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L-FUNCTIONS
C. S. RAJAN

ABSTRACT. Our aim is to give an introduction to L-functions.

1. INTRODUCTION

Our aim in these notes is to give an informal introduction to some
of the themes occurring in the theory of L-functions.

1.1. Euler products, local-global principle. One of the first as-
pects about the L-functions we consider is that they have an Euler
product. Indeed, Euler gave the factorization

-1
=2 -T(-3) -
n>1 n D p
Here p runs over the set of primes. The above factorization is valid
when s is taken to be a positive real greater than 1. Formally the
product expresses the fact that every natural number can be factorized
uniquely as a product of primes.

Euler observed that the product factorization of the zeta function
C(s) gives a proof of Euclid’s theorem on the infinitude of prime num-
bers. Indeed if the set of primes is finite, then the product Hp(l—p_s)_l
has a finite limit as s — 1. But it can be seen that as s — 1, the sum
> n~* tends to co.

The L-functions we consider will be of the form,

L(s) =[] L(s)

where the product is valid in some suitable half plane Re(s) sufficiently
large. More generally we consider completed L-functions of the form

L(s) = [ Lo(s).

where v runs over all the places of a number field (or a global field).
Such L-functions will be associated to arithmetical objects, and the

!This is an informal set of notes accompanying the lectures given at ICTP. As
such there are not many references; lots of mistakes (maybe even conceptual ones)
will be there. Comments are most welcome.
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2 C. S. RAJAN

local factors L,(s) carry local information about the object at the prime
p.

Example. Let E be an elliptic curve defined over QQ, say given by an
equation of the form,

v =2 +axr+b a, bcQ.

Let p be a prime not dividing the discriminant A(E) having more or
less an expression of the form A(F) = 4a® + 27b* (a prime of good
reduction for E). Let p + 1 — a,(E) be the number of solutions E(IF,)
of the reduction mod p of E' with values in the finite field F,. The local
factor L,(s, E') at such good primes is defined as,

ap(E)  p ) - ‘

Lp(S, E) = (]_ — ps + F

The global partial L-function L2 (s, E) associated to E is defined as,
LA(s,E) H L,(s,E).
(p.A)=

So the local information at p that is encoded here is related to the
number of solutions of the elliptic curve E over the finite field I, (also
over the finite extensions of F,,).

Example. Let ¢ be a natural number. Consider the quadratic Dirichlet
character x : (Z/qZ)* — C* defined by,

q
x(p) = <p) , (o) =1,
where
q\ 1 if ¢ has a square root in F,
<]_9> | -1 otherwise

is the Legendre symbol. The local Euler factor at p is defined as,
-1
X\P
L= (1-22)
p
Here the local L-factor carries information on the splitting behaviour
of the prime p in the quadratic extension Q(,/q).

The global properties satisfied by the L-functions can be considered
as a manifestation of the local-global principle; the local information
at the different primes is patched together by the Euler product, and
in turn the L-function gives global information about the arithmetic
object.
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Example. As a manifestation of the local-global principle let us con-
sider elliptic curves again. It is known that the group F(Q) of rational
points of an elliptic curve E defined over QQ is a finitely generated
abelian group. Heuristically if E(F,) is large for various primes p, then
the curve E should have many rational points, i.e., the rank of E(Q)
should be large. Consider the local factor L,(s, E) evaluated at s = 1:

-1 -1
) - (ML) (1B

p p
Thus if E(F,) is large then L,(1, F) is small. With some numerical
evidence, the following conjecture was made by Birch and Swinnerton-
Dyer:

rankz(E(Q)) = ords—1 L(s, E).

Example. The first significant application of L-functions to obtain
global arithmetical data was made by Dirichlet to obtain class number
formulas for quadratic fields. More generally let K be a number field.
The Dedekind zeta function associated to K can be defined as an Euler
product,
Ce(s) =] (1= NP)"", Re(s)> L.
P
Here P runs over the collection of prime ideals in the ring of integers
O of K and
NP =|0k/P|,

is the norm of the prime ideal P. It was shown in the lectures on Tate’s
thesis that (x(s) has a simple pole at s = 1 with residue

res,—1 (e (s) = vol(J /K*) = chi R

Here JL is the group of ideles of norm 1 of K, hy is the class number
of K and Ry is the regular of K (c is some explicit constant depending
on K).

As a corollary of the class number for quadratic fields Dirichlet
proved the infinitude of primes in arithmetic progressions:

Theorem 1 (Dirichlet). Let a, g be coprime natural numbers. Then
there are infinitely many primes p such that p — a is divisible by q.

To see this, introduce for each character x : (Z/qZ)* — C* the
Dirichlet L-function

L9%s,x) =[] (1—@)_1, Re(s) > 1.

(pa)=1 P
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(the superscript (¢) is to indicate that this is an incomplete [-function,
in that we have not defined the local factors at the primes p dividing
q). Then,

1 . B 1
W;X(Q) logL(s, x) = Z Z_9+E(8)7

p=a (mod q)

where F(s) is a function that is bounded as s — 1. Now if x = xq is the
trivial character then L(s,xo) is equal to the Riemann zeta function
((s) upto some finite number of local L-factors that are non-vanishing
at s = 1. On the other hand if x is not the trivial character, then by
the method of partial summation we see that L(s, x) can be extended
to an analytic function in the region Re(s) > 0. Hence if we know
that L(1, x) # 0 for a non-trivial character x, then Dirichlet’s theorem
follows.
Consider the cyclotomic field,

K = @(Nq)

generated by the ¢'* roots of unity. It can be seen that (in fact as
a consequence of abelian reciprocity for the cyclotomic field and the
inductivity of L-functions attached to Galois representations) that

Cul(s) =TT =) ] L(s.x).

plg

From the class number formula for (x(s) we know that (x(s) has a
simple pole at s = 1. Since L(s, xo) has a simple pole at s = 1, we
conclude from the regularity of L(s,y) for y non-trivial that they do
not vanish at s = 1. This proves Dirichlet’s theorem.

1.2. Analytic continuation and Functional Equation. (ref. any
book on analytic number theory, eg. Karastuba).
Riemann showed that the ‘completed’ L-function

A(s) = 72D (s/2)¢(s),

defined originally in the region Re(s) > 1 can be meromorphically
continued to the entire plane except for simple poles at s — 0, 1 and
satisfies the functional equation

A(s) = A(1 —s).

