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A warning to start with : I have only a few hours to present the repre-
sentation theory of p-adic groups. For that reason few proofs will be given,
and facts are not stated in the order of proofs. Many statements in the text
lead to valuable exercices, but for the proofs of the main results I refer you
to :

[1] J. Bernstein & A. Zelevinsky, Induced representations of the group
GLn over a p-adic field, Russian Math. Surveys 31 (1976), 1-68.

[2] C. J. Bushnell & G. Henniart, The local Langlands conjecture for
GL(2), Grundlehren der math. Wissenschaften vol. 335, Springer (2006).

[3] W. Casselman, Introduction to the theory of admissible representa-
tions of p-adic reductive groups, unpublished notes, available on Casselman’s
web page.

Note that I have not always attributed results, for lack of time to research
the history.

1 Smooth representations of locally profinite groups

1.1 In all that follows F is a fixed non-Archimedean locally compact local
field. Let us recall briefly what it means.

The field F is endowed with a non-trivial discrete valuation vF , i.e. a
surjective group homomorphism from F ∗ to Z, which, when extended by
vF (0) = +∞, verifies vF (x + y) � inf(vF (x), vF (y)), for x and y in F . The
integers in F - elements with non-negative valuation- form a ring OF , which
is a local principal ideal domain with fraction field F ; its unique maximal
ideal PF consists of the elements with positive valuation.

There is a natural topology on F , for which the subsets of the form a+P n
F ,

n in Z, form a basis of open neighbourhoods of a in F . This makes F into a
topological field. Saying that F is locally compact is tantamount to saying
that F is complete and that the residue field kF = OF /PF is finite. Writing
qF for its cardinality, the topology on F is also associated to the normalized
absolute value | |F given by |x|F = q

−vF (x)
F for x in F .

Remark: If K is a number field, or a function field in one variable
over a finite field, any non-trivial discrete valuation v on K gives rise to a
completion Kv, which is an example of F as above. Taking K to be the field
Q of rational numbers, and v to be the p-adic valuation, we get the field Qp

of p-adic numbers; if k is a finite field, taking K = k(X) and v given by the
order of the zero at 0, we get the field k((X)) of Laurent power series in X
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with coefficients in k, which is again an example of F as above. It is known
that these constructions give all examples.

In the sequel, p will be the residue characteristic of F , that is the char-
acteristic of the finite field kF .

1.2 If n is a positive integer, we put on F n the product topology. That
procedure gives a topology on the space of square matrices M(n, F ), and we
put on the group GL(n, F ) the induced topology: all such topologies will be
called natural in the sequel. It is easily seen that GL(n, F ) is a topological
group, that GL(n, OF ) is a compact open subgroup, and that the compact
open subgroups 1n + P k

F M(n, OF ), k � 1, give a basis of neighbourhoods of
the identity in GL(n, F ).

Definition : A topological group is locally profinite if there is a basis of
neighbourhoods of the identity consisting of compact open subgroups.

In particular, GL(n, F ) is a locally profinite group. With the induced -
natural- topology, any closed subgroup of GL(n, F ) is again locally profinite.
A linear F -algebraic group G is a Zariski-closed subgroup of some GL(n)
over F : this means that it is defined inside GL(n) by polynomial equations
with coefficients in F . Its group of F -rational points G = G(F ) is then closed
in GL(n, F ) for the natural topology, hence is locally profinite. In fact that
topology does not depend upon the embedding of G in some GL(n) : it is
the coarsest topology such that all regular algebraic functions from G to F
are continuous.

We shall be interested mainly in the case where G is reductive, i.e. its
maximal unipotent normal subgroup is trivial. We shall say in brief that G
is a reductive group over F ; examples are G = GL(n, F ) or G = SL(n, F ).

Let �F be a uniformizer in F , that is a generator of the maximal ideal
PF of OF . Then for G = GL(n, F ) and K = GL(n, OL) we have the Cartan
decomposition: G is the disjoint union of the double cosets KdK where d
runs through diagonal matrices with diagonal elements �ai

F , with integers ai

decreasing when i runs from 1 to n.
As K is open in G and compact, each set KdK/K is finite, and conse-

quently G/K is countable. If H is a closed subgroup of G, then H is the
disjoint union of the KdK∩H, and the same reasoning shows that H/K∩H
is countable; it follows that H/J is countable for each open compact subgroup
J of H.
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1.3 Let G be a locally profinite topological group. A representation (π, V )
of G on a C-vector space V is simply a group homomorphism π of G into
the group of vector-space automorphisms of V .

