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Section 1 recalls some facts about modular forms, Hecke operators, Euler products in
the classical setting and gives some concrete examples. In section 2 classical modular
forms are related to automorphic forms for GL(2) of the adeles and proofs of the basic
analytic facts about automorphic forms (analyticity, finite-dimensionality of spaces of au-
tomorphic forms, discreteness of the cuspidal spectrum) are sketched. Section 3 discusses
automorphic representations of GL(2), the relation with modular forms, and introduces the
L-function of an automorphic representation, relating it to the classical Dirichlet series of
a cusp form.

The subject matter of these notes is covered in several places (from which I have bor-
rowed): For classical modular forms see the books [10, 11]. For the analytic properties of
automorphic forms see [5, 7, 1]. The modern adelic approach to automorphic forms was
introduced by Jacquet-Langlands in [6]. This approach is also covered in [4]; a more recent
(and exhaustive) treatment is [1].

1. CLASSICAL MODULAR FORMS

A holomorphic modular form of weight k for SL(2,Z) is a holomorphic function f on
the upper half-plane H which satisfies

f

(
az + b

cz + d

)
= (cz + d)kf(z) for

(
a b
c d

)
∈ SL(2,Z)

and which is “holomorphic at the cusp”. This condition means the following: Since f is
invariant under z 7→ z+ 1 it is a function on the punctured disk 0 < q < 1 where q = e2πiz.
Then f is holomorphic at i∞ if it admits an expansion (usually referred to as the Fourier
expansion)

f(q) =
∑
n∈Z

an q
n

in which an = 0 for n < 0. If, in addition, the constant term a0 vanishes then f is called a
holomorphic cusp form. Note that since −Id ∈ SL(2,Z) there are only nonzero modular
forms for even weights.

More generally, in number theory one considers the Hecke congruence subgroups

Γ0(N) =

{(
a b
c d

)
∈ SL(2,Z) : c = 0(N)

}
and, for a character χ : (Z/NZ)× → C×, the functions which satisfy

f

(
az + b

cz + d

)
= χ(d)(cz + d)kf(z) for

(
a b
c d

)
∈ Γ0(N).

It is sometimes convenient to use the notation

f
∣∣
k

(
a b
c d

)
:= det

(
a b
c d

)k/2
(cz + d)−kf

(
az + b

cz + d

)
;
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for
(
a b
c d

)
∈ GL(2,R) with positive determinant. The transformation rule becomes

f
∣∣
k

(
a b
c d

)
= χ(d)f for

(
a b
c d

)
∈ Γ0(N).

Since z 7→ z+ 1 belongs to Γ0(N), f is again a function of q = e2πiz and we require that f
is holomorphic at q = 0, i.e. f =

∑
n≥0 anq

n. There are now other cusps, and one imposes
a holomorphy condition at these too, e.g. by conjugating each one to i∞ using an element
γ ∈ SL(2,Z) and using a Fourier expansion. (The subgroup of the conjugated subgroup
fixing the cusp will be generated by a translation z 7→ z+h for some h ≥ 1 (or will contain
an index two subgroup generated by such a translation); the Fourier expansion is then in
powers of e2πiz/h.) A function f satisfying the transformation law above and holomorphic
at all cusps is called a holomorphic modular form of weight k, level N and character
(or Nebentypus) χ. The space of such forms is denoted

Mk(Γ0(N), χ).

(Note that since Id ∈ Γ0(N),Mk(Γ0(N), χ) = {0} unless χ(−1) = (−1)k.) If the constant
term vanishes at all cusps then f is called a holomorphic cusp form of weight k, level N
and character χ. The space of such cusp forms is denoted

Sk(Γ0(N), χ).

The spaces Sk(Γ0(N), χ) and Mk(Γ0(N), χ) are finite-dimensional and for k ≥ 2 their
dimensions can be calculated (and, in particular, shown to be nonzero). Suppose that χ is
trivial. The space Sk(Γ0(N)) can be interpreted as the space of sections of a certain line
bundle on the curve X0(N) = Γ0(N)\H∗ and hence its dimension can be computed using
Riemann-Roch. (Recall that H∗ = H∪Q∪ {i∞} and X0(N) is the cusp compactification
of Y0(N) = Γ0(N)\H. This has the structure of a complete Riemann surface, cf. e.g. [11,
§1.5].) For example, if k = 2, f(z)dz extends holomorphically to the cusps and we have
an isomorphism

S2(Γ0(N)) ∼= H0(Γ0(N)\H∗,Ω1).

The last space has dimension the genus of Γ0(N)\H∗, which can be computed using the
ramified covering X0(N)→ SL(2,Z)\H∗ = P1. For detailed computations of dimensions
for k ≥ 2 see [11, §2.6]. In the case of SL(2,Z) there is a more elementary computation
(see [10, p. 88]) which shows that

dimMk(SL(2,Z)) =

{
bk/12c if k = 2 mod 12, k ≥ 0

bk/12c+ 1 for other k ≥ 0.
.

The space dimMk(Γ0(N)) is the direct sum of dimSk(Γ0(N)) and the space of Eisenstein
series.

Having seen that modular forms exist (at least for k ≥ 2), we would like to have some
concrete examples. The simplest way to construct holomorphic modular forms for Γ0(N) is
to use an averaging procedure: Take a holomorphic function f invariant under the subgroup
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Γ∞ (generated, up to±Id, by z 7→ z+1) fixing the cusp i∞ and “average” it (with a suitable
transformation factor) over the cosets Γ∞\Γ0(N):∑

a b
c d

∈Γ∞\Γ0(N)

f

(
az + b

cz + d

)
(cz + d)−k.

Ignoring convergence questions for the moment, this sum has the transformation property
of a modular form of weight k (and trivial character) for Γ0(N). (If one wants forms with
character χ an extra factor of χ(d)−1 is put in.) Of course, the function f is has a series
expansion in q = e2πiz, so in fact we can look at each qm = e2πimz separately. We will
consider the case m = 0 first, which leads to Eisenstein series. (The case m > 0, which
leads to Poincaré series, will come up later.)

Suppose m = 0 and f ≡ 1 and N = 1. The sum above can then be rewritten as

Gk(z) :=
∑

(m,n)6=(0,0)

1

(mz + n)k

which, for k ≥ 2, converges absolutely and uniformly on compact sets to a holomorphic
function on the upper half-plane H, the holomorphic Eisenstein series of weight k. (It is
zero if k is odd.) The tranformation property under SL(2,Z) is clear, so to check that Gk

is a modular form for SL(2,Z) we must show that it is holomorphic at ∞. It is not too
difficult to show that

Gk(q) = 2ζ(k) +
2(2πi)k

(k − 1)!

∑
n≥1

σk−1(n)qn.

(See [10, p. 92].) Here ζ is the Riemann zeta function and σk−1(n) =
∑

d|n d
k−1 is the

divisor function. (In fact, the constant term is easy to compute once we know the function is
well-defined at i∞ (and the sum absolutely convergent in neighbourhoods of i∞): The sum
and limit can be interchanged to get limy→∞Gk(x + iy) =

∑
(m,n) limy→∞(mz + n)−k =

2
∑

n≥1 n
−k = 2ζ(k).) Thus Gk ∈Mk(SL(2,Z)). Note that Gk is never a cusp form since

ζ(k) 6= 0 for even k ≥ 0. The space of modular forms breaks up as

Mk(SL(2,Z)) = Sk(SL(2,Z))⊕ CGk

for k ≥ 2. (This is clear from Fourier expansions at i∞.) In fact, the ring of all modular
forms for SL(2,Z) is C[E4, E6] [10, p. 93].

Knowing the constant term at i∞ of Ek allows us to construct some cusp forms using
the ring structure. The famous cusp form ∆ ∈ S12(SL(2,Z)) is defined by

∆ = (60G4)3 − 27(140G6)2.

It is the unique cusp form of weight 12 up to multiples (because dimS12(SL(2,Z)) =
dimM12(SL(2,Z)) − 1 = 1). Another way to define ∆ is via Jacobi’s product expansion
in q = e2πiz:

∆ = (2π)12q
∏
n≥1

(1− qn)24.
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(For a proof see [10, p. 95].) Ramanujan’s τ -function, defined by the Fourier expansion of
(2π)−12∆:

(2π)−12∆(q) =
∑
n≥1

τ(n)qn,

is multiplicative: τ(mn) = τ(m)τ(n) for (m,n) = 1. This property played an important
role in the development of the theory; we will see why it holds in a moment.

Returning to Eisenstein series, the holomorphic Eisenstein series for Γ0(N) (relative to
i∞) with character χ is:

Gk(z, χ) =
∑

(m,n) 6=(0,0)

χ(n)−1

(mNz + n)k
.

This is an element of Mk(Γ0(N), χ) if k ≥ 2. (The sum vanishes unless χ(−1) = (−1)k.)
Once again, one can explicitly compute the Fourier expansion at i∞ (and at other cusps)
and show that it is holomorphic. The constant term at i∞ is 2L(k, χ−1) where L(s, χ) =∑

n≥1 χ(n)n−s is the Dirichlet series associated to χ. (For the Fourier expansion cf. [11].)
One can repeat the construction with each cusp of Γ0(N) to get an Eisenstein series for each
one; these are linearly independent and span a subspace of Mk(Γ0(N), χ) complementary
to the cusp forms.