Riemann further conjectured deep relationships between the zeros
of the zeta function and the distribution of prime numbers. Building
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on the work of Riemann and others, Hadamard and de Vallee Poussin
proved the prime number theorem,

T T
= < e — .
m(z) == |{p < z}| logx+0<log x) as T — 00

By partial summation, an equivalent version of the prime number the-
orem
U(@) =Y An) =z +o(z),
n<x

where

log p if n = p* for some prime p
A(n) = .
0 otherwise.

This was obtained as a consequence of a non-vanishing result,

C(1+it) 0.

One way of observing that the non-vanishing of the Riemann zeta
function ((s) on the line Re(s) = 1 (more precisely a zero free region of
the standard form) impies the prime number theorem is via the Explicit
formula of Riemann-von Mangoldt-Siegel. The idea of this method is
to consider the integral of logarithmic derivative of ((s) against the
function x*/s,

b+iT ! s

S ¢(s)a®

21t Joir C(8) s

The property of integrating against the function of the form z°/s is
that cuts off the infinite sum. The above integral can be estimated as

> A(n) + ET(b,T,x).

n<x

We now shiftthe line of integration to the line segment o; — T to
o1+ T for some oy < 1 chosen so that there are no zeros of ((s) in the
rectangle with vertices

Ul—iT, 01+iT, b—l—’lT, b—T.

We pick up a contribution (z) coming from the simple pole of ((s) at
s = 1. Estimating the contributions we get

¥(z) = v+ O(xexp(—cy/log ).

There are a lot of technicalities to be filled in (zero free regions for
¢(s), the fact that A(s) is bounded in vertical strips, etc. ) in order to
rigorously justify the above argument
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A different perspective on the Explicit formula was introduced by
Weil (ref: Hejhal, Lang’s book). Let h and g be sufficiently nice func-
tions which are related mutually by a Fourier-Mellin transform of the
form

hr) = /_ T gr)emdu,

Then one form of the explicit formula is as follows:

infty ! ir
S hiy) — h(i/2) — h(—i/2) — %/ () G - 5) dr

~ — 00

= 0)log(m) — 2 Z g(logn).

In other words this form of the eXpllclt formula exhibits a duality be-
tween the zeros of the Riemann zeta function ((s) and the prime num-
bers.

2. GENERAL L-FUNCTIONS

We now consider some of the defining properties of more general
L-functions. Basically these arise from two a priori different contexts.
One construction is the L-functions associated to Galois representa-
tions arising from a study of the diophantine properties of algebraic
varieties over global fields, a study starting with Artin and defined in
increasing generality by Hasse, Weil and Grothendieck. The other con-
struction is in the automorphic context initiated by Ramanujan and
Hecke, extended by Mass, Siegel and Selberg culminating in the work
of Langlands. In the framework of Langlands these two strands have
been brought together as a generalization of the abelian reciprocity
law.

2.1. L functions attached to Galois representations; Inductiv-
ity. The model for the definition of L-functions is based on that of
L-functions associated to representations of the absolute Galois groups
of number fields. Let F' be a number field and

Gr = Gal(F/F)

be the absolute Galois group of an algebraic closure F of K over the
base field F'. Suppose

p:Gr— GL(V)(~ GL,(C))

is a continuous n-dimensional linear representation of G into GL(V)
where V' is a n-dimensional vector space over C. Here GL(V) is
equipped with the Euclidean topology (more generally one can work
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with compatible systems of [-adic representations). Since G is profi-
nite and p is continuous, the representation factors via a finite Galois
extension L of F',

p:Gp— Gal(L/F) — GL(V).
For a finite place v of K unramified in L, define the local L-factor
L(s, p,) = det(1 — p(Frob,)q, )"

Here w is a place of L lying above the place v of K and Frob, €
Gal(L/F) is the Frobenius conjugacy class at w. The place v corre-
sponds to a prime ideal P, of the ring of integers O of F, and

QU:NPUZ |OF/7D1)|

is the norm of the ideal P,. The local L-factor depends only on the
place v, since the various Frobenius conjugacy classes Frob,, for w|v
are conjugate inside Gal(L/F).

At a finite place v of F' ramified in L, define the local L-factor as,

L(s, p,) = det(1 — p(Froby) |y 1w qv_s)_l,

where I, = I,(L/F) is the inertia group at a place w|v. Again one can
see that this is independent of the choice of w dividing v. By definition,
the local factor depends only on the restriction p, of the representation
of the Galois group to the decomposition group D,,(L/F') of a place w
of L lying over F.

The global L-function is defined as,

L(s,p) = H L(s,p»), Re(s)>1,
UEF,f

where ¥ ¢ denotes the collection of non-archimedean places of F. It
can be seen that that the Euler product converges in the half-plane
Re(s) > 1. It is possible to associate at each archimedean place v of
F', the local factor L(p,, s) defined in terms of I' functions, and define
the completed L-function

A(s.p) = T Lis.p0).

vEX R

where X runs over the collection of inequivalent places of F.
Example. If p = pg is the trivial representation of G, then

L(s, po) = Cr(s),
the Dedekind zeta function of F.
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Example. Let m be a natural number and let

p: Gal(Q(um)/Q) — C,

be a continuous one dimensional character of the Galois group Gal(Q(t,)/Q).
Now there is a natural identification

r: Gal(Q(pm)/Q) >~ (Z/mZ)",
given by the following property

o(p)=p', o€ GallQ(um)/Q): 1 € fim-
It is a reflection of the abelian reciprocity law for the abelian extension
Q(pm) over Q, that for a Dirichlet character x : (Z/mZ)* — C* as
above,
L9(s,x) = L'9(s,x o R),

where the right hand side is defined in the above Galois theoretical con-
text (and the superscript (¢) means we have omitted the local factors
at the primes dividing ¢ in the definition of L(p, s)).

The assignment p — L(p, s) is additive,

L(s, p1 ® p2) = L(s, pr)L(s, p2).
The defining property of this definition of L-functions is that it is in-
ductive: suppose M is a finite Galois extension of F' and

n:Gy — GL(W)

is a continuous linear representation of G,;. Now G, is a subgroup of
finite index in Gx. Suppose

R Te
p= IndG]\F/[ (77)9
is the representation of G induced from 7. Then

L(s,p) = L(s,n).