It is the same as a C[G]-module; such representations form an abelian
category, with morphisms the G-equivariant linear maps. We shall use the
customary terminology for representations, or C[G]-modules ; for example,
a representation (π, V ) of G is irreducible if V is non-zero and any non-
zero G-invariant subspace of V is V itself; in other words, the corresponding
C[G]-module is simple. Sometimes also we abbreviate in saying only π or V
instead of (π, V ).

A representation (π, V ) of G is smooth if every vector in V has open
stabilizer in G; it is admissible if moreover for any open subgroup J of G
the vector-space V J of vectors fixed by J is finite-dimensional.

Smooth representations form a full subcategory S(G) of the category of all
representations. Restricting a smooth representation to a closed subgroup
gives a smooth representation. Subrepresentations or quotient representa-
tions of smooth representations are again smooth. Any representation (π, V )
of G has a largest smooth subrepresentation (π∞, V ∞) where V ∞ consists of
the smooth vectors in V , i.e. vectors with open stabilizer in G.

A character of G is a group homomorphism from G to C× with open
kernel; it is immediate that characters of G correspond to isomorphism classes
of smooth 1-dimensional representations.

If (π, V ) is a smooth representation of G and χ a character of G, we define
a smooth representation (χ ⊗ π, V ) of G by χ ⊗ π(g) = χ(g)π(g) for g in G.

Remark: let φ be a field homomorphism of C into itself. If V is a C-
vector space, we can form the C-vector space C⊗V , where the tensor product
is via φ; if (π, V ) is a smooth representation of G, then so is (Id⊗π, C⊗V ).
If φ is complex conjugation, that new representation is called the complex
conjugate of (π, V ). It is irreducible if and only if (π, V ) is.

Assume for a moment that G is compact, and let (π, V ) be a smooth
representation of G. Then any vector v in V has open stabilizer in G, and
since G is compact that stabilizer has finite index so v generates a finite-
dimensional G-invariant subspace of V . On such a finite-dimensional space,
some open invariant subgroup J of G acts trivially (take a basis), and G acts
through its finite quotient G/J . In particular, G acts semisimply on V ; as a
consequence there is canonical projection eG = eV

G in V with image V G and
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kernel V (G) generated by the vectors of the form π(g)v − v, v in V , g in G.
Return to a general locally profinite group G, and let (π, V ) be a smooth

representation of G. We have a natural representation of G on the dual
vector space V ∗ given by g �→ tπ(g−1); the subspace V ∨ = (V ∗)∞ affords a
smooth representation π∨ of G called the contragredient of π. In this way
we get a contravariant functor from S(G) to itself. As with usual duality the
evaluation map from V ∨ to C associated to a vector v in V gives a morphism
of representations from π to π∨∨. If J is a compact open subgroup of G, the
vector space (V ∨)J is made out of functionals on V trivial on V (J): through
the projection eJ above we can identify (V ∨)J with the dual of V J . It follows
that the canonical morphism from π to its double contragredient is injective,
and is an isomorphism if and only if π is admissible.

Remark: Let (π, V )be a smooth representation of G. It is said to be
preunitary if there is a (positive definite) scalar product on V which is G-
invariant. If moreover π is admissible, then it is semisimple (exercise): indeed
any G-invariant subspace of V has its orthogonal as a G-invariant comple-
ment.

1.4 Schur’s lemma.

In this subsection G is a locally profinite group such that for some (equiva-
lently: for any) open compact subgroup K, the coset space G/K is countable;
as we have seen, that is the case if G is a reductive p-adic group.

Let (π, V ) be a smooth representation of G; each vector in V has an open
stabilizer in G hence it generates a subrepresentation of countable dimension
over C. If the representation π is generated by a countable subset S of V ,
then V has countable dimension over C; moreover any endomorphism of π is
determined by its values on S, so EndG(V ) has countable dimension if S is
finite.

Assume that (π, V ) is irreducible; then any non-zero vector generates V .
The endomorphism algebra EndG(V ) is a division algebra over C ; if it is not
reduced to scalars, then it contains an extension of C isomorphic to C(X)
hence cannot have countable dimension over C. We deduce :

Proposition: (Schur’s lemma) Let G be as above, and let (π, V ) be a
smooth irreducible representation of G. Then all endomorphisms of π are
scalar, and the centre Z(G) of G acts on V via a character.