A more direct construction of cusp forms is using Poincaré series. Themth holomorphic
Poincaré series of level N , weight k, and character χ is defined by:

Pm(z) =
∑

γ∈Γ∞\Γ0(N)

χ(d)−1(cz + d)−ke2πimγz

where Γ∞ is the subgroup fixing i∞. When m = 0 this is the Eisenstein series we saw
before. For k > 0 this sum converges absolutely, uniformly on compact subsets of H to
a holomorphic modular form of weight k, level N and character χ. When m > 0 this
is a cusp form, and in fact the Poincaré series span the space Sk(Γ0(N), χ). However,
this construction is not of much use beyond showing that cusp forms exist as the relations
between different Poincaré series are mysterious.

Historically, modular forms first arose in connection with quadratic forms and theta
series. The sum

θ(z) =
∑
n∈Z

eiπn
2z

converges absolutely for Im(z) > 0 and defines a holomorphic function on the upper half-
plane H. This function satisfies the transformation laws

θ(z + 2) = θ(z)

θ(−1/z) = (−iz)
1
2 θ(z)

where the branch of (−iz)
1
2 is chosen which takes value

√
y at iy. (The first identity is

straightforward; the second can be proved using Poisson summation and the fact that e−πx2

is its own Fourier transform.) The transformations z 7→ −1
z

and z 7→ z + 1 generate the
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group PSL(2,Z), so the function θ(2z) looks like a “modular form of weight 1/2” for
SL(2,Z). In fact, θ(2z)k is a modular form of weight k/2 and

θ(2z)k ∈Mk/2(Γ0(4)) for even k.

If one computes the Fourier expansion one sees that

θ(2z)k =
∑
n≥0

rk(n)qn

where rk(n) is the number of representations of n as a sum of k squares. While θ(2z)k is
not always cuspidal, it always has a nonzero projection to Sk/2(Γ0(4)). General bounds on
the growth of Fourier coefficients of modular forms imply that rk(n) = O(nk−1) for large
(even) k. More generally, ifA is an r×r symmetric integral matrix andN ≥ 1 is an integer
such that NA−1 is integral, the sum

θ(z, A) :=
∑
m∈Zr

eiπm
tAmz

defines a holomorphic function on the upper half-plane. If r is even then

θ(z, A) ∈Mr/2(Γ0(2N)).

The Fourier coefficients are related to the number of ways of representing integers using
the quadratic form associated to A.

Relaxing the holomorphy condition on modular forms leads to Maass forms or nonholo-
morphic modular forms. We will not discuss these much here as they will be subsumed in
the representation-theoretic discussion later. Suffice it to say that a Maass form of weight
k, level N and character χ is a smooth function f : H → C satisfying the tranformation
rule

f

(
az + b

cz + d

)
= χ(d)

(
cz̄ + d

|cz + d|

)−k
f(z) for

(
a b
c d

)
∈ Γ0(N),

the growth condition
|f(x+ iy)| ≤ yA for y > 1

for some A > 0, the analogous growth condition at other cusps, and is an eigenfunction of
the differential operator ∆k = −y2

(
∂2

∂x2 + ∂2

∂y2

)
+ iky ∂

∂x
. (∆0 is the Laplacian on H.) (By

our definition, if f ∈ Mk(Γ0(N), χ) then yk/2f is a Maass form as above, with eigenvalue
λ = k

2
(1 − k

2
) for ∆k. The growth condition is equivalent to holomorphy of f at infinity.)

Since f is invariant under z 7→ z + 1 it has a Fourier expansion of the form

f(x+ iy) =
∑
n∈Z

an(y)e2πinx

where the coefficient an(y) depends on y. The growth condition is simply that |an(y)|
grows polynomially. If a0(y) ≡ 0 and the analogous condition at other cusps holds, then
f is called a Maass cusp form. The fact that f is an eigenfunction of ∆k can be used
to show that it is real-analytic. The space of Maass forms is finite-dimensional, but no
formula for its dimension is known. There are nonholomorphic analogues of Eisenstein
series and Poincaré series which can be used to construct Maass forms, which depend on
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a real parameter (which replaces the weight). Whether Maass forms have a geometric
significance is unknown.

In his proof of the multiplicativity of Ramanujan’s function τ and the Euler product ex-
pansion of

∑
n≥1 χ(n)n−s, Hecke introduced certain operators on modular forms which

play a fundamental role. These have several equivalent definitions and here we will give
one. (The definitions are for holomorphic modular forms and must be modified for non-
holomorphic ones.)

For g ∈ GL(2,Q)+ = {γ ∈ GL(2,Q) : det(γ) > 0} and any congruence subgroup Γ,
the double coset ΓgΓ is a finite union of left or right double cosets:

ΓgΓ =
∐
i

Γαi =
∐
j

βjΓ.

This makes the formal linear sums
∑

i aiΓgΓ into an algebra in the obvious way. For any
γ one defines a right action of this algebra on Mk(Γ) by

(1) f · ΓgΓ := det(g)k/2−1
∑
i

f |kαi

where

f
∣∣
k
γ = det(γ)k/2f(γz)(cz + d)−k (γ =

(
a b
c d

)
∈ GL(2,Q)+).

This preserves the space of cusp forms. When Γ = Γ0(N) this defines endomorphisms of
Mk(Γ0(N)) and Sk(Γ0(N)). If a character χ is given we modify (1) as follows:

(2) f · ΓgΓ := det(g)k/2−1
∑
i

χ(αi)f |kαi

Taking g =

(
1

p

)
defines the Hecke operator T (p). Explicitly, the double coset decom-

poses as:

(3) Γ0(N)

(
1

p

)
Γ0(N) =

∐
a>0

(a,N)=1
,ad=p

∐
0≤b≤d−1

Γ0(N)σa

(
a b

d

)

where σa ∈ SL(2,Z) is chosen congruent to
(
a

a−1

)
mod N . The operator T (p) on

Mk(Γ0(N), χ) is therefore given explicitly by:

T (p)f = pk−1
∑

a>0,ad=p,(a,N)=1

d−1∑
b=0

χ(a)f

(
az + b

d

)
d−k.

(The operators T (p) commute among themselves, so we write their action on the left hence-

forth.) The operator defined by
(
p

p

)
is usually denoted R(p); it acts on weight k forms

by R(p)f = χ(p)f . The definition of T (p) is extended to all n using multiplicativity
T (m)T (n) = T (mn) for (m,n) = 1 and

T (pi+1) = T (p)T (pi) + χ(p)pk−1T (pi−1)
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(and T (1) = 1). Using these relations, one can check the following formal identity in the
endomorphism ring of Mk(Γ0(N), χ):

(4)
∑

N≥1,(n,N)=1

T (n)

ns
=
∏
p-N

1

1− T (p)p−s + χ(p)pk−1p−2s
.

A key property of the Hecke operators T (p) for p - N is that they are normal with respect
to the Petersson inner product on Sk(Γ0(N)):

〈f, g〉 :=

∫
Γ0(N)\H

f(z)g(z) yk
dxdy

y2
.

(If χ is nontrivial we have 〈T (p)f, g〉 := χ(p)〈f, T (p)〉.) Thus {T (p)}p is a commut-
ing family of operators on Sk(Γ0(N), χ) which can be diagonalized, i.e. there is a ba-
sis of eigenfunctions. Now a key property of Hecke operators is that for a cusp form
f =

∑
q≥1 anq

n which is a simultaneous eigenfunction of all T (p) and normalized such
that a1 = 1, we have

T (p)f = apf.

Note that there is a unique Hecke eigenform for SL(2,Z) with a given set of eigenvalues
{ap}p as they determine the Fourier expansion (multiplicity one). (This is obviously false in
general: ∆(z) and ∆(2z) are both in S12(Γ0(2)) and have the same Hecke eigenvalues. The
Atkin-Lehner theory of newforms defines a subspace of Sk(Γ0(N), χ) where multiplicity
one holds.)

Now consider ∆ ∈ S12(SL(2,Z)). Since T (p) preserves S12(SL(2,Z)) and this space
has dimension 1, (2π)−12∆ is necessarily an eigenvector of each T (p), and the eigenvalue
is simply τ(p) The fact that T (m) · T (n) = T (mn) if (m,n) = 1 immediately implies
Ramanujan’s conjecture on the multiplicativity of τ . This is equivalent to the statement
that the Dirichlet series

L(∆, s) =
∑
n≥1

τ(n)

ns

has an Euler product expansion (by (4)):∑
n≥1

τ(n)

ns
=
∏
p

1

1− τ(p)p−s + p12−1−2s
.

There is a similar Euler product expansion for the Dirichlet series

L(f, s) =
∑
n≥1

an
ns

associated to any Hecke eigencuspform f =
∑

n≥1 anq
n. (Thanks to Hecke’s basic esti-

mate on Fourier coefficients an = O(nk/2), the expansion is convergent for Re(s) > k,
and the Euler product expansion holds in this region.) This is similar to the L-functions
(Hasse-Weil zeta functions) coming from algebraic varieties over number fields, which are
defined via an Euler product expansion. (The fact that the local factor at p is a rational
function in p−s is quite deep in the geometric context.)