The existence of such an inductive definition of L-functions associated
to Galois representations and compatible with the known examples of
L-functions was discovered by Artin. (ref: Frohlich’s volume).

Regarding the analytic properties of the Artin L-functions, it follows
from the abelian reciprocity law due to Artin that L(s,p) is entire
when p is an abelian character. Based on this, Artin conjectured the
following;:

Conjecture 2.1. Let p be irreducible (non-trivial). Then L(s, p) is
entire.

Using some results from representation theory of finite groups and
the abelian case, Brauer proved the following:
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Theorem 2. Let F' be a number field. For any continuous finite di-
mensional representation

p:Gp— GL(V)

the function A(s,p) admits a meromorphic continuation to the entire
plane entire and satsifies a functional equation of the form

A(S,p) = E(S,p)A(l -5 ﬁ)u

where p is the contragredient representation of p, and €(s, p) of the form
AB?® for some constants A and B associated to p.

Let R(G) denote the Grothendieck ring associated to finite dimen-
sional complex representations of G. Brauer showed that given any
finite dimensional representation p of G, there is a collection of sub-
groups H; C G and abelian characters 7; : H; — C* (1 <14 < k) such
that in R(G),

k
p="Y_ mindf (1),
i=1
for some integers m;. The meromorphicity and functional equation fol-
lows from the abelian case and the inductivity property of L-functions.
It should be remarked that the later results proving some class of
Artin L-functions are entire do not use Brauer’s theorem.

2.2. Automorphic L-functions. (Ref: Corvallis)

The most general context in which L-functions can be defined having
an Euler product, analytic continuation and functional equation lies in
the automorphic context. Let G be a reductive algebraic group defined
over a number field F', and 7 be an irreducible representation of the
locally compact group of adele points G(Ag) of G, where A = Ay is
the adele ring of K. The representation m can be decomposed as a
restricted tensor product,

T=" ®;EE x T
where 7, is an irreducible representation associated to the local group
G(F,). Here F, is the completion of K at the place v of F. There
exists a finite set S of places of F' such that for v not in S the local
component , is unramified.
Suppose v is a finite place not in S. To the unramified representation
7, there is associated a semisimple conjugacy class

t(m,) € G(C),



10 C. S. RAJAN

by the Satake-Langlands parametrization. For examle, if G = GL,,
then

LGL, = GL,(C) x Gp,

and the Langlands-Satake parametrization gives us a semisimple con-
jugacy class in GL(n,C). In general consider a representation,

r:* G — GL,(C).
Define the local L-factor for v not in S as,
L(s, 7y, r) = det(1 — r(t,)q, )",
and the partial global L-function as

Lo(s,m, 1) = H L(s,my, 7).

vgS

Now if  were to correspond to a Hecke character or to a modular form
and r is taken to be the standard representation, then it can be checked
that this gives the usual L-factor associated in these cases. For general
m, 7, using a formula of Macdonald, Langlands showed that the partial
global L-function does converge in some half plane.

If we consider the automorphic forms as generalizations of Hecke
characters and modular forms, then we expect to be able to prove
analytic continuation and functional equation for the L-functions asso-
ciated to automorhic representations. However in order to obtain func-
tional equations, we need to know the completed global L-function,
i.e., we need to know the local L-factors at all the places and not just
the unramified ones. So the problem now is to define the local factors
at the bad places that is consistent with various other properties that
we expect about these L-functions.

As a generalization of the abelian reciprocity law, Langlands conjec-
tured that associated to anirreducible Galois representation

p:Gr— GL,(C),

there should be associated a unitary cuspidal automorphic representa-
tion 7(p) of GL,(AFr) such that

L(s, p) = L(s,7(p)).

Thus the definition of L(s, ) should be consistent with the above con-
jectured reciprocity law, since we can define the completed L-function
associated to Galois representations.

Langlands also conjectured that the above global reciprocity law
should be compatible with a local reciprocity law. Indeed when the lo-
cal field F' is archimedean Langlands proved that isomorphism classes
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of irreducible admissible representations of G(F') where G is a reduc-
tive algebraic group over F' are parametrised by conjugacy classes of
homomorphisms of the Weil group

WF —>L G(C)

More generally Langlands expected that if I’ is non-archimedean, then
isomorphism classes of irreducible admissible representations of G(F')
are parametrised by conjugacy classes of homomorphisms of the Weil-
Deligne group

WDp —* G(C).

such that the Frobenius element acts semisimply.

Coming back to the global situation, since we know how to attach L-
factors associated to representations of the Weil group, this will allow
us to attach the local L-factors L(s,m,,r) at any place v of the global
field F' provided we know the local Langlands conjecture.

So we are in a peculiar situation: on the one hand we can define the
completed L-functions associated to Galois representations but cannot
prove the desired analytic properties. On the automorphic side though
we cannot define the correct L-functions but we expect to prove the
analytic properties and to work with it (thanks to Hecke, Tate, etc.)

In practice what happened was that L-functions associated to au-
tomorphic representations have been defined in a wide variety of con-
texts by different methods and the required analytic properties have
been established. Now it is to be expected that the existence of global
functional equations should rigidify the definition of the local L-factors.
i.e., the local L-factors should be determined uniquely at the finite set
of places in S, provided we know that the partial L-function L®(s, 7, )
can be completed to a global L-function having the expected functional
equation, etc. If this were so, then we expect that the local L-factors
constructed by these analytic methods should give us the correct L-
factors, i.e., that they should be compatible with the local Langlands
correspondence as and when it is established. Again in practice, the
analytic theory has helped in clarifying the nature of the local Lang-
lands correspondence for GL(n) even before the correspondence was
established (ref: Henniart).

2.3. e-factors. The completed L-function should satisfy a functional
equation of the form

A(s,m,r)=€(s,m,r)A(1 — s,7,7),
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for some suitable e-factor €(s, m, 7). Tate’s thesis expects that given an
additive character

¥ :Ap/F — C,

there should be a factorization

6(8’71-7 T) = H 6(87 7TU7T7 ¢U)?

VEX R

where 1), is the local component of ¢ at v (an additive charcter of
F, — C*). Here for almost all places (the places where 7 and ¢ are
unramified), the epsilon factor €(s, 7, r,1,) should be 1.