The latter means that there is a character ωπ of G such that π(z) =
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ωπ(z)IdV for z in Z(G); that character is called the central character of π.

Corollary: If moreover G/Z(G) is compact, V is finite-dimensional.

Indeed, a non-zero vector v in V has an open stabilizer J in G; but then
the line generated by v is stable by JZ(G), which has finite index in G, and
that implies that V has finite dimension.

Exercise : Show that a finite-dimensional irreducible smooth representa-
tion of GL(n, F ) is in fact one-dimensional, given by a character of the form
χ ◦ det, where χ is a character of F ∗.

Theorem: Let G be a reductive group over F . Then any smooth irre-
ducible representation of G is admissible.

Corollary 1: The contragredient of any smooth irreducible representa-
tion of G is still irreducible.

Corallary 2 : If (π, V ) is a preunitary smooth irreducible representation
of G, then the G-invariant scalar product on V is unique up to multiplication
by a positive real number.

We shall indicate the proof of the theorem later, as it requires considerably
more material. Note that for an irreducible admissible representation of a
locally profinite group G, Schur’s lemma is obvious: for any open compact
subgroup J of G, the finite-dimensional vector subspace V J is stable under
EndG(V ), which has to be finite-dimensional over C, hence reduced to C.
However, Schur’s lemma is involved in the proof of the above theorem.

1.5 Unitary representations

For a locally compact topological group G, it is more customary to inves-
tigate Hilbert space representations of G: a unitary representation of G on
a Hilbert space H is a homomorphism π of G into the group of isometries
of H, such that the map G × H �→ H, (g, v) �→ π(g)v, is continuous. For a
locally profinite group G, we can then look at the subspace H∞; it affords a
smooth representation π∞, and the scalar product on H induces one on H∞,
so that π∞ is preunitary as a smooth representation. One can show that H∞

is dense in H, so that H identifies with the completion of H∞ with respect
to its scalar product.

A Hilbert space representation (π, H) as above is said to be topologically
irreducible if H is non-zero and any non-zero closed G-invariant subspace of
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H is H itself.

Theorem (Harish-Chandra, Bernstein) : Let G be a reductive group
over F . If (π, H) is a topologically irreducible Hilbert space representation of
G, then the smooth representation (π∞, H∞) is irreducible.

In the reverse direction, if (π, V ) is a smooth irreducible preunitary repre-
sentation of G, then the completion V̂ of V with respect to its scalar product
is topologically irreducible, and V̂ ∞ identifies with V as a subspace of V̂ . As
a corollary, we see that H �→ H∞ yields a bijection between isomorphism
clases of unitary topologically irreducible representations of G and isomor-
phism classes of preunitary smooth irreducible representations of G. (Most
authors say unitary instead of preunitary for a smooth representation of G).

1.6 Hecke algebras I

Let G be a locally profinite group, and J a compact open subgroup of G.
Recall that sending V to V J gives an exact functor from smooth representa-
tions of G to complex vector spaces. The action of G by left translations on
C[G/J ] gives a smooth representation of G. If (π, V ) is a smooth represen-
tation of G, then V J identifies with HomJ(C, V ). By the universal property
of tensor products, that identifies in turn with HomG(C[G] ⊗C[J ] C, V ), and
since sending g⊗ a to a(gmodJ) gives a G-isomorphism of C[G]⊗C[J ] C with
C[G/J ], we see that V J is isomorphic to HomG(C[G/J ], V ). In particular,
V J is a right module over the algebra of G-endomorphisms of C[G/J ]. We
write H(G, J) for the opposite algebra, so that V J is a left module over
H(G, J), which we call the Hecke algebra of G with respect to J . Taking V
to be C[G/J ] itself, we see that H(C, J), seen as C[G/J ]J , is the subspace
C[J\G/J ] of linear combinations of double cosets of J in G.

Exercise: Write the corresponding algebra structure on C[J\G/J ].

