the law of large numbers. Equations (9) and (10)
serve as alternatives of eqs. (6) and (7).
It should be noticed here that these equations can be

regarded as the forward iteration of the saddle point
equations to obtain the RS solution in the replica analysis
of the multi-spin interaction infinite connectivity SG
models1) and, in particular, of the SK model for K ¼ 2.12)

In order to confirm the validity of the above argument, we
compared the time evolution of the belief update (3) and (4)
(BP) with that of eqs. (9) and (10) (RS) for the SK (K ¼ 2)
model, which is shown in Figs. 2(a) and 2(b). We also
compared them with the trajectory of the naive iteration of
the BP’s fixed point condition

ml ¼ tanh

 X
�2MðlÞ

�J�
Y

k2Lð�Þnl
mk �

X
�2MðlÞ

ð�J�Þ2

�
X

j2Lð�Þnl

 Y
k2Lð�Þnl;j

mk

!2

ð1� m2
jÞml

!
;

ð11Þ

(TAP) which can be obtained inserting m�l ’ ml � ð1�
m2

l Þm̂m�l to the fixed point of eqs. (3) and (4) m
t
�l ¼ m�l,

m̂mt
�l ¼ m̂m�l and mt

l ¼ ml. This becomes identical to the
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famous Thouless–Anderson–Palmer (TAP) equation of the
SK model, in particular, for K ¼ 2.21)

The experiments were performed for J0 ¼ 1:5, 0:5 keep-
ing J ¼ 1 and T ¼ 0:5, where the AT stability of the RS
solution in equilibrium is satisfied for J0 ¼ 1:5 but broken
for J0 ¼ 0:5.11) Figures 2(a) and 2(b) show that BP and RS
exhibit excellent consistency with respect to the macro-
scopic variables irrespectively of whether the AT stability is
satisfied or not. This strongly validates the reduction from
BP (3) and (4) to the macroscopic dynamics (9) and (10). On
the other hand, TAP is considerably different from the
others. In a sense, this may be natural because naively
iterating eq. (11) is just one of procedures for obtaining a
solution and its trajectory in dynamics does not necessarily
have any consistency with BP or RS while the BP’s fixed
point is correctly characterized by the TAP equation (11)
which does have a certain relation to the RS solution in
equilibrium as shown in ref. 22. These figures also imply
that the dynamics of BP cannot be traced by a closed set of
equations with respect to singly indexed variables mt

l even
for C ! 1 while the fixed point condition in this limit is
provided as coupled equations of ml (11). Such necessity of
keeping extra variables for tracing the trajectory of mt

l in the
BP dynamics is also observed in a similar system of infinite
connectivity.8)

4. Microscopic Stability and the AT Condition

Although Figs. 2(a) and 2(b) show that the macroscopic
variables rapidly converge to those of the RS solution in BP,
this does not imply that BP microscopically converges to a
certain solution. In order to probe this microscopic con-

vergence, we numerically examined the squared difference
of the spin averages between successive updates Dt �
ð1=NÞ

PN
l¼1ðmt

l � mt�1
l Þ2, the time evolution of which is

shown in the insets of Figs. 2(a) and 2(b). These illustrate
that the (microscopic) local stability of the BP’s fixed point
can be broken even if the macroscopic behavior seems to
converge, which cannot be detected by only examining the
reduced macroscopic dynamics (9) and (10).
In order to characterize such instability, we next turn to

the stability analysis of the BP updates (3) and (4).
Linearizing the updates with respect to the auxiliary field
h�l ¼ tanh�1 m�l around a fixed point solution mt

�l ¼ m�l,
we obtain a dynamics of the auxiliary field fluctuation �ht�l
as

�htþ1
�l ¼

X
�2MðlÞn�

tanhð�J�Þ
Y

k2Lð�Þnl
m�k

1� tanhð�J�Þ
Y

k2Lð�Þnl
m�k

 !2

�
X
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1� m2
�j

m�j
� �ht�j:

ð12Þ

Analytically solving this linearized equation for a large
graph is generally difficult. However, since the current
system is randomly constructed, the self-interaction of �ht�l
from the past can be considered as small as those of beliefs
are. This implies that the time evolution of the fluctuation
distribution f tðyÞ � ð1=NCÞ

PN
l¼1

P
�2MðlÞ �ðy� �ht�lÞ can

be provided by a functional equation

f tþ1ðyÞ ¼
Z YC�1

�¼1

YK�1

l¼1

dy�lf
tðy�lÞ

� � y�
XC�1
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*

�
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l¼1

1� x2�l

x�l
� y�l

1
CCCCCA
+

J�;x�l

; ð13Þ

where h� � �iJ�;x�l
denotes the average over J� and x�l

following eq. (2) and the stationary distribution of 	tðxÞ ¼
	ðxÞ, respectively, and the stability of the BP’s fixed point
can be characterized by whether the stationary solution
f tðyÞ ¼ f ðyÞ ¼ �ðyÞ is stable or not in update (13). This
formulation makes analytical investigation possible to a
certain extent.
In order to connect eq. (13) to the existing analysis, let us

first investigate the limit C ! 1 for which much more
results are known compared to the case of finite C. Due to
the central limit theorem, the distribution of the field
fluctuation can be assumed as a Gaussian f tðyÞ ¼
ð1=

ffiffiffiffiffiffiffiffiffi
2	bt

p
Þ exp½�ðy� atÞ2=ð2btÞ�, where at and bt are the

mean and the variance of the distribution, respectively.
Plugging this expression into eq. (13) offers update rules
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Fig. 2. Time evolution of macroscopic variables Mt ¼ ð1=NÞ
PN

l¼1 m
t
l and

Qt ¼ ð1=NÞ
PN

l¼1ðmt
lÞ
2 in the SK model for the BP updates (3) and (4)

(BP: �), the reduced dynamics (9) and (10) (RS: lines) and the naive
iteration of the TAP equation (11) (TAP: þ) for (a) J0 ¼ 1:5 and (b)

J0 ¼ 0:5 keeping J ¼ 1 and T ¼ 0:5. TAP is plotted only for Qt in the

case of J0 ¼ 0:5 in order to save space. Each marker is obtained from 100
experiments for N ¼ 1000 systems. The AT stability is satisfied for

J0 ¼ 1:5 but broken for J0 ¼ 0:5. Irrespectively of the AT stability, the

behavior of the macroscopic variables in the BP dynamics can be well

captured by the reduced dynamics while the naive iteration of the TAP

equation does not exhibit any convergence even in the macroscopic scale.

Insets: Squared deviation of spin averages between the successive updates

Dt ¼ ð1=NÞ
PN

l¼1ðmt
l � mt�1

l Þ2 is plotted for the BP dynamics. The
deviation vanishes to zero indicating convergence to a fixed point

solution for J0 ¼ 1:5 while remains finite signaling instability of the fixed

point for J0 ¼ 0:5. It may be worthwhile to mention that the microscopic

trajectory of the BP dynamics for J0 ¼ 0:5 exhibits not simple oscillatory
but chaotic behavior although Dt converges to a constant value. In

experiments, such chaotic motion was observed even when control

parameters were set much closer to the onset of the AT instability. The

origin of this non-trivial behavior may be due to the the (continuous)

semi-circular eigenvalue distribution of the interaction matrix of the SK

model for which many modes of fluctuations simultaneously become

unstable at the critical point.
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with respect to at and bt as atþ1 ¼ ðK � 1Þ�J0MK�2ð1�
QÞat and btþ1 ¼ ðK � 1Þð�JÞ2QK�2

R
Dzð1� tanh2ð

ffiffiffiffi
F

p
zþ

EÞÞ2bt þ ððK � 1Þð�JÞ2QK�2
R
Dzð1� tanh2ð

ffiffiffiffi
F

p
zþ EÞÞ2

�ðK � 1Þ2ð�J0Þ2M2K�4ð1� QÞ2ÞðatÞ2, where M, Q, E and F
represent the convergent solutions of eqs. (9) and (10). In
order to examine the stability of f ðyÞ ¼ �ðyÞ, we linearize
these equations around at ¼ bt ¼ 0, which provides the
critical condition of the instability with respect to the growth
of bt