If the local Langlands conjecture were to be true, then we should
expect to define the epsilon factors associated to representations of the
Weil-Deligne group associated to local fields. This was established by
Langlands and Deligne:

Theorem 3. Let F' be a non-archimedean local field and ¢ : F — C*
be an additive character. Then there exists a unique prescription,

¢ — (s, 9,9),

associated to any irreducible parameter
¢ Wgp — GL,(C),

satisfying the following properties:

(1) It is compatible with Tate’s definition for the epsilon factors
associated to r(¢) : F* — C*, when ¢ is one-dimensional and
r(¢) is the character associated by local class field theory to ¢.

(2) Itis inductive in degree zero, i.e., if Y . n;¢; is an element in the
Grothendieck ring of Wg such that Y, n; = 0 and ¢; : Wp —
GL,,(C) are irreducible parameters, then

H 6(87 ¢i> w)nl =1

(see Tate’s article in volume edited by Frohlich for a precise version).

Remark: Tate’s construction of the epsilon factors in the one dimen-
sional case is on the automorphic side.

Deligne’s proof of this theorem uses global methods, and marks the
modern beginning of the use of global methods to prove local results
(the first proofs of local class field theory used global class field theory).

The epsilon factors are of the form

€(s, ,1) = N(¢)" W (s, ¢, ),
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where N(¢) is the conductor of ¢ and W (s, ¢, 1)) is expressed in terms
of Gauss sums. It is quite subtle to understand the information carried
by the local epsilon factors with regard to the nature of ¢.

3. RANKIN-SELBERG L-FUNCTIONS

In this section, we give an introduction to the analytic properties
satisfied by the Rankin-Selberg convolution L-functions. We first re-
call the notion of a unitary, cuspidal automorphic representation of
GL,(Ar). Let w be a unitary character of Z(A)/Z(F), where Z is the
center of GL,. A unitary automorphic representation of GL,,(A) is an
irreducible ‘constituent’ of the regular representation R of GL,(A) on
the space L?(Z(A)GL,(F)\GL,(A),w) consisting of measurable func-
tions,

f:GL,(A) —C
satisfying
[ ]
f(zvg) =w(2)f(g) 2€ Z(A), v € GLy(K), g € GLy(A).
[ ]
/ (9) Py < ox.
Z(A)GLn(F)\GLn(A)

The cuspidal spectrum LZ(Z(A)GL,(F)\GL,(A),w) is defined as
the closed GL,,(A)-invariant subspace of L*(Z(A)GL,(F)\GL,(A),w)
consisting of functions f as above satisfying the additional ‘cuspidality’
condition:

/ f(ng)dn =0 for almost all g,
N(F)\N(A)

for all unipotent radicals N of proper parabaolic subgroups of GL,,.

By a theorem of Gelfand and Piatetskii-Shapiro, it is known that
the cuspidal spectrum decomposes discretely as a direct sum of irre-
ducible representations. By a unitary, cuspidal automorphic represen-
tation (with central character w) we mean an irreducible constituent
of L3(Z(A)GL,(F)\GL,(A),w).

Given an irreducible representation m of GL,(A), it breaks up as a
restricted tensor product

/
T='Q® Ty,

where v runs over the places of K. Here 7, is an irreducible represen-
tation of the local group GL,(F,). For almost all finite places v of K,
T, is unramified, i.e., m, has a nonzero invariant vector with respect to



14 C. S. RAJAN

the maximal compact subgroup K, = GL,(O,) of GL,(Fy). Here O,
is the ring of integers in the non-archimedean local field F,.

In particular, if v is non-archimedean and 7, is an unramified uni-
tary representation of GL, (F),), the Langlands-Satake parametrization
yields a semisimple conjugacy class,

t(m,) € GL,(C).

3.1. The Main Theorem. We now introduce and state the main
properties of the convolution L-functions L(s, 7 x 7’). The convolution
L-function is the automorphic analogue of the L(s, p ® p’) associated
to the tensor product of p ® p’ of Galois representations

p:Gr— GL,(C) p' :Gr — Gl,,(C),
of the absolute Galois group G of a number field F'.
Theorem 4. Let w, 7' be irreducible, unitary, cuspidal automorphic

representations of GL,(Ar) and Gl,,(Ar) respectively. The Rankin-
Selberg L-function A(s,m x ©') satisfies the following properties:

Euler Product: The function A(s,m x 7') admits a decomposi-
tion,
A(s,m x ') = Aso(s,m x ') L(s,m x 7).
The finite part L(s,m x 7') admits an Euler product
L(s,m x ") H L(s,m, x 7

UEZf

absolutely convergent in the half plane Re(s) > 1. The local
component L(s,m, X 7)) is of the form,

L(s,m, x 7)) = P,(q;%) ™",
where P, is a polynomial of degree at most nm. If v is a fi-

nite place of F at which the local components m, and w. are
unramified, then

L(s,m, x ) = det(1 — t,(7) @ t,(7')q, *) ",

where t,(m) (resp. t,(n')) is the Langlands-Satake parameter
associated to the unramifed representation m, (resp. m, ).

The archimedean component Ay (s, m x 7') admits a decom-
position

Aso(s,m x 1) HA (s,mx 7')

VEY oo



L-FUNCTIONS 15

where for each v € ¥,
Ay(s,mx7') = HFU(S — pi(m x 7))

for some k < mn. Here

7P (s/2)  if v is real,
Fv(s) - {(gw)_sl“(s) if v 1s complex.

If v is unramified for both ™ and 7', then

Mol x ) = [T T Puls = s(t(m)) — ().

7=1k=1

Functional Equation: The L-function A(s,m X ©') extends to
a meromorphic function of s € C with at most finitely many
poles. It satisfies a functional equation,

As, 7 x 7)) =¢(s,m x 7 )A(1 — s, x 7).

Given an additive character v : Ap/F — C*, the epsilon factor
has a decomposition,

e(s,mx ') = He(s,m,w{,,zﬁv)
where €(s,m,, T, 1,) is a monomial in q, . Morever if v is an
unramified place of m, 7' and ¢ then €(s,m,, 7 1,) = 1.
Location of poles: The function A(s, 7 x7') is entire unless n =
m, and  is equivalent to the contragredient of 7.
Non-vanishing: The function A(s, 7 x 7') is non-vanishing on
the line Re(s) =
Bounded in vertical strips: The function A(s, mx7") is bounded
in vertical strips away from the poles.