In the other direction, if M is any left H(G, J)-module, we can form the
tensor product C[G/J ]⊗M over H(G, J), and we get a smooth representation
of G; that process is functorial. If we start with a smooth representation π of
G on V and we take M = V J , then we have a natural map from the tensor
product C[G/J ] ⊗ M into V , sending gmodJ ⊗ v to π(g)v; its image is the
G-subspace of V generated by V J . In the other direction, starting with a
H(G, J)-module M , the space of J-fixed vectors in C[G/J ]⊗M is , because
of the exactness of V �→ V J , simply 1J ⊗ M again, isomorphic to M as a
H(G, J)-module.
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Exercise: Write the adjointness property of those two functors.

Assume that (π, V ) is a smooth irreducible representation of G such that
V J is not zero, and let M be any non-zero submodule of the H(G, J)-module
V J . Then the natural image X of C[G/J ] ⊗ M in V is non- zero, hence to
be V itself since π is irreducible; on the other hand XJ is M so that M has
to be all of V J , and the H(G, J)-module V J is simple.

Conversely let M be a simple H(G, J)-module; form V = C[G/J ]⊗M as
above and let U be the union of all G-invariant subspaces Y of V such that
Y J = 0 ; then U is the maximal such subspace. If T is a G-invariant subspace
of V strictly containing U , then T J is non-zero and consequently fills out all
of the J-fixed point subspace 1J ⊗ M of V ; since that subspace obviously
generates V as a representation of G, we see that T = V . It follows that the
G-module V/U is irreducible, and (V/U)J is isomorphic to M as a H(G, J)-
module. That way we get a canonical bijection between isomorphism classes
of smooth irreducible representations of G with non-zero J-fixed vectors, and
isomorphism classes of simple H(G, J)-modules.

Remark: Let G be a reductive group over F ; then by 1.4 theorem all
smooth irreducible representations of G are admissible, so that all simple
modules over H(G, J) are finite dimensional over C. One can show actually
that, when J is fixed, the dimension of simple H(G, J)-modules is uniformly
bounded.

Example: Let G = GL(N, F ) and J = GL(N, OF ). A smooth irre-
ducible representation (π, V ) of G is called unramified if V J is non-zero;
such representations are classified by the simple H(G, J)-modules V J . But
here the Hecke algebra H(G, J) is commutative, isomorphic to the algebra
of elements in C[X1, X

−1
1 , X2, X

−1
2 , . . . , XN , X−1

N ] invariant under the action
of the symmetric group permuting the variables. All its simple modules are
one-dimensional, parameterized by N-tuples of non-zero complex numbers up
to ordering, or, which amounts to the same, by conjugacy classes of semisim-
ple matrices in GL(N, C). We shall generalize that example below, and give
some more explanation.

Let us return to the situation where G is a general locally profinite group,
and J a compact open subgroup of G. We say that J is “typical” (some
say “special”) if whenever a smooth representation of G is generated by its
J-fixed vectors, the same is true for any subrepresentation. If J is typi-
cal then sending V to V J gives an equivalence of the category of smooth
representations of G generated by their J-fixed vectors, to the category of
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H(G, J)-modules, an inverse equivalence being given by sending a H(G, J)-
module M to C[G/J ] ⊗ M as above. That is far stronger than dealing only
with the irreducible smooth representations, but it requires J to be typ-
ical. For G = GL(N, F ), GL(N, OF ) is not typical (if N > 1) whereas
1N + P k

F M(N, OF ) is typical for k � 1. For a general reductive group over
F it is known that every neighbourhood of the identity contains a typical
subgroup, but their Hecke algebras are usually very difficult to describe and
study explicitly.

2 Parabolic induction and cuspidality

2.1 In this chapter G will be a reductive group over F . It is not so
easy to construct smooth irreducible representations of G. Let us give two
contrasting examples (however, they are in fact closely related, see below
4.4).

The first case is when you take a division algebra D with centre F and
finite dimension N2 over F , and let G = D×. Then G/Z(G) is compact, and
all smooth irreducible representations of G are finite-dimensional; however
they are not easy to construct explicitly. The second case is when G =
GL(N, F ) ; then by the exercise in 1.5 irreducible smooth representations
of G are given by characters or are infinite dimensional, but as we shall see
below we have constructions to give some of those infinite-dimensional ones.