In the next section we will show how to recast the theory in the adelic framework. Some
of the advantages are: the action of Hecke operators is more transparent, there is only one
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cusp to deal with, holomorphic and nonholomorphic forms are treated on an equal footing,
... The disadvantage is that it requires some algebraic group theory and representation
theory and is somewhat less concrete.

Recall that the ring of adeles A of Q is the restricted direct product of all Qp with respect
to Zp, and Q is embedded diagonally in A. There is a decomposition A× = Q××R+× Ẑ×

(strong approximation) and Ẑ× ∼= lim←−N(Z/NZ)×. A character χ : (Z/NZ)× → C×

determines a continuous character of Ẑ× and hence a character ωχ of A×/Q× trivial on
R+.

2. AUTOMORPHIC FORMS

2.1. Notation. Fix the following notation for the rest of these notes:

G = GL(2)
Z = the centre of G (scalar multiples of the identity)

B =

{(
∗ ∗
0 ∗

)}
U =

{(
1 ∗
0 1

)}
K∞ = O(2) = {g ∈ GL(2,R) : ggt = Id2}

For real groups the superscipt + denotes the identity component:

Z(R)+ = {aId2 : a ∈ R+}
G(R)+ = {g∞ ∈ GL(2,R) : det(g∞) > 0}
K+
∞ = SO(2)

Lie algebras are denoted by Gothic letters:

g0 = LieG(R)+ = M(2,R), z0 = LieZ(R)+

g = g0 ⊗ C = z⊕ sl(2,C)
U(g) = the universal enveloping algebra of g
Z(g) = U(z)⊗ C[Ω] where Ω is the Casimir (defined below)

For finite primes p set:

Kp = GL(2,Zp)
G(Af ) =

∏′G(Qp) (restricted direct product relative to Kp)
G(A) = G(Af )×G(R)

For N > 0, N =
∏

p p
np let

K0(N) =
∏

p-N Kp ×
∏

p|N

{(
ap bp
cp dp

)
∈ Kp : cp ≡ 0 mod pnpZp

}
Note that K0(N) ∩G(Q) = Γ0(N).
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2.2. From modular forms to functions on G(Q)\G(A). The first step is to pass from a
modular form to a function on G(R)+. Define the factor of automorphy j(g∞, z) by

j(g∞, z) = det(g∞)−1/2(cz + d) (g∞ ∈ G(R)+, z ∈ H)

This has the cocycle property:

(5) j(g∞h∞, z) = j(g∞, h∞z)j(h∞, z).

The group G(R)+ acts transitively on the upper half-plane, with the isotropy at i being
Z(R)K∞. For f ∈Mk(Γ0(N), χ) define a function on G(R)+ by

(6) φ(g∞) := f(g∞ · i)j(g∞, i)−k.
This is a Z(R)+-invariant function on G(R)+, invariant under Γ0(N) for χ trivial, and
satisfying

(7) φ(γg∞) = φ(g∞)χ(d) for γ =

(
a b
c d

)
∈ Γ0(N)

in general. This follows from the cocycle property (5), which also gives:

(8) φ(g∞kθ) = φ(g∞)eikθ for kθ :=

(
cos θ sin θ
− sin θ cos θ

)
∈ K+

∞.

The next step is to pass to functions on G(A). Recall that by the strong approxima-
tion theorem for SL(2) (cf. [11] for a proof) the product SL(2,Q)SL(2,R) is dense in
SL(2,A). So for any open subgroup U ⊂ SL(2,Af ) we have

SL(2,Q)SL(2,R)U = SL(2,A).

Using the fact that Q×R+Ẑ× = A× we get that for any compact open subgroupK ⊂ G(Af )

such that det(K) = Ẑ×, we have

G(Q)G(R)+K = G(A).

Lemma 1. For Γ = G(Q)∩KG(R)+ the inclusion G(R)+ ⊂ G(A) induces an identifica-
tion

(9) Γ\G(R)+ = G(Q)\G(A)/K.

In the case of trivial character this immediately gives that φ is a function onG(Q)\G(A)/K0(N).
To deal with a general character χ : (Z/NZ)× → C× note that it determines a continuous
character

χ : K0(N)→ C×

by composing K0(N) → (Z/NZ)× by
(
a b
c d

)
7→ a with χ. Extend φ to a function on

G(A) by

(10) φ(γg∞k) = φ(g∞)χ(k)

for γ ∈ G(Q), g∞ ∈ G(R)+, k ∈ K0(N). This is well-defined because φ satisfies (7).

Now G(A) acts on itself by both left and right translations. By definition, φ is invariant
under the left translation action of G(Q). We will consider the right translation actions of
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Z(A), K∞, K0(N), and G(R)+. The action of G(R)+ gives an action of g0 and hence of
U(g). Define elements H,M+,M− ∈ g by:

H = −i
(

0 1
−1 0

)
,M+ =

1

2

(
1 i
i −1

)
,M− =

1

2

(
1 −i
−i −1

)
.

The Casimir operator is

Ω := H2 + 2M+M− + 2M−M+.

The following lemma summarizes the properties of φ:

Lemma 2. The function φ onG(A) associated to f ∈Mk(Γ0(N), χ) is left-invariant under
G(Q) and satisfies:

(i) φ(gk) = χ(k)φ(g) for k ∈ K0(N)
(ii) φ(z∞gkθ) = φ(g)(eiθ)k for z∞ ∈ Z(R)+, kθ ∈ K+

∞
(iii) φ(zg) = ωχ(z)φ(g) for z ∈ Z(A), g ∈ G(A)
(iv) φ is killed by M− and Ωφ = k(k − 2)φ

If f ∈ Sk(Γ0(N), χ) then φ further satisfies

(v)
∫
U(Q)\U(A)

φ(ug) du = 0 for all g ∈ G(A).

Moreover any function on G(A) satisfying these conditions comes from a modular form f
of weight k and character χ.

If f is a Maass form of weight k then let φ(g∞) :=
(
−ci+d
|ci+d|

)k
f
(
ai+b
ci+d

)
and set φ(γg∞k) =

φ(g∞)χ(d) for γg∞k ∈ G(A). This function satisfies (i), φ(z∞gkθ) = (eiθ)2kφ(g), (iii),
and is Z(g)-finite. If f is a Maass cusp form then φ satisfies (v).

Proof. (i) and (ii) are (7) and (8), (iii) follows from (7), so let us consider (iv). The
condition M−φ = 0 is equivalent to the holomorphy of f , as we shall now see. In the co-
ordinates (x, y, a, θ) on GL(2,R)+ given by the decomposition (coming from the Iwasawa
decomposition)

GL(2,R)+ =

{(
a 0
0 a

)}
×
{(

y x
0 1

)}
× {kθ} (a, y > 0)

the differential operator M− on functions on G(R)+ is given by

M− = −iye−2iθ

(
∂

∂x
+ i

∂

∂y

)
+
i

2
e−2iθ ∂

∂θ

(see [7, p. 115f] for this calculation). Note that ∂
∂x

+ i ∂
∂y

= ∂
∂z̄

is the Cauchy-Riemann
operator. If f is of weight k then it is enough to look at φ(g∞) = f(g∞ · i)j(g∞, i)−k

defined by it. Writing g∞ =

(
a 0
0 a

)(
y x
0 1

)
kθ we have

φ(g∞) = yk/2eikθf(yi+ x)

This gives

(M−φ)(g∞) = −2y
k
2

+1e2( k
2
−1)iθ ∂f

∂z̄
= 0



11

since f is holomorphic.

For the second part of (iv), note that exp iθH = kθ, so Hφ = kφ by (ii). Note the
relations

[H,M+] = 2M+, [H,M−] = 2M−, [M+,M−] = H.

Then Ωφ = k2 + 2M−M+φ = k2 − 2[M+,M−]φ = (k2 − 2k)φ.

Consider the integral in (v), assuming du has been normalized so that
∫
U(Q)\U(A)

du = 1

and g = g∞gf . First suppose gf = Id. Writing g∞ =

(
1 n
0 1

)(
a 0
0 a−1

)
kθ using the

Iwasawa decomposition we have∫
Q\A

φ

((
1 x
0 1

)
g

)
dx =

∫
Z\R

φ

((
1 x
0 1

)(
1 n
0 1

)(
a 0
0 a−1

)
kθ

)
dx

=

∫
Z\R

f(a2 i+ x)(a−1)−kdx

= ak
∫

Z\R
f(a2 i+ x)dx.

The last integral is the constant Fourier coefficient at the cusp i∞. At the cusp conjugate to
i∞ under γ ∈ G(Q), the same integral with gf = γ gives the constant Fourier coefficient
at that cusp. This proves that f is a cusp form if and only if the integral in (v) vanishes (for
all g ∈ G(Af ).

For the remarks about Maass forms, note that in the coordinates above,

Ω = 4y2

(
∂2

∂x2
+

∂2

∂y2

)
− 4y

∂2

∂x∂θ

(cf. [7, p. 198]). So if f is an eigenfunction of

∆k = −y2

(
∂2

∂x2
+

∂2

∂y2

)
+ iky

∂

∂x

and of weight k, then it is an eigenfunction of Ω. In particular, it is C[Ω]-finite and hence
Z(g)-finite by (ii). The proof of (v) given in the holomorphic case applies to Maass cusp
forms. �

The properties of φ in the lemma motivate the general definition of automorphic form.
Note the condition of vanishing at each cusp has been replaced by the condition that a
single adelic integral vanishes.