Remark 1. The Euler product statement and the functional equation
have been proved by two different methods: one the explicit integral
method due to Jacquet, Piatetskii-Shapiro and Shalika generalizing
the Gly work of Jacquet-Langlands and the work of Rankin-Selberg;
the other method is to use the analytic properties of Eisenstein series
associated to these automorphic representations due to Langlands and
Shahidi. It can be checked that the two methods yield the same L and
e-factors.

The location of the poles is due to Jacquet-Shalika and Moeglin-
Waldspurger.

The non-vanishing on the line Re(s) = 1 is due to Shahidi.
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The bounded in vertical strips was initially proved by Ramakrishnan
when n = m = 2 and in general by Gelbart and Shahidi.

Remark 2. The basic analytic properties were established by two differ-
ent methods: one an explicit integral method due to Jacquet, Piatetskii-
Shapiro and Shalika. The other method is the Langlands-Shahidi
method based on the connection between the constant terms of Eisen-
stein series and the L-functions associated to the induction data. It
is important for application to the converse theorem that the local L
and e factors are defined for all irreducible representations of the local
groups.

Remark 3. Regarding the location of the pole at s = 1, the principle
is that a L-function has a pole at s = 1, say for example L(s, p) for a
Galois representation p, precisely when p contains the trivial represen-
tation as a direct summand. This is reflected in the location of poles
for the convolution L-functions.

Suppose now that 7 is a self-dual (7 ~ 7) cuspidal automorphic
representation. Then it follows from the result concerning the location
of poles of A(s, 7 x 7) and the following equality

A(s, 7 x 7) = A(s, S*m)A(s, A’n)

that one of the two L-factors on the right hand side should have a
pole. Here S%7 and A7 denote respectively the symmetric and exterior
square lifts of 7. Based on the above heuristic (say for L-functions
associated to Galois representations), it can be expected that if the
exterior (resp. symmetric) square L-function has a pole at s = 1, then
the automorphic representation 7 should be a lift of an automorphic
representation from the symplectic (resp. orthogonal) group.

Thus the presence of poles of L-functions sheds information on the
nature of the automorphic representation.

We now consider some applications of this theorem.

3.2. Ramanujan conjecture. The first main application is to esti-
mating the size of the Hecke eigenvalues of cuspidal representations of

GL,(A):

Corollary 1. Let w be an irreducible unitary cuspidal automorphic
representation of GL,(A). Suppose v is a place of F' at which the local
component is unramified. Then

1
loga (i (m))| < 5 if v is finite,
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and

1
| Re(p;(t(my))] < 3 if v is archimedean.

The Ramanujan and the Selberg conjectures assert that the local
component 7, at any place v of F' of a cuspidal automorphic represen-
tation ™ of GL,(Ar) is tempered. This translates to the estimates that
at a place v of I’ at which m, is unramified,

|pi(t(my))| =1 if v is finite,

and
|Re(pj(t(my))] =0 if v is archimedean.

3.3. Families of L-functions. (Ref: paper Luo, Rudnick and Sarnak)
With some further input from analytic number theory, the estimates
appearing in the Corollary were improved by Luo, Rudnick and Sarnak

[7):

Theorem 5. Let m be an irreducible unitary cuspidal automorphic rep-
resentation of GL,(A), and let v be a place of F at which the local
component m, is unramified. Then

1 1
Loy, (s (4| < 5 =

if v is finite,

and
1 1

| Re(p(H(m))l < 5 = 577

At the moment these are the best bounds available for general n.
The proof of Luo-Rudnick-Sarnak’s bound is based on the following
observation: suppose there exists an unramified finite place vy at which
there exists an eigenvalue of the Satake parameter t(m,,) of absolute
value ¢¢. Then it can be seen that the local L-factor L(s, T, X Ty, X Xu,)
has a pole at s = «a, where x is any idele class character such that
Xv, = 1. Suppose now that x is non-trivial. Since the completed L-
function A(s, X 7 X x) is entire this implies that the partial L-function

A" (s, T X T X x) = H L(s, 7y X Ty X Xu)s
v#£vg

should vanish at s = a. Now consider the average sum over a family
of characters,

if v is archimedean.

S(m,N) =Y A™(s,m x 7 x X),
X
where the sum is all over characters x such that x,, = 1 and the
conductor of x is at most N. By using methods from analytic number
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theory (inspired by a result of Rohrlich on the non-vanishing of L-
functions), it is shown that for N large the average sum S(m, N) is
non-zero provided « is as in the theorem and this gives the desired
bound.

The method emphasizes the importance of considering families of
automorphic L-functions rather than a single L-function. Here the
family considered is the family of twists by characters, and it is easier
to study the (average) behaviour of the family.

3.4. Converse theorems. (Refs: Cogdell’s notes, papers of Cogdell
and Piatetskii-Shapiro)

One of the most important motivation to consider the convolution L-
function is to converse theory. Converse theory is based on the principle
that L-functions which having an Euler product, analytic continuation
and appropriate functional equation should be L-functions associated
to automorphic representations living on G1,. In order to carry this
out, it is imperative to define the local L and e-factors

L(s,mx 1), €(s,mXT1,1)

where 7, 7 are irreducible unitary representations of GIl,,(F'), and sat-
isfying the appropriate expected properties. Here F' is a local field
and 1 is an additive character of F'. One form of the current state of
converse theory is given by the following theorem due to Cogdell and
Piatetskii-Shapiro:

Theorem 6. Let F' be a global field and let w be an irreducible unitary
representation of Gl,(Agr). Suppose for any m <n—2 if n > 3 (and
m = 0,1 when n < 2) and any cuspidal automorphic representation T
of Gl (A) the completed L-function,

A(s,m x 1) = H L(s,my, X 7,)

vEX R
are ‘nice’ in that they satisfy the following:
(1) The L-function A(s,m X T) can be analytically continued to the
entire plane and satisfies a functional equation of the form
A(s,m x 1) = €(s,m x T)A(1 — s,pi x 7),

where

€(s,mx 1) = He(s,m X Ty, Uy)

(2

and ¢ is an additive character of Ap/F.
(2) The L-function A(s,m x 7) is bounded in vertical strips.