For a general group G, there are always, of course, the characters. Of
some importance are the so-called unramified characters, which we define
now. Let X(G) be the group of algebraic group morphisms of G to Gm,
defined over F . It is a free abelian group of finite rank. For each χ in X(G),
its absolute value |χ|F is a character of G, and we let G1 be the intersection
of the kernels of all such characters. It is an open subgroup of G, and it can
be shown that it is the subgroup of G generated by all compact subgroups:
in any case it clearly contains any compact subgroup of G. The unramified
characters of G are those trivial on G1. For G = GL(N, F ) they are of
the form g �→ | det(g)|sF for some complex number s. In general G/G1 can
be identified with the dual Y (G) = Hom(X(G), Z) of X(G), and the group
Xnr(G) of unramified characters of G with X(G) ⊗ C×, with χ ⊗ λ giving
the character g �→ λ−vF (χ(g)). In particular Xnr(G) can be seen as an affine
complex algebraic variety.

One way to construct smooth irreducible representations of G is via
parabolic induction, from representations of (Levi subgroups of) parabolic
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subgroups of G. Parabolic subgroups of G are algebraic subgroups P of G,
defined over F (we take the liberty to identify such groups with the group
of F -points), such that the quotient G/P is a complete variety; in partic-
ular, in the natural topology, G/P is compact. For G = GL(N, F ), they
are stabilizers of flags in the vector-space FN , maximal (proper) parabolic
subgroups being the stabilizers of non-zero proper subspaces of FN . If G is
a classical group attached to some form (quadratic, symplectic, hermitian),
then maximal (proper) parabolic subgroups are the stabilizers of non-zero
totally isotropic subspaces.

It will be necessary to have more notation concerning the parabolic sub-
groups of G. There is a minimal parabolic P0 subgroup of G, and it contains
a maximal split torus A0 of G. The group G acts transitively on such pairs
(P0, A0). (For G = GL(N, F ) you can take the subgroup of upper triangu-
lar matrices, and the subgroup of diagonal matrices). The centralizer M0 of
A0 in G is a reductive group, and if N0 is the unipotent radical of P0 (its
maximal normal unipotent subgroup), then P0 is the semi-direct product of
M0 and N0. In the natural topology, M0/A0 is compact, so M0/Z(M0) is
compact too.

Once a pair (P0, A0) has been fixed, the parabolic subgroups of G contain-
ing P0 are called standard. Such a subgroup is of the form P = MN0, where
M is the centralizer of a subtorus A of A0, and P is the semi-direct product
of M (its Levi component) and its unipotent radical N , which is contained
in N0. A general parabolic subgroup of G is a conjugate of a standard one,
and by conjugation, it also has a Levi decomposition P = MN .

2.2 Let P be a parabolic subgroup of G, and P = MN a Levi decom-
position. Let (ρ, W ) be a smooth representation of M ; it can be seen as a
representation of P trivial on N , and we can form the space of functions f
from G to W such that f(hg) = ρ(h)f(g) for h in P and g in G. The group G
acts on that space by left translations, and the space ind(P, G,W ) of smooth
vectors in it gives a smooth representation ind(P, G, ρ) of G which is said
to be parabolically induced from ρ. We get a functor from S(M) to S(G)
which is exact. It is easy to see that if ρ is admissible then so is ind(P, G, ρ)
(exercise: describe the space of J-fixed points in ind(P, G,W ) for a compact
open subgroup J of G).

Theorem: 1) If ρ has finite length, then ind(P, G, ρ) has finite length. If
ρ is finitely generated, then ind(P, G, ρ) is finitely generated.
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2) Assume that ρ is irreducible. There is a non-empty Zariski-open subset
U of the group of unramified characters of M such that ind(P, G, ρ ⊗ χ) is
irreducible for χ in U .

In the reverse direction, let (π, V ) be a smooth representation of G and let
VN = V/V (N) be the maximal quotient space of V on which N acts trivially.
Then P still acts on VN through its Levi quotient M , and the resulting
representation (πN , VN) is a smooth representation of M . We get that way
a functor from S(G) to S(M) called the Jacquet functor (with respect to
P = MN); it is an exact functor, and takes finitely generated representations
to finitely generated representations (use that G/P is compact).

Theorem : If (π, V ) has finite length, then so has (πN , VN); if (π, V ) is
admissible, so is (πN , VN).