2.3. Automorphic forms. Let ω be a character of Z(A)/Z(Q) trivial on Z(R)+ = R+.
An automorphic form with central character ω is a function φ : G(Q)\G(A)→ C which
satisfies the following:

(i) for each gf ∈ G(Af ) the function g∞ 7→ φ(gfg∞) is smooth on G(R)+

(ii) φ is right K∞-finite
(iii) φ is right-invariant under a compact open subgroup K of G(Af )
(iv) φ transforms according to ω under Z(A)
(v) φ is Z(g)-finite
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(vi) φ is of moderate growth

Given (iv), (v) is equivalent to the statement that φ is killed by a polynomial in the Casimir
Ω. The condition (vi) must be explained. We will define a norm on G(A) as follows:
Embed G(A) as a closed subset of M(2,A) × M(2,A) ∼= A8 by g 7→ (g, g−1). Now
use the norm on A8 given by ||(x1, . . . , x8)|| =

∏
v maxi(|xi|v) where | · |v is the absolute

value on Qv for all places v. In terms of this norm on G(A) the function φ is said to be of
moderate growth if there are c and n ∈ Z such that

|φ(g)| ≤ c||g||n for g ∈ G(A).

(It might seem that this definition is a little arbitrary but it can be shown that it is indepen-
dent of the norm, at least for any reasonable norm.) The space of automorphic forms with
central character ω is denoted

A (G(Q)\G(A), ω)

This definition of automorphic form was given in [5] and [6, §10].

Lemma 3. An automorphic form is a real analytic function (more precisely, for fixed gf
the function g∞ 7→ φ(gfg∞) is real analytic on G(R)).

Proof. We will show that a function φ on G(R)+ which is Z(R)+-invariant, K+
∞-finite

and Z(g)-finite is necessarily real analytic. Since φ is Z(g)-finite there is a polynomial P
such that P (Ω)φ = 0. Consider the operator Πk which projects to the (eiθ)k-eigenspace of
K+
∞:

(Πkφ)(g) :=
1

2π

∫ 2π

0

φ(gkθ)e
−ikθdθ.

Since Ω is invariant it commutes with Πk. On the (eiθ)k-eigenspace, the operator Ω agrees
with ∆k. Hence we have

P (∆k)Πkφ = P (Ω)Πkφ = ΠkP (Ω)φ = 0.

The operator P (∆k) has leading term (−1)ny2n
(
∂2

∂x2 + ∂2

∂y2

)n
, where n = degP , and is

therefore elliptic. By standard regularity results Πkφ is real analytic. Since φ is K+
∞-finite

it is a finite sum φ =
∑
|k|≤M Πkφ for some M and hence is real analytic. �

The action of G(Af ) by right translations evidently preserves A (G(Q)\G(A), ω). The
condition of K+

∞-finiteness (or K∞-finiteness; they are equivalent) is not preserved by
right translation under G(R), so there is no representation of G(R). The property of K∞-
finiteness is preserved by the action of g. (Indeed, consider the generators H,M−,M+ of g
defined earlier. A function φ has K+

∞-weight (eiθ)k if and only if Hφ = kφ. The commu-
tation relations then imply that M− lowers the H-weight by 2 and M+ raises H-weights
by 2.) But it is not obvious that the moderate growth condition is preserved by g. This
(somewhat delicate) fact is proved in [5]; for a detailed account tailored to our situation see
[1, 2.9]. Here is a sketch of the argument: The key point is that for a K+

∞-finite Z(g)-finite
smooth function φ on G(R)+ there is a function α ∈ C∞c (G(R)) with α(kgk−1) = α(g)
for all k ∈ K+

∞, such that
φ = φ ∗ α.
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Then for X ∈ g:
Xφ = X(α ∗ φ) = Xα ∗ φ.

ThusXφ is of moderate growth if φ is of moderate growth. To find α, let J ⊂ C∞c (G(R)+)
be the convolution algebra of functions invariant by conjugation by K+

∞. Let {αn}n be an
approximate identity in C∞c (G(R)). By averaging over K+

∞ we can arrange that {αn} ⊂
J . Now the sequence φ ∗ αn approximates φ uniformly (in the sup norm) on arbitrarily
large open subsets of G(R). Suppose f =

∑
|k|≤M Πkf . Let W be the sum of the K+

∞-
eigenspaces with character (eiθ)k for |k| ≤M . Then f∗J ⊂ W and so is finite-dimensional
and hence closed in the sup norm. Since W is finite-dimensional, there is an open set
U ⊂ SL(2,R) such that restriction of functions W → C∞(U) is injective. It follows that
f ∈ f ∗ J and hence there is an α ∈ J with f = f ∗ α.

The upshot of the previous discussion is that A (G(Q)\G(A), ω) is a (g, K∞)×G(Af )-
module. Recall that a (g, K∞)-module is a vector space V with a U(g)-module structure
and a representation of K∞ such that

(i) every vector is K∞-finite
(ii) for X ∈ Lie (K∞),

X · v =
d

dt

∣∣∣∣
t=0

(exp(tX) · v) (v ∈ V )

(iii) the actions are compatible:

k ·X · v = Ad(k)X · k · v (k ∈ K∞, X ∈ g, v ∈ V ).

The G(Af )-representation on A (G(Q)\G(A), ω) is smooth: every vector is fixed under a
compact open subgroup. A (g, K∞)×G(Af )-module V is admissible if, for any compact
open subgroup K ⊂ G(Af ) and any irreducible representation σ of K × K∞, the space
V [σ] := HomK×K∞(σ, V ) of vectors which transform according to σ under K × K∞ is
finite-dimensional.

The fundamental theorem on the space of automorphic forms is the following:

Theorem 1. (Harish-Chandra) Suppose I ⊂ Z(g) is an ideal of finite codimension. Then
the space of automorphic forms A (G(Q)\G(A), ω)I killed by I is an admissible (g, K∞)×
G(Af )-module.

In particular one may take I = ker(ξ) the kernel of a character ξ : Z(g) → C. Then
A (G(Q)\G(A), ω)I consists of φ such that Dφ = χ(D)φ for D ∈ Z(g). Some remarks
on the proof of this theorem will be made in the next section.

The constant term of f ∈ A (G(Q)\G(A), ω) alongU is the function onB(Q)U(A)\G(A)
given by

(11) g 7→
∫
U(Q)\U(A)

f(ug) du.

A cuspidal automorphic form (cusp form for short) with central character ω is an auto-
morphic form f with constant term zero, i.e.:

(12)
∫
U(Q)\U(A)

f(ug) du = 0 for all g ∈ G(A).
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(Here du is any Haar measure on U(A) ∼= A.) This condition is stable under the (g, K∞)×
G(Af )-action. (1) The submodule of cusp forms is denoted

A0(G(Q)\G(A), ω).

A (g, K∞)×G(Af )-module is irreducible if it has no proper (g, K∞)×G(Af )-submodules.
The fundamental theorem on the space of cusp forms is the following:

Theorem 2. (Gelfand–Graev–Piatetskii-Shapiro) The (g, K∞)×G(Af )-module A0(G(Q)\G(A), ω)
is semisimple, i.e. is isomorphic to a(n algebraic) direct sum of irreducible (g, K∞) ×
G(Af )-modules, each occurring with finite multiplicity.

Note that A (G(Q)\G(A), ω) is definitely not semisimple. Some remarks on the proof of
this theorem will be made in the next section. An irreducible summand of A0(G(Q)\G(A), ω)
is a cuspidal automorphic representation.

Let us check that our definitions do indeed generalize the examples of modular forms we
have seen. By Lemma 2, for any weight k, the mapping f 7→ φ defines embeddings

Mk(Γ0(N), χ) ↪→ A (G,ωχ)

Sk(Γ0(N), χ) ↪→ A0(G,ωχ).

(Here ωχ is the character of Z(Q)\Z(A) associated to χ.) Thus holomorphic modular
forms give automorphic forms. The growth condition for Maass forms implies the mod-
erate growth condition, so that the construction for Maass forms in Lemma 2 gives an
inclusion of Maass forms in A (G,ωχ) and of Maass cusp forms in A0(G,ωχ). So the defi-
nition of automorphic form is general enough to include all our examples. (Moreover, they
are all elements of the same space, separated by the actions of K+

∞, Z(g) etc.) The various
finite-dimensionality statements about spaces of modular forms are implied by Theorem 1
(though not, of course, statements about exact dimensions). The fact that the Hecke oper-
ators T (p) can be simultaneously diagonalized on Sk(SL(2,Z)) is contained in Theorem
2 (as we shall see later). The proofs of these theorems use Hilbert-space methods (in the
classical setting one sees this in the use of Petersson’s inner product to diagonalize the
T (p)).

2.4. Square-integrable functions and the cuspidal spectrum. Let L2(G(Q)\G(A)) de-
note the Hilbert space of functions on G(Q)\G(A) square-integrable with respect to the
natural measure, with the right regular representation (Rgf)(h) = f(hg). This representa-
tion is a direct integral over characters ω ofZ(Q)\Z(A) of the subspacesL2(G(Q)\G(A), ω)
of functions with central character ω. For a unitary character ω,

L2(G(Q)\G(A), ω)

1Cuspidal automorphic forms are bounded functions on G(Q)\G(A). In fact, we could have defined cus-
pidal automorphic forms as smooth K∞-finite, Z(g)-finite, bounded functions on G(Q)\G(A) with central
character ω which are right-invariant under some open compact K ⊂ G(Af ). Stability under U(g) follows
by the same argument used to prove that the moderate growth condition is U(g)-stable.
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is the space of all functions on G(Q)\G(A) with central character ω and which are square-
integrable modulo the centre, i.e.∫

G(Q)Z(A)\G(A)

|f(g)|2dg <∞.