Then 7 is an automorphic cuspidal representation of Gl,(AFr).
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The usefulness of the converse theorem is as follows: suppose G and
H are two reductive groups defined over a global field F' and suppose
there exists a homomorphism

oG-t H

of the associated L-groups. Composing with ® gives a lifting of the local
parameters Wr, —L G associated to G to local parameters Wg, —% H
associated to H associated to H. It follows from the local Langlands
correspondence that given an irreducible unitary representation 7 of
G(A) there is associated an irreducible unitary representation ®(m) of
H(A). The coarse expectation of Langlands functoriality is that & ()
should be automorphic whenever 7 is automorphic. This gives a lifting
of automorphic representations from G to that of H.

In some cases of @ it is possible to relate the two groups G(A) and
H(A) analytically and to compare the harmonic analysis on the two
groups. This should enable one to prove that the L-function associated
to ® () should be nice knowing that 7 is automorphic. Converse theory
together with information about the location of poles, etc. now chip in
to conclude that ®(7) is automorphic on H(A).

3.5. Non-vanishing and Equidistribution. (Refs: Serre’s book ‘Abelian
l-adic representations’; Langlands article in Corvallis).

Just as for the application of the non-vanishing of the Riemann zeta
function on the line Re(s) = 1 implies the prime number theorem, the
non-vanishing of more general L-functions on the line Re(s) = 1 leads
to equidistribution results. Given a L-function of the form L(s) =
L(s,m,r) as considered above, the logarithmic derivative

L'(s) Z Tr(r(t(m,))

- = ———=+T(s),

L(S) v&S qU

where T'(s) is a term that is under control as s — 1. By a Tauberian
theorem argument (or as indicated by an explicit formula type argu-
ment if we have a slightly better non-vanishing result), we obtain an
estimate of the form

> Te(r(t(m) = o(z) asz — oo,

vgS, Nv<zx

where we have assumed that L(s) is holomorphic and non-vanishing on
the line Re = 1.

Let M be a compact group, and x,, be a sequence of conjugacy classes
in M. We say that the sequence z,, is equidistributed with respect to
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the projection of the normalized Haar measure dm onto the space of
conjugacy classes in M, if for any class function f on M, the limit

| N
th—>ooN n§:1 f(a:n)
exists and is equal to

[ fomyim.

By the denseness of characters of irreducible representations in the
space of class functions, it is enough to check the above condition for
the class functions y which are characters of irreducible representations
p of M (this is known as the Kronecker-Weyl criterion).

We now consider a heuristic generalization of the classical Cheb-
otarev density theorem. Consider a cuspidal automorphic representa-
tion m of G(A). Assume the following:

(1) For any representation r :* G' - Gl,,, the L-functions L(s, 7, r)
can be analytically continued to an entire function on the plane
and is non-vanishing on the line Re(s) = 1.

(2) The automorphic representation 7 satisfies the Ramanujan con-
jecture, i.e., for v an unramified place of w, the Langlands-
Satake conjugacy class t(m,) can be conjugated to a maximal
compact subgroup K¢ of LG!, where LG is the kernel of a
certain homomorphism (the absolute value of the weight homo-
morphism?) from LG — Gl;.

We conclude from the analytic machinery that the conjugacy classes
t(m,) N K} are equidistributed with respect to the projection of the
normalized Haar measure on K}, onto the space of conjugacy classes in
K(. This is the generalized Chebotarev density statement.

Example. Let 6 be a unitary idele class character
J F / F i S 1,

such that 6 restricted to J} is of infinite order. Then the hypothesis
of the theorem is satisfied and we get the equidistribution of the Hecke
eigenvalues 0(m,) on the circle.

There are some surprising instances however where we can prove
equidistribution, although a priori it may not seem possible. One such
example is given by the Chebotarev density theorem:

Theorem 7. Let E/F be a Galois extension with Galois group G(E/F).
Then the Frobenius conjugacy classes in G(E/F) are equidistributed
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with respect to the projection of the Haar measure on the space of con-
Jugacy classes in G(E/F).

We give a brief outline of the proof. By the above criterion it is
required to show that L(s, p) does not vanish on the line Re(s) =1 for
any irreducible non-trivial representation p of G(E/F). If Langlands
reciprocity were to hold then this will follow from the non-vanishing
result for automorphic L-functions. But this is not possible to prove
at this moment, and we argue a bit differently. By Brauer’s theorem
given any irreducible non-trivial p there exist finitely many subgroups
H;, C G(E/F) and characters y; such that

p=_ nindf, (x:)

in the Grothendieck ring R(G(E/F)) for some integers n;. By the
inductivity property of L-functions,

L(87 p) = H L(Sv Xl)nl

By Artin reciprocity, if x; is non-trivial then L(s, x;) admits an analytic
contiuation to the entire plane and is non-vanishing on the line Re(s) =
1. The only problem occurs when Y; is the trivial character, in which
case L(s,p) can possibly have a zero or a pole at s = 1. But the
intertwining number

0= (p.16) = 3 ni(Ind} (). Lo).

By Frobenius reciprocity the trivial representation is contained in Indgi (xi)
if and only if y; is trivial. Hence we obtain

But this implies that L(1, p) does not vanish and proves the theorem.

Remark 4. Chebotarev proved this theorem without using abelian reci-
procity. In fact the ideas behind his proof were utilised by Artin to
prove the abelian reciprocity law.

4. THE METHODS

We now briefly indicate the various methods that have been used to
establish the analytic properties of automorphic L-functions.



22 C. S. RAJAN

4.1. The method of Tate, Godement and Jacquet. (Refs: Tate’s
thesis, Jacquet’s article in Corvallis)

This is the generalization of Tate’s method of proving the analytic
properties of the L-functions attached to Hecke characters to that of
L-functions of the form L(s, 7, r) where (7, V') is an irreducible, unitary
cuspidal automorphic representation of G L, (Ar) and r is the standard

representation of Gl,. The matrix coefficients for 7 are functions on
Gl,(A) of the form,

w(g) = (n(g)¢,¢") o, ¢ €V,

where (.,.) denotes the inner product on V. The global integrals con-
sidered are of the form,

ﬂ@%@zjm B (g)w(g)ldet(g)*?dg,
Gln(A)

where ® is a Schwarz-Bruhat function on the space M(n x n,A) of
adele valued n x n matrices. The integral converges in some half plane,
the analytic continuation and the functional equation

Z(®,w,s)=Z(®,&,1—s)

for such integrals comes by applying the Poisson summation formula.
Here

@=AMmewwﬂmmw,

is the Fourier transform of ® with respect to the additive character
Y A/F — C*, & and
o(g) =w(g™).