ðK � 1Þð�JÞ2QK�2

Z
Dz 1� tanh2ð

ffiffiffiffi
F

p
zþ EÞ

� �2
¼ 1; ð14Þ

which becomes identical to that of the de Almeida–Thouless
(AT) stability for the infinite range multi-spin interaction SG
models and, in particular, for the SK model when K ¼ 2.11)

Furthermore, in the case of the SK model (K ¼ 2), the
critical condition with respect to at around the paramagnetic
solution M ¼ Q ¼ 0 corresponds to the para-ferromagnetic
transition. These mean that the two different phase tran-
sitions from the paramagnetic solution can be linked in a
unified framework to the dynamical instabilities of BP by
eq. (13).
When C is finite, one can numerically perform the

stability analysis employing eq. (13), the detail of which will
be reported elsewhere. In addition, analytical investigation
also becomes possible for K ¼ 2 as follows since transitions
from the paramagnetic solution in this case occur due to the
local instability.
For a small �, the paramagnetic solution 	ðxÞ ¼ 	̂	ðxÞ ¼

�ðxÞ (m�l ¼ m̂m�l ¼ 0) expresses the correct stable fixed point
of the BP dynamics. Inserting this into eq. (13) does not
provide a closed set of equations with respect to a finite
number of parameters since f tðyÞ is no more a Gaussian.
However, assuming f tðyÞ ’ �ðyÞ, the stability analysis can
be reduced to coupled equations with respect to the mean
and the variance of f tðyÞ as atþ1 ¼ ðC � 1Þhtanhð�JÞiJat
and btþ1 ¼ ðC � 1Þðhtanh2ð�JÞiJbt þ ðhtanh2ð�JÞiJ � htanh
ð�JÞi2JÞðatÞ

2Þ. Linearizing these around at ¼ bt ¼ 0 provides
the critical conditions with respect to the growth of at and bt

as

ðC � 1Þ tanhð�JÞ
� �

J
¼ 1; ð15Þ

ðC � 1Þ tanh2ð�JÞ
� �

J
¼ 1; ð16Þ

respectively. It should be mentioned that these critical
conditions around the simple paramagnetic solution have
been already obtained in similar systems using perturbation
methods.23–25) However, the current scheme may be superior
to the methods employed in the past since the expression
(13) is compact and, therefore, can be easily applied to the
stability analysis of the non-trivial ferromagnetic solution
with the aid of numerical methods (� in Fig. 3) even in the
case of multi-spin interaction (K � 3) while such extension
in the other schemes requires higher order expansion and
becomes highly complicated.
Equations (15) and (16) might correspond to the para-

ferromagnetic and the para-SG phase transitions, respec-
tively, since they do in the limit C ! 1. In order to
examine this, we performed numerical experiments for N ¼
2000 and C ¼ 4. Although further investigation may be
necessary to prove correctness, the data obtained from 100

experiments of 20000 Monte Carlo steps per spin exhibit
good consistency with the analytical expressions (15) and
(16) indicating that the correspondence between the phase
transitions in equilibrium and the dynamical instabilities of
BP holds for finite C as well (Fig. 3).

5. Summary

In summary, we have investigated dynamical behavior of
BP when employed in SG models. We have shown that the
time evolution of macroscopic variables can be well
captured, even in the transient stage and even when the
replica symmetry is broken in equilibrium, by recursive
updates of auxiliary field distributions which becomes
identical to the forward iteration of the saddle point
equations under the RS ansatz in the replica analysis. We
have further shown that the dynamical instability of the BP’s
fixed point is closely related to the AT instability of the RS
solution, which has been numerically supported.
Relationship between the current scheme and an existing

AT analysis for finite connectivity SG models26) that
generally requires complicated calculation and is not
frequently employed in practice is under investigation.
Besides this, extending the current framework to the local
stability analysis of the replica symmetry breaking solu-
tion27,28) is a challenging and interesting future work.
This work was partially supported by Grants-in-Aid from
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