There are natural operators in this space coming from the right regular representation. De-
fine the space of test functions to be the tensor product

C∞c (G(A)) = C∞c (G(R))⊗ C∞c (G(Af )).

Here C∞c (G(Af )) is the space of locally constant functions of compact support on G(Af )
and C∞c (G(R)) has its usual meaning. This is an algebra under convolution of functions:

(ϕ ∗ ψ)(g) =

∫
G(A)

ϕ(gh−1)ψ(h)dh.

There is a natural topology on the space of test functions, which we will discuss later. For
ϕ ∈ C∞c (G(A)) and f ∈ L2(G(Q)\G(A), ω) define

(Rϕf)(x) =

∫
G(A)

ϕ(g)f(xg)dg(13)

=

∫
Z(A)\G(A)

(∫
Z(A)

ϕ(zg)ω(z)dz

)
f(xg)dg

This gives a representation of the convolution algebra C∞c (G(A)) in L2(G(Q)\G(A), ω).
For functions in L2(G(Q)\G(A), ω) the constant term integral

(14) g 7→
∫
U(Q)\U(A)

f(ug) du.

makes sense as a function (a. e.) on B(Q)U(A)\G(A). A function is called cuspidal if
its constant term is identically zero (i.e. a. e. in g ∈ G(A)); the subspace of cuspidal L2

functions is denoted
L2

0(G(Q)\G(A), ω)

and called the cuspidal spectrum. It is preserved by the right translation action of G(A)
and hence by the operators Rϕ.

Lemma 4. Cuspidal automorphic forms are bounded functions, hence:

A0(G(Q)\G(A), ω) ⊂ L2
0(G(Q)\G(A), ω).

Proof. Let us check that φ associated to f ∈ Sk(Γ0(N), χ) is L2. The function |φ|2 is a
function on

G(Q)Z(A)\G(A)/K0(N)K∞ = Γ0(N)Z(R)+\G(R)+/K+
∞ = Γ0(N)\H.

Using dg = y−2dxdydθ we have∫
Z(A)G(Q)\G(A)

|φ(g)|2dg ∼
∫

Γ0(N)\H
|f(z)|kyky−2dxdy <∞.

(Note the relation of the L2 inner product with the Petersson inner product on cusp forms.)
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In fact, cusp forms decrease rapidly at infinity. More precisely, if φ is a cusp form and
‖ · ‖ is a norm on G(A) then for any n ∈ Z there is a constant cn such that

|φ(g)| ≤ cn||g||n.

For φ associated to a holomorphic f this is an easy exercise. �

The theorem of Gelfand–Graev–Piatetskii-Shapiro is:

Theorem 3. (i) Forϕ ∈ C∞c (G(A)), the operatorRϕ is a compact operator onL2
0(G(Q)\G(A), ω).

(ii) The space L2
0(G(Q)\G(A), ω) decomposes discretely, i.e. it is a Hilbert space direct

sum of irreducible closed G(A)-submodules, each with finite multiplicity.

We will sketch the proof in several steps. The argument is covered in more detail in [1,
3.2, 3.3] and [7, Chp. XII] and there is a careful treatment in [3] (which works for a general
reductive group).

Lemma 5. Suppose A is a *-closed algebra of compact operators on a Hilbert space H
and assume that A is nondegenerate (i.e. Av 6= {0} for v 6= 0). Then H is a direct sum of
closed irreducible subspaces with finite multiplicities.

Proof of the lemma. Among all collections of mutually orthogonal irreducible closed
A-stable subspaces choose a maximal one C using Zorn’s lemma. Replacing H by the
orthogonal complement of the closure of the direct sum of all subspaces in C we may
assume that H has no proper closed irreducible subspaces. We will show that this leads to
a contradiction, so that the orthogonal complement is zero. First, there is a nonzero normal
operator T ∈ A. (There is some nonzero T ∈ A by nondegeneracy, take T + T ∗ or (T −
T ∗)/i to get a normal one.) The spectral theorem insures that T has at least one nonzero
eigenvalue λ. Now among all closed A-stable subspaces containing a λ-eigenvector choose
the one V such the eigenspace Vλ = {v ∈ V : Tv = λv} is of minimal dimension.
Choose a nonzero v ∈ Vλ and let W be the closure of A · v. We claim that W is A-
irreducible. Indeed, suppose W = W1 ⊕ W2 for closed orthogonal A-stable subspaces.
Writing v = v1 + v2 accordingly, we see that λv = Tv = Tv1 + Tv2 and hence (by
orthogonality) Tvi = λvi for i = 1, 2. Thus vi ∈ Vλ. If both are nonzero either of Wi is
A-stable and dim(Wi)λ < dimV , contradicting the choice of W . Suppose v = v1. Then
W = W1 and W2 = 0. This proves W is a closed A-irreducible subspace. Either W = H
or W is a proper subspace; either case leads to a contradiction.

For finiteness of multiplicities note that if some A-representation appears infinitely many
times then T has infinitely many linearly independent eigenvectors with a common eigen-
value, contradicting the compactness of T . �

Proof that (i)⇒ (ii) in Thm 3. To apply the lemma to our situation note that {Rϕ}ϕ is *-
closed since R∗ϕ = Rϕ∗ where ϕ∗(g) = ϕ(g−1). Nondegeneracy follows from the existence
of approximate identities in C∞c (G(Af )).
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We have proved (assuming (i)) that the cuspidal spectrum decomposes as a direct sum of
closed C∞c (G(A))-submodules with finite multiplicities. This implies the same as G(A)-
modules. �

Let ϕ be a test function and let

ϕω(g) =

∫
Z(A)

ϕ(zg)ω(z)dz.

Since Rϕ = Rϕω we will simply assume that ϕ = ϕω and remember that it transforms
according to ω−1 under Z(A). Now

(Rϕf)(g) =

∫
Z(A)\G(A)

ϕ(h)f(gh)dh =

∫
Z(A)\G(A)

ϕ(g−1h)f(h)dh

=

∫
U(Q)Z(A)\G(A)

K(g, h)f(h)dh(15)

where
K(g, h) :=

∑
γ∈U(Q)

ϕ(g−1γh).

Define a compactly supported smooth function on A by

ϕg,h(x) := ϕ

(
g−1

(
1 x

1

)
h

)
.

Let us assume fixed a (unitary) additive character ψ of A/Q and let ϕ̂g,h be the Fourier
transform with respect to ψ. Poisson summation gives:

(16)
∑
α∈Q

ϕ̂g,h(α) =
∑

γ∈U(Q)

ϕ(g−1γh) = K(g, h)

Now

ϕ̂g,h(0) =

∫
U(Q)\U(A)

ϕ(g−1nh)dn.

Note that ϕ̂g,nh(0) = ϕ̂g,h(0) for n ∈ U(A). Hence for any f ∈ L2(G(Q)\G(A), ω) we
have: ∫

U(Q)Z(A)\G(A)

ϕ̂g,h(0)f(h)dh =

∫
U(A)Z(A)\G(A)

∫
U(Q)\U(A)

ϕ̂g,nh(0)f(nh)dndh

=

∫
U(A)Z(A)\G(A)

∫
U(Q)\U(A)

ϕ̂g,h(0)f(nh)dndh

=

∫
U(A)Z(A)\G(A)

ϕ̂g,h(0)

∫
U(Q)\U(A)

f(nh)dndh

Thus for a cuspidal function f we have

(17)
∫
U(Q)Z(A)\G(A)

ϕ̂g,h(0)f(h)dh = 0.
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By (15),(16), and (17) we have:

(18) (Rϕf)(g) =

∫
U(Q)Z(A)\G(A)

∑
α∈Q×

ϕ̂g,h(α) f(h)dh

for cuspidal f .

The main point in the proof of (i) of Theorem 3 is that the sup norm of Rϕf is bounded
in terms of the L2 norm of f (Lemma 6 below). This will follow from estimates for the
sum

∑
α∈Q× ϕ̂g,h(α) appearing in (18). The bounds will be uniform for compact sets of test

functions, so we must discuss the topology on the space of test functions. On C∞c (G(Af ))
the topology is simple: It is the direct limit of the (finite-dimensional) spaces of right K-
invariant functions with support in S where S varies over compact subsets of G(Af ) and
K varies over compact open subgroups. The topology on C∞c (G(R)) is the direct limit
of the locally convex topologies on C∞Ω (G(R)) (smooth functions with support in Ω) as Ω
varies over all compact sets. The locally convex topology on C∞Ω (G(R)) is given by the
seminorms ϕ 7→ supg∈K |Dϕ(g)| for D ∈ U(g). (The particular choice of differential
operators does not matter in the topology.)

Lemma 6. Suppose ϕ ∈ C∞c (G(A)). There is a constant C = C(ϕ) such that

‖Rϕf‖∞ ≤ C‖f‖2

for f ∈ L2
0(G(Q)\G(A), ω). The constant C may be chosen uniformly for compact sets of

test functions.