To get at the L-functions, the global integral is broken up as a prod-
uct of local integrals by choosing functions ® = [[ &, where ®, is the
characteristic function of M (n xn,O,) at almost all finite places v of F'
(and similarly for the matrix coefficients w written as a product of local
data). The local L-factor appears as the ged of the local analogues of
the above global integrals,

H@M@=/ B, (g)wn (g)|det(g)|*~V/2dg,
Gln(Fy)

and satisfy the local functional equation,

Z(®,,w,8)  Z(D,,5,1—s)
Com )T ~ Ll—s7
This allows the definition of the local e-factors and also to obtain
the analytic continuation and functional equation of the principal L-

functions. So the general outline of the method is quite similar to
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the Gli-case. But the disadvantage of this method is that it does not
seem to be capable of being generalized to handle the convolution L-
functions.

4.2. Whittaker models, multiplicity one. (Refs: Bump’s book,
Cogdell’s notes, Bernstein-Zelevinsky)

We now digress a bit to consider Fourier-Whittaker expansions of
cusp forms on GL,(A), since it will be needed to discuss the other
methods of establishing the analytic properties of the convolution L-
functions.

Given a holomorphic cusp form f(z) on I'o(NNV), there is a Fourier
expansion

f(z) = an(f)em.
n>1
The theory of Whittaker models allows one to carry over such Fourier
expansions in an adelic context. Let ¢ : A/F — C* be a non-trivial
additive character of Ag trivial on F.

Let (7, V') be an irreducible, unitary cuspidal automorphic represen-

tation of GLy(Af). Given a cusp form ¢ € V, define

Wo(g) = / B(ng)i(n) " dn g € GLa(A)
N(F)\N(A)

where we consider ¢ as a character on the group N(F)\N(A) ~ A/F.
Since the dual of A/F is precisely F' with the discrete topology, any
other character n : A/F — C* is of the form n(z) = ¢(ax), x € A for
some a € A. Using this, Fourier inversion and the fact that ¢ is a cusp
form, we get the Fourier-Whittaker expansion,

0= 3 Vs (3 1))

More generally let N be the unipotent subgroup of GL, consisting
of strictly upper triangular matrices (the diagonal entries are all one).

The character ¢ can be considered as a character on N(F)\N(A) by
the following formula,

i
L

Y(n) = > V(g mey))-

1

B
Il

For any cuspidal automorphic representation (7,V’) of GL,(AF), and
a cusp form ¢ € V, define W exactly as above. The map

¢ Wy
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gives a G, (A)-equivariant embedding of 7 into the space [ ndﬁl&) (¥).
It follows by an inductive argument that there is a Fourier-Whittaker

expansion (or inversion formula),
_ v 0
- % m((o ).
YEGI, —

Let F' be a local field and
v F—C*

be an additive character. More generally if GG is a quasi-split group
over F', and N is the unipotent radical of a Borel subgroup defined by
a base A of the positive roots, then define ¢ on N(F) by the formula,

= Z ¢(na)>

acA

where n,, is the a-component of n.

Definition 4.1. An irreducible admissible representation (m,V’) of
G(F) is said to be generic if it admits a non-zero homomorphism,

Homy (7, 1) # 0.
A non-zero homomorphism A € Homy/(7, ) will be called a Whit-

taker functional. Equivalently there is an embedding

W (m, V) — Ind{) (v).

Giving such an embedding is known as a Whittaker model for the
representation (m, V) of G(F).

The main result about the Whittaker models is the uniqueness of
Whittaker models due to Gelfand, Kazhdan and Shalika:

Theorem 8. Let F' be a local field and N be the unipotent subgroup
of GL,, consisting of strictly upper triangular matrices. Let m be an

irreducible admissible representation of Gl,,(F) and v be a character of
N(F) as above. Then

dim Homy(F)(m,¢) < 1.

Thus a Whittaker model if it exists is unique.

Globally an irreducible representation (7, V') of reductive quasi-split
group G over a global field F' has a Whittaker model (also called
generic) if there exists a G(A)-equivariant map,

Wyt (x,V) — Ind§) (v),
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where 9 is a non-degenerate character of N(F)\N(A) such that there
exists some ¢ € V satisfyin

/ W, (6)(ng)th(n)~\dn £ 0.
N(F)\N(A)

It follows from the Fourier-Whittaker inversion formula that an irre-
ducible, unitary cuspidal automorphic representation of GL,(Ar) is
generic.

It follows from the local uniqueness of Whittaker models and the
Fourier-Whittaker inversion formula given above, that a multiplicity
one theorem holds:

Theorem 9. Let (7, V) be an irreducible, unitary cuspidal automorphic
representation of GL,(Afr). Then the mulitplicity of pi in the space of
cusp forms of GL,(Ar) is precisely one.

With some further input from analytic number theory and the Jacquet-
Shalika theorem the following strong multiplicity one theorem can be
established:

Theorem 10. Let my, m be irreducible, unitary cuspidal automorphic
representations of GL,(Ar). Suppose there exists a finite set of places
Sof F' such that for v € S, the local components

T10 ~ T2.v-
Then m; ~ my.

4.3. Explicit integral method. (Ref: Cogdell)
Let f(z) = 3,51 an(f)e*™™ be a holomorphic cusp form of weight
2k for Sly(Z). The L-function associated to f is,

L(s, f) = Zan(f)n_s Re(s) large.

The completed L-function can be written as a Mellin transform,

A(s, f) = (2m)T(s)L(s, f) = / " fligyrdy.

The integral converges for all s and defines an entire function. Using the
symmetry relation given by the action of the Weyl element z — —1/z,
we get the functional equation,

A(s, f) = A2k — s, f).