Proof. We will need to use Siegel sets, which are approximate fundamental domains for
the (left) action of G(Q) on G(A). For c, d > 0 let S ⊂ G(A) be the set of g = gfg∞ such
that

gf ∈ K :=
∏
p

Kp and g∞ =

(
a

a

)(
y x

1

)
kθ for

{
y ≥ c

0 ≤ x ≤ d.

For c ≤
√

3/2 and d ≥ 1,
G(A) = G(Q)S.

It will suffice to show that for some constant C,

sup
g∈S
|(Rϕf)(g)| ≤ C‖f‖2.

Our task is to estimate the sum
∑

α 6=0 ϕ̂g,h(α) appearing in (18). Write g ∈ S and h ∈
G(A) as

g =

(
a

a

)(
y x

1

)
κg (y ≥ c, x ≤ d, κg ∈ K+

∞ ×K)

h =

(
z

z

)(
v u

1

)
κh (z, v ∈ A×, u ∈ A, κh ∈ K+

∞ ×K).

Then

ϕ̂g,h(α) =

∫
A
ϕ

(
κ−1
g

(
a−1z

a−1z

)(
y−1

1

)(
1 t− x+ u

1

)(
v

1

)
κh

)
ψ(αt)dt.
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This is

(19) ϕ̂g,h(α) = ψ(α(x− u)) ω(z−1a) |y| F̂κg ,κh,y−1v(αy)

where

Fκg ,κh,y(t) = ϕ

(
κ−1
g

(
1 t

1

)(
y

1

)
κh

)
.

Since Ksupp(ϕ)K∩B(R) is compact, there is a compact set C ⊂ A× such that Fκg ,κh,y(t)
vanishes identically unless y ∈ C. Thus the functions Fκg ,κh,y(t) lie in a compact set in
C∞c (U(A)), and hence in a compact set in the Schwartz space. Their Fourier transforms
then lie in a compact set of the Schwartz space. This implies a uniform estimate on the
coefficients: For any N > 0 there is a cN such that

(20) |F̂κg ,κh,y−1v(α)| ≤ cN |α|−N .

Replacing
(

1 α
1

)
∈ U(A) by its conjugate by

(
y

1

)
gives

|F̂κg ,κh,y−1v(yα)| ≤ cN |yα|−N = cN |y|−N |α|−N .
Taking | · | in (19) and using this estimate gives

ϕ̂g,h(α)| ≤ cN |y|1−N |α|−N

and hence ∣∣∣∣∣∣
∑
α∈Q×

ϕ̂g,h(α)

∣∣∣∣∣∣ ≤
∑
α 6=0

cN |y|1−N |α|−N ≤ CN |y|−N .

Putting this estimate back in (18) and using the relation of measures dh = |v|−1dκhd
×vdu,

we get:

|Rϕf(g)| ≤ CN |y|−N
∫

Q\A

∫
y−1v∈C

∫
K

∣∣∣∣f ((v u
1

)
κh

)∣∣∣∣ |v|−1 dκhd
×vdu

≤ C ′‖f‖1(21)

≤ C‖f‖2 (since the volume is finite.)

The constants cN in (20) can be chosen uniformly for ϕ in a compact set of test functions,
hence so can all subsequent constants. � (Lemma 6)

Proof of (i) of Thm 3. We first check that the family of functions F := {Rϕf : ‖f‖2 ≤ 1}
is equicontinuous. For X ∈ g,

XRϕf = RϕX
f

where ϕX ∈ C∞c (G(R)) is defined by

ϕX(g) =
d

dt

∣∣∣∣
t=0

ϕ(exp(−tX)g).

For X in a compact ball B around 0 ∈ g, the family ϕX lies in a compact set in C∞c (G(A))
(2), hence there is a uniform pointwise boundedness statement as in the lemma for {XRϕf :
X ∈ B, ‖f‖2 ≤ 1}.

2The map g× C∞c (G(A))→ C∞c (G(A)) by (X,ϕ) 7→ ϕX is continuous.
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We would now like to invoke the Arzela-Ascoli theorem (an equicontinuous family of
functions on a compact Hausdorff space which is bounded in the sup norm is relatively
compact), but the space G(Q)Z(R)+\G(A) is not compact. One way to get around this
is to compactify it by adding cusps. Cuspidal functions decrease rapidly at infinity, so on
extending by zero to the cusps they remain continuous. The equicontinuity of the family
F continues to hold. By Arzela-Ascoli the family is compact in the sup norm on the com-
pactification, hence in the L2 norm on G(Q)Z(A)\G(A). �

Instead of this, there is a nice argument (cf. Lang [7, Thm 6 on p. 232]) that Lemma 6 im-
plies the stronger statement that Rϕ is a Hilbert-Schmidt operator on L2

0(G(Q)\G(A), ω).
(HenceRϕ is even of trace class on the cuspidal spectrum, something we have not discussed
here.) Alternately (cf. Garrett [3, Prop. 6.1]) one can show directly that an equicontinuous
family of bounded continuous functions on G(Q)Z(A)\G(A) has compact closure in L2.
Both these arguments work for any G (whereas compactifying as above is delicate in gen-
eral). Aside from this point, the proof of Theorem 3 for a general reductive group requires
no new idea (i.e. Poisson summation and Fourier analysis on U(A) (treated as ∼= An) are
enough).

Let us see how to deduce Theorem 2 from Theorem 3 using some results of Harish-
Chandra. Let H be an irreducible summand of L2

0(G(Q)\G(A), ω). The subspace

HK∞ ⊂ H

of K∞-finite vectors in H is an admissible (g, K∞)-module. (This is a general theorem of
Harish-Chandra, for a proof in the case of GL(2,R)+, where the K+

∞-subspaces are even
one-dimensional, see [1, Thm 2.4.3 and Corollary].) It has a central character, i.e. there is
a character χ : Z(g) → C such that zf = χ(z)f for a K∞-finite vector f . Now the K∞-
finite functions in H satisfy all the conditions defining automorphic forms except possibly
moderate growth. This is purely a question on G(R). By the argument after Lemma 3
we have α ∈ C∞c (G(R) with α(kgk−1) = α(g) and α ∗ f = f (cf. Lemma 13 of [5] or
Lemma 2.3.2 of [1]). This can be shown (ibid.) to imply that f has moderate growth. Thus
the K∞-finite vectors in H are automorphic forms. The space of automorphic forms is the
algebraic direct sum of the spaces HK∞ as H runs over closed irreducible summands.

Now we make some remarks about the proof of Harish-Chandra’s finiteness theorem.
Fix a compact open K ⊂ G(Af ) and an irreducible representation σ of K ×K∞. We must
show that dim A (G(Q)\G(A), ω)χ[σ] < ∞ where χ : Z(g) → C. The first step, which
we will not discuss in detail, is a reduction using a theorem of Langlands to showing that

(22) dim A0(G(Q)\G(A), ω)χ[σ] <∞.

Consider the irreducible summands {Hi}i ofL2
0(G(Q)\G(A), ω). By general representation-

theoretic results it is known that for a fixed χ and σ∞ ∈ K̂∞, there are only finitely manyHi

which contain theK∞-type σ∞ and have infinitesimal character χ. Since dimHi[σ∞] <∞
we get (22). (For another proof see [5].)

These proofs give no information on the exact dimensions (which can be computed for
classical holomorphic cusp forms of weight ≥ 2 using a little geometry).
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2.5. Other groups, groups over number fields. For a reductive algebraic group G over
Q the definition of automorphic form is exactly the same: a function on G(Q)\G(A) sat-
isfying (i)–(vi). The moderate growth condition is imposed with respect to any reasonable
norm on G(R) (use a faithful finite-dimensional representation to embed G(A) as a closed
subset of AN , then take the standard norm on AN ). A cuspidal automorphic form is an
automorphic form for which the integral (12) vanishes when U is the unipotent radical of
any standard rational parabolic subgroup. With these definitions, the results so far are valid
as stated. For a reductive group G over a number field F , one works with the restriction of
scalars RF/QG, which is reductive over Q.

3. AUTOMORPHIC REPRESENTATIONS

The discussion thus far, though couched in adelic terms, has made use of analysis at the
real places. The analysis at the p-adic places is the analysis of Hecke operators.

3.1. An automorphic representation is an irreducible admissible (g, K∞) × G(Af )-
module which is isomorphic to a subquotient of A (G(Q)\G(A), ω). (The admissibility
requirement is redundant by Harish-Chandra’s finiteness theorem.) Note that an automor-
phic representation is not a representation of G(A) at all! A cuspidal automorphic rep-
resentation is an irreducible admissible (g, K∞) × G(Af )-module which is equivalent to
a submodule of A0(G(Q)\G(A), ω). Notice that cuspidal automorphic representations are
unitary (rather, unitarizable). Theorem 2 implies that

A0(G(Q)\G(A), ω) = ⊕πA0(G(Q)\G(A), ω)[π]

where π runs over cuspidal automorphic representations and the π-isotypic component
A0(G(Q)\G(A), ω)[π] is a direct sum of finitely many copies of π.

Just as a continuous idele class character χ : Q×\A× → C× has a factorization as χ =
⊗vχv over all places, an irreducible admissible representation of G(A) has a factorization
into representations of the local groups G(Qp). Before discussing this factorization we
review some local representation theory.

3.2. Spherical representations ofGL(2,Qp). Fix a prime p and considerKp = GL(2,Zp)
and Gp := G(Qp). Recall that for quasi-characters χ1, χ2 of Q×p the (normalized) induced
representation Ind(χ1, χ2) is the space of locally constant functions f : Gp → C satisfying

f(bg) = δ(b)1/2χ1(b1)χ2(b2)f(g) for b =

(
b1 ∗

b2

)
∈ Bp

where δ(b) = |b1/b2| is the modular character. If χ1 and χ2 are unitary characters then
Ind(χ1, χ2) is unitary. Note that the central character is ω = χ1χ2.

An admissible representation of Gp is called spherical (or unramified) if it contains
a Kp-fixed vector. Consider the induced representation Ind(χ1, χ2) where χ1 and χ2 are
unramified characters. They can be written as:

χi(x) = t
ordp(x)
i (x ∈ Q×p )
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for (t1, t2) ∈ (C×)2. In this case (χ1, χ2) is trivial on Bp ∩Kp and restriction of functions
to Kp gives a Kp-isomorphism

Ind(χ1, χ2) ∼= C∞(Bp ∩Kp\Kp).

It follows that Ind(χ1, χ2) is spherical and contains a unique Kp-fixed vector up to scalars.
The spherical representations are parametrized by points of the complex torus T̂ := (C×)2

modulo (t1, t2) 7→ (t2, t1):

Theorem 4. (cf. [1, Thm 4.6.4]) An irreducible admissible spherical representation of Gp

is isomorphic to one of the following:

(i) For (t1, t2) ∈ (C×)2 with t1t−1
2 6= p±1 the representation

π(t1, t2) := Ind(χ1, χ2)

where χi(x) = t
ordp(x)
i .

(ii) For (t1, t2) ∈ (C×)2 with t1t−1
2 = p±1,

π(t1, t2) = χ ◦ det

(the one-dimensional subquotient of Ind(χ1, χ2)).

The only isomorphisms between these representations are π(t1, t2) ∼= π(t2, t1).

The spherical Hecke algebra at p is the convolution algebra

Hp := H(G(Qp), Kp)

of compactly supported Kp-biinvariant functions on G(Qp). There is a unit: if we fix the
Haar measure so that Kp has volume one the unit is the characteristic function of Kp. In
general Hp is spanned by the characteristic functions of double cosetsKpgpKp. The spheri-
cal Hecke algebra Hp is commutative. (3) If (π, V ) is an irreducible spherical representation
of Gp then V Kp is an irreducible representation of Hp. So (π, V ) gives a character of Hp,
the character λπ : Hp → C by which Hp acts on V Kp . The character λπ determines π
and every character of Hp is a λπ. Together with the previous theorem this identifies the
characters of Hp with T̂ /W where W = Z/2Z acts by (t1, t2) 7→ (t2, t1).

Theorem 5. (Satake) The spherical Hecke algebra Hp is identified with the ring

C[Ĝ]Ĝ = C[T̂ ]W

of conjugation-invariant polynomial functions on Ĝ = GL(2,C). The set of unramified
representations is identified with the set T̂ /W of semisimple conjugacy classes in Ĝ.

3Here is a quick proof using Gelfand’s trick: The Cartan decomposition

Gp = Kp

{(
pn1

pn2

)
: n1 ≥ n2

}
Kp

shows that the characteristic functions of double cosets of the elements
(
pn1

pn2

)
for n1 ≥ n2 form a

basis of Hp. Matrix transposition gives a vector space automorphism ι : Hp → Hp which can be checked
to be an antiinvolution of the algebra, i.e. ι(f1 ∗ f2) = ι(f2) ∗ ι(f1) for f1, f2 ∈ Hp. But ι fixes the basis
elements pointwise, so it is the identity. This shows that Hp is isomorphic to its opposite, hence commutative.
The same proof works for GL(n,Qp).
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The conjugacy class
{(

t1
t2

)}
in GL(2,C) associated to π(t1, t2) is called the Sa-

take parameter of π(t1, t2) ∼= π(t2, t1). The appearance of GL(2,C) here is no accident;
it is the Langlands dual group of GL(2,Qp). (In general, the Satake parameter of a spheri-
cal representation of a split reductive p-adic group G(Qp) is a semisimple conjugacy class
in the complex dual group Ĝ.) Note that

C[T̂ ]W = C[t±1
1 , t±1

2 ]W = C[t1 + t2, t1t2, t
−1
1 t−1

2 ].

Let

Tp = characteristic function of Kp

(
p

1

)
Kp = Kp

(
1

p

)
Kp

Rp = characteristic function of Kp

(
p

p

)
Kp.

Lemma 7. Tp and Rp act on the spherical vector in π(t1, t2) by p1/2(t1 + t2) and p(t1t2)
respectively. It follows that Hp is generated by Tp and R±1

p .

Proof. It is enough to calculate the action of Tp on the spherical vector in Ind(χ1, χ2).
Let φ0 be the spherical vector, normalized so φ0(e) = 1. The action of Tp is given by:

(Tpφ)(g) =

∫
Kp( p 1 )Kp

φ(gh)dh.

Since we know that φ0 is an eigenfunction of Tp it is enough to compute (Tpφ0)(e). The

double coset Kp

(
1

p

)
Kp decomposes as:

(23) Kp

(
p

1

)
Kp =

∐
0≤b≤p−1

(
p −b

1

)
Kp

∐(
1

p

)
Kp.

Using the right Kp-invariance of φ0 we have:

(Tpφ)(e) =

∫
Kp( p 1 )Kp

φ0(h)dh

=
∑

0≤b≤p−1

φ0

((
p −b

1

))
+ φ0

((
1

p

))
.

= p|p|1/2t1,p + |p−1|1/2t2,p = p1/2(t1,p + t2,p).

The calculation for Rp is easier. �

When are the representations π(t1, t2) unitary (rather, preunitary)? The induction we
have used preserves unitarity, so this is certainly true if |t1| = |t2| = 1. However, there are
other unitary representations. A necessary condition for unitarity is that

(24) p−1/2 ≤ |ti| ≤ p1/2 (i = 1, 2).

(If the central character t1t2 is trivial then this is equivalent to |ti| ≤ p1/2(i = 1, 2).) The
representation is tempered if |t1| = |t2| = 1.
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3.3. Discrete series forG(R). For each integer k ≥ 2 the discrete series representation πk
is a certain infinite-dimensional unitary representation of G(R) on a Hilbert space. We will
define the associated (g, K∞)-module DSk. This is spanned as a C-vector space by vectors

. . . , v−k−4, v−k−2, v−k, vk, vk+2, vk+4, . . .

K∞ acts by:

kθ · vm = (eiθ)mvm

(
1
−1

)
· vm = v−m.

g acts by:

H · vm = vm, M+ · vm =
k +m

2
vm+2, M− · vm =

k −m
2

vm−2.

These formulae define an irreducible (g, K∞)-module. (As a (g, K+
∞)-module it splits into

two non-isomorphic (g, K+
∞)-modules.) For a unitary representation of G(R) on a Hilbert

space of functions which gives rise to DSk see [7, Chp. IX] or [1, 2.5]. (Again, this
representation breaks up as a sum of two non-isomorphic representations of GL(2,R)+.)
For a list of the other irreducible (g, K∞)-modules for GL(2,R) see [7, Chp. VI] or [1,
Thms 2.5.4,2.5.5]. Notice that M−vk = 0 = M+v−k and that Ω acts by the scalar k(k− 2).
In fact, these properties characterize the (g, K∞)-module DSk uniquely.

3.4. Factorization. Suppose that we are given, for each prime p, an irreducible admissi-
ble representation (πp, Vp) of G(Qp). Suppose that for almost all p this representation is
spherical and suppose we are given a Kp-fixed vector v0

p ∈ V
Kp
p . Then we can form the

restricted tensor product

Vf := ⊗′pVp := lim−→S
⊗p∈S Vp

where, for S ⊂ T , the inclusion⊗p∈SVp ↪→ ⊗p∈TVp is given by v 7→ x⊗(⊗p∈T−Sv0
p). This

is an admissible representation of G(Af ). A different set of choices {w0
p ∈ V

Kp
p } which

differs from {v0
p} in only finitely many places gives an naturally isomorphic representation.

If V∞ is an admissible (g, K∞)-module then V := V∞ ⊗ Vf is an admissible (g, K∞) ×
G(Af )-module.

The following theorem was proved in [6] for GL(2) and by Flath in general. A complete
proof for GL(2) can be found in [1, §3.3].

Theorem 6. (i) If {(πp, Vp)}p and (π∞, V∞) are (unitary) irreducible admissible as above
then the representation π = πf⊗π∞ on V = Vf⊗V∞ is an irreducible admissible (unitary)
(g, K∞)×G(Af )-module.