Let ¢ be the adelic function of Gly(A) associated to f in the lectures
of A. Nair. Then it can be seen

0\ | 1s—1/2
A(s, f) = /A*/Q* of (8 1) a2 a.
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Using Whittaker functions, this can be recast as

A(s,f):/A W, (0 1)| 5 2 g%

Suppose 7 is an irreducible, unitary cuspidal automorphic represen-
tations of GLy(Ap), and x be a Hecke character. Jacquet and Lang-
lands considered integrals of the form,

I(s,0,x) = / W, <0 (1)) x(a)|a]*"2d*a,

where ¢ is a cusp form in the space of ¢.

More generally if n’ < n and w, 7’ are irreducible, unitary cuspidal
automorphic representations of GL,,(Ar) and GL, (Ap) respectively,
Jacquet, Piatetskii-Shapiro and Shalika consider global integrals of the
form,

a 0 s—(n—n’
o0 = | Wo (5 1) Wot@ldet@p "o
N,/ (A\GL,/ (A)

where ¢, ¢' are cusp forms in the space of m and n’ respectively. The

global functional equation for these integrals follow by considering the

action of the outer automorphism
gr"g"

acting on Gl,,.

In analogy with the earlier method it is natural to consider the local
theory and to define the local L-and e-factors. The local functional
equation is obtained from a uniqueness statement about invariant bi-
linear forms on appropriate Whittaker spaces.

4.3.1. Classical Rankin-Selberg method. (Ref: Bump’s book, Garrett’s
web page)

When n = n/, the analytic continuation is obtained in analogy with
the method of Rankin-Selberg The Rankin-Selberg method was devel-
oped independently by Rankin and Selberg They showed that if

Zan 2minz and g Zb 27r2nz

n>1 n>1

are holomorphic cusp forms of weight 2k of level 1, then the Dirichlet

series
s, fxg) Zanb n°

n>1
has analytic continuation and functional equation of the form,

A(s, fxg)=A4dk—1—s,f xg),
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where
A(s, f x g) = (2m) " *T(s)['(s — 2k + 1)¢(2s — 4k + 2)L(s, f x g).

The unfolding trick out here involves the convolution of the invariant
function ¢(z) = f(2)g(2)y** against the Maass Eisenstein series,

E(z,s) = Z Im(yz2)*
N\Sl2(Z)

1 y
=3 Z e+ ) Re(s) > 1.

(m,n)=1

Here N is the subgroup of SL(2,7Z) consisting of the upper triangular
integral matrices. By construction for each s in the region of conver-
gence, the Eisenstein series gives a SL(2,Z) invariant function and is
an eigenfunction for the hyperbolic Laplacian having moderate growth
(hence gives a Maass form). The functional equation is given by,

A(2s)E(z,s) = A2 —2s)E(2,1 — s),

where A(s) = 77%/2T'(s/2)¢(s) is the completed Riemann zeta function.
Further the expressions in the above equation have a simple pole at
s—0,1.

The Rankin-Selberg method depends on the unfolding of the integral

dxdy dxdy
A = s .
(25) / o B T = A0 /N ECE

A fundamental domain for the action of N on H is given by the region

{r+iy|0<z <1, y>0}

Using the Fourier expansions and orthogonality relations the expression
on the right hand side yields A(s, f x g) (upto some factors?). The
analytic continuation and functional equation of the Eisenstein series
yields the same for the function A(s, f x g).

This is the classical theory. In the higher rank case when n = n/,
Jacquet, Piatetskii-Shapiro and Shalika consider zeta integrals of the
form,

I(5.0.6.0) = | 5(0)6/(0) B9, @, 5)dg.
Z(8)Gln (F)\Gln (A)

where ¢, ¢’ are cusp forms in the space of m and 7’ respectively. Here

® is a Schwarz-Bruhat function on A", and E(g,®, s) is a mirabolic

Eisenstein series (we have assumed here the central characters of 7 and



28 C. S. RAJAN

7" to be trivial). Unfolding the Eisenstein series gives an integral of the
form,

I(5.0.6.0) = | Wol9)Wes (9)®(ca9)|det(9)]dy.
N(A\Gln (A)

where e, = (0,---,0,1). The analytic continuation and functional
equation comes from the functional equation and analytic continuation
satisfied by the Eisenstein series. The integral involving the Whittaker
functions can be decomposed as a product of local ones, and the lo-
cal theory gives the desired properties of the global L-function. (Ref:
Cogdell).

4.4. Eisenstein series method. (Ref. Shahidi’s papers).
Classically the constant term of the Eisenstein series F(z, s) consid-
ered above is given by

A2 —-2s)
A(2s

The analytic continuation of F(z,s) yields the meromorphic contin-

uation for the zeta function A(s). It remains to control the analytic

behaviour of A(s). This is obtained by computing the Fourier coeffi-
cients of F(z,s),

—S

ao(y,s) =y° +

o y,5) = UL 12CT)
(2s)
The functional equation for the Eisenstein series given above then yields
the functional equation for the Riemann zeta function A(s).
Let P = GN be a parabolic subgroup in a reductive group H with
Levi component G and unipotent radical N. Suppose 7 is a cuspidal
representation of G(A). Form the Eisenstein series,

E(s,h,¢) = > ¢u(yh), heH(A).

P(F)\H(F)

Here ¢, is a flat section of induced representation of the form
H(A
(s, m) = Ind 3 (w @ m.),

where 7, is a character on G(A). Langlands proved the Eisenstein series
to have analytic continuation. The constant term of the Eisenstein
series along the opposite parabolic P’ = N'M’ is given by,

/ E(s,nh,¢)dn = ¢(h) + M(s,m)p(h)
N'(F)\N'(A)

whee M (s, ) intertwines the spaces I(s,7) and I(—s, 7). The starting
point of this method is the observation that the intertwining operator
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can be written in terms of ratios of products of certain L-functions of
the form L(s,m,r) for certain representations r of the dual L-group.
From the analytic continuation satisfied by the Eisenstein series, Lang-
lands showed that for the L-functions appearing in constant terms of
the Eisenstein series have meromorphic continuation.

Now the problem is twofold: to single out the individual L(s,m, )
and show that they are nice. This was carried out by Shahidi by invok-
ing a genericity assumption on 7 and studying the Fourier coefficients
of the Eisenstein series (which involve L-functions again). The poles
and zeros of the L-function can be studied in terms of the zeros and
poles of the Eisenstein series. But the Eisenstein series take values in
the automorphic spectrum of H(A); this allows bringing representation
theoretic techniques to control the behaviour of L-functions.
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