(ii) If (π, V ) is an irreducible admissible (unitary) (g, K∞)×G(Af )-module then there
exist irreducible admissible (unitary) representations (πp, Vp), almost all of them unrami-
fied, and an irreducible (unitary) (g, K∞)-module (π∞, V∞) such that (π, V ) is isomorphic
to the restricted tensor product π = ⊗pπp ⊗ π∞ on V = ⊗′pVp ⊗ V∞.
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3.5. Multiplicity one. Recall the classical result that a Hecke eigenform is determined
by its eigenvalues with respect to the Hecke operators T (p) (p - N ). The representation-
theoretic version of this is due to Jacquet-Langlands [6] and Casselman and Miyake:

Theorem 7. (Strong multiplicity one) Suppose that π1 = ⊗vπ1,v and π2 = ⊗vπ2,v are
cuspidal automorphic representations of GL(2) such that π1,v

∼= π2,v for almost all v.
Then π1

∼= π2 and A0(G(Q)\G(A), ω)[π1] = A0(G(Q)\G(A), ω)[π2].

The proof uses the theory of Whittaker models, which is the representation-theoretic
translation of the use of Fourier expansions (cf. [1, §3.5]). Strong multiplicity one holds
for GL(n) but is false in general.

3.6. Modular forms and automorphic representations. Let us revisit the classical the-
ory of cusp forms using representation theory. Consider the map

Sk(Γ0(N), χ) ↪→ A0(G(Q)\G(A), ω)

defined in Lemma 2. Functions in the image are invariant under

KN :=
∏
p-N

Kp,

i.e. they are contained in A0(G(Q)\G(A), ω)K
N . This space has an action of the (commu-

tative) spherical Hecke algebra away from N : (4)

HN := ⊗′p-NHp

acts by convolution of functions on Gp. Thus for each p - N the elements of the Hecke
algebra act. If

Sk(Γ0(N), χ) 3 f ←→ φ ∈ A0(G(Q)\G(A), ω)K
N

then the classical and adelic actions are related by:

p−1/2Tpφ ←→ p−
k−1
2 T (p)f

p−1Rpφ ←→ R(p)f.(25)

(This requires translating between adelic double cosets and classical double cosets and is
left to the reader.)

Fix f ∈ Sk(Γ0(N), χ) and consider the (g, K∞) × G(Af )-submodule generated by φ.
By the semisimplicity theorem and multiplicity one it is a direct sum of inequivalent rep-
resentations. Now V (φ) is irreducible precisely when f is a eigenform for all T (p), p - N .
(However, f is not unique giving rise to V (φ).) The function φ has M−φ = 0, K∞-weight
k and Ωφ = k(k − 2)φ. By the properties characterizing DSk we must have π∞ = DSk.

To go in the other direction, i.e. from a cuspidal automorphic representation π to a cusp
form f which generates it, we need a result of local representation theory. For r > 0

let Kp,0(r) =

{(
a b
c d

)
∈ Kp : ordp(c) ≥ r

}
. A character ωp of Q×p which is trivial on

4This is a restricted tensor product: linear combinations of elements ⊗p-Nfp where fp is the unit of Hp at
almost all places.
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1 + prZp (i.e. a character of conductor r) defines a character of Kp,0(r) by ωp(k) = ωp(a).
The following theorem from [2] shows that there is a good notion of conductor c(πp):

Theorem 8. For an irreducible admissible representation (πp, Vp) of Gp with central char-
acter ωp, there is a minimal c(πp) ≥ c(ωp) such that V Kp,0(r),ωp

p := {v ∈ V : πp(k)v =

ωp(k)v ∀k ∈ Kp,0(r)} is nonzero. The dimension of V Kp,0(c(π)),ωp
p is one.

The conductor is zero for spherical representations, one for special representations, and
≥ 2 for supercuspidals. Using this we can find a cusp form in a cuspidal automorphic repre-
sentation which generates it. Let π = ⊗pπp⊗π∞ be a cuspidal automorphic representation.
Let

N = N(π) :=
∏
p

pc(πp).

Let ω be the central character of π and χ the associated character ofK0(N). By multiplicity
one, Theorem 8 and Lemma 2, the space of functions φ satisfying

(i) φ ∈ A0(G(Q)\G(A), ω)[π]
(i) M−φ = 0

(ii) φ(gk) = χ(k)φ(g) for k ∈ K0(N)

has dimension one and lies in the image of Sk(Γ0(N), χ). Let f be the normalized form
(a1 = 1) in Sk(Γ0(N), χ) spanning this space. (An f ∈ Sk(Γ0(N), χ) that arises from
cuspidal π in this way, or any multiple of it, is called a (normalized) newform.) If πp is

the (spherical) local component of π for p - N and
(
t1,p

t2,p

)
is its Satake parameter, the

classical Hecke operators are given by:

T (p)f = apf = p
k−1
2 (t1,p + t2,p)f

R(p)f = χ(p)f = t1,pt2,pf.

Since t1,pt2,p = ωπ(p), we have the following explicit relation between Satake parameters
and classical Hecke eigenvalues ap

1− app−
k−1
2 p−s + χ(p)p−2s = (1− t1,pp−s)(1− t2,pp−s)

= det

(
Id−

(
t1,p

t2,p

)
p−s
)
.(26)

The Ramanujan-Petersson conjecture (proved by Deligne for holomorphic cusp forms ca.
1972) states that |ap| ≤ 2p

k−1
2 . By (26) this is equivalent to |t1,p| = |t2,p| = 1, i.e. the

local component πp is tempered. This statement is expected to hold for all automorphic
representations on GL(2) and even on GL(n) (but does not hold for other groups).

3.7. Euler products and automorphic L-functions. Let S be a finite set of primes con-
taining∞. Suppose that we are given a family of Satake parameters for p /∈ S, i.e semisim-
ple conjugacy classes

Φp =

{
g

(
t1,p

t2,p

)
g−1

}
⊂ GL(2,C).
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Define a function of s ∈ C by the Euler product over places not in S:

(27)
∏
p/∈S

1

det(1− p−sΦp)
.

It evidently depends only on the conjugacy class Φp. The same definition works if Φp ⊂
GL(n,C) are given. Of course, this product need not converge anywhere as the Φp are
arbitrary. If we are given a homomorphism ρ : GL(2,C) → GL(N,C) for some N we
can form the Euler product as in (27) using the semisimple conjugacy classes {ρ(Φp)}p in
GL(N,C).

Now let π be an irreducible admissible unitary representation of G(A) (e.g. π cuspidal
automorphic). There is a factorization π = ⊗vπv. Let S be the set of places at which πp is
not spherical. Langlands [8, 9] associated to π the Euler product (27)

(28) LS(π, s) =
∏
p/∈S

1

det(1− p−sΦp)
.

where Φp is the Satake parameter of πp (cf. [8, 9]). Since πp is unitary for all p we have
the bound (24) on the absolute values of eigenvalues of Φp and hence the Euler product
converges in a right half-plane. (5) Given a representation ρ : GL(2,C) → GL(N,C) one
has the Euler product:

LS(π, ρ, s) =
∏
p/∈S

1

det(1− p−sρ(Φp))
,

also convergent in a right half-plane.

When π is an automorphic unitary representation (e.g. π cuspidal) these automorphic
L-functions (are expected to) have many good properties. The basic problems about these
are: meromorphic continuation of LS(π, ρ, s), completion of the L-function by adding ap-
propriate factors for p ∈ S (including gamma factors at ∞) and establishing functional
equations. (For standard L-functions for GL(2) these were solved in [6] using the Whit-
taker model; much is now known in general.) A deeper problem (an instance of Langlands’
functoriality principle [9]) is to show that for suitable ρ, the L-function L(π, ρ, s) is it-
self L(Π, s) for some automorphic representation Π of GL(N,C). Another set of deep
problems is whether the L-functions coming from algebraic geometry are (products of)
automorphic L-functions.

REFERENCES

[1] D. Bump, Automorphic Forms and Representations, Cambridge Univ. Press, 1997.
[2] W. Casselman, On some results of Atkin and Lehner, Math. Annalen 201 (1973), 301–314.

5For f for f ∈ Sk(Γ0(N), χ) the L-function agrees with the (shifted, partial) classical L-function
LN (f, s) =

∑
(n,N)=1 ann

−s. Indeed, if f ∈ Sk(Γ0(N), χ) is the normalized Hecke eigenform associ-
ated to π, then (26) implies

LS(s, π) =
∏
p-N

(1− app
− k−1

2 p−s + p−2s)−1 =
∑

(n,N)=1

ann
−s− k−1

2 = LN

(
f, s+

k − 1
2

)
.



28

[3] P. Garrett, Decomposition of cusp forms, notes (April 2007), available at
http://www.math.umn.edu/ g̃arrett/

[4] S. Gelbart, Automorphic forms on adele groups, Princeton Univ. Press, 1975.
[5] Harish-Chandra, Automorphic Forms on Semisimple Lie Groups, LNM 62, Springer, NY 1968.
[6] H. Jacquet and R. P. Langlands, Automorphic forms on GL(2), LNM 114, Springer, NY 1970, available

at http://sunsite.ubc.ca/DigitalMathArchive/Langlands/
[7] S. Lang, SL2(R), Springer, 1985.
[8] R. P. Langlands, Euler products, Yale University, 1967, available at

http://sunsite.ubc.ca/DigitalMathArchive/Langlands/
[9] R. P. Langlands, Problems in the theory of automorphic forms, in Lec-

tures in Modern Analysis and Applications, LNM 170, 18–86. available at
http://sunsite.ubc.ca/DigitalMathArchive/Langlands/

[10] J.-P. Serre, A Course in Arithmetic, Springer, NY, 1973.
[11] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton Univ. Press.,

Princeton, NJ, 1971.