Note that πN is not in general irreducible when π is. Let us give the
example of G = GL(2, F ). The only choice for P distinct from G, up to
conjugation, is the Borel subgroup B of upper triangular matrices, and its
Levi subgroup T of diagonal matrices. A smooth irreducible representation
of T is given by a character, that is a pair χ = (χ1, χ2) of characters of F×.
The irreducibility of π = ind(B, G, χ) depends only on the characters χ1, χ2

of F×, and the Jacquet functor of π always has exactly two irreducible sub-
quotients, the character χ as a quotient, and the character (χ2| |F , χ1| |F )
as subrepresentation. Reducibility occurs only in two cases: the first one
is when χ1 = χ2, in which case π has the character χ1 ◦ det as a subrep-
resentation, and the quotient is irreducible (that quotient is written St and
called the Steinberg representation of G when χ is trivial; the quotient in
general is isomorphic to χ1 ◦ det⊗St)). The other case of reducibility occurs
when χ1, χ2 = | |2F ; then there is one infinite-dimensional subrepresentation
isomorphic to χ1⊗| |−1

F ◦det⊗St and, as a quotient, the character χ1| |−1
F ◦det.

The parabolic induction and Jacquet functors are related by Frobenius
reciprocity, which says that if (π, V ) is a smooth representation of G and
(ρ, W ) is a smooth representation of M , then there is a canonical functo-
rial isomorphism of HomG(π, ind(P, G, ρ) to HomM(πN , ρ) : if φ is an M -
morphism of VN into W , we associate to it the G-morphism v �→ fv of V
to ind(P, G,W ), where for g in G fv(g) is the image under ϕ of the class of
π(g)v in VN (exercise: write the reciprocal map).

We say that a smooth representation (π, V ) of G is cuspidal if VN = 0
for all proper parabolic subgroups P = MN of G ( because of some obvious
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transitivity property of parabolic induction and Jacquet functors, the max-
imal proper parabolic subgroups are enough). If π is irreducible, it means
that π is not a subrepresentation of any parabolically induced representation
ind(P, G, ρ) where P is proper and ρ is irreducible (use that πN is finitely
generated). It is also equivalent to π not being a subquotient of such a
parabolically induced representation, but that is slightly harder to prove.
Again by transitivity there is a parabolic subgroup P of G and a cuspidal
irreducible smooth representation ρ of the Levi quotient of P such that π (
assumed irreducible) is a subrepresentation of ind(P, G rho); of course P = G
when ρ is cuspidal. There are some uniqueness properties but they are better
expressed after some normalization, see below 2.6.

2.3 Coefficients.

Cuspidality is tied up with properties of the coefficients. If (π, V ) is a
smooth representation of G, a coefficient of π is a function on G of the form
g �→ λ(π(g)v), where v is in V and λ in V ∨ ; more generally linear com-
binations of such functions are also called coefficients of π. They should
really be thought of as “matrix coefficients” of π, which, we recall, is usually
infinite-dimensional. Coefficients are locally constant functions on G, and
their asymptotics as g goes “to infinity” reveals much about the representa-
tion.

Theorem : A smooth representation of G is cuspidal if and only if all
its coefficients are compactly supported mod. Z(G).

Before sketching the proof of that theorem let us indicate how it implies
that a smooth irreducible representation (π, V ) of G is admissible. Because
parabolic induction preserves admissibility, it is enough to do it when π is
cuspidal. So let J be a compact open subgroup of G and v a non-zero vector
in V . As v obviously generates V as a representation of G, the vectors
eJπ(g)v, g in G, generate V J . We can extract a basis (eJπ(gi)v)i∈I out of
that generating set. Define the linear form λ on V to be trivial on V (J)
and have value 1 on each vi, i in I ; then λ is in V ∨J and the coefficient
f(g) = λ(π(g)v) is non-zero on each gi, i in I. But f is invariant under
J and π has a central character, so the support of f contains Z(G)Jgi for
each i in I; as those sets are disjoint and open in G, and the support of f is
compact mod. Z(G), it follows that I is finite.

We now sketch the proof of the implication in the theorem which we have
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just used, the reverse implication is based on similar principles. We first deal
with the case where G = GL(n, F ), and then indicate how to modify the
proof for the general case.

Let (π, V ) be a smooth cuspidal representation of GL(n, F ). Let v be
in V , λ in V ∨, and form the coefficient f : g �→ λ(π(g)v). By the Cartan
decomposition, it is enough to prove that if d = diag(πa1

F , . . . , πan
F ) (with

decreasing integers ai, and one of the ai − ai+1, 1 � i � n − 1, is large
enough, then f vanishes on KdK, for K = GL(n, OF ). As f has only finitely
many left and right translates under K, it is enough to show that f vanishes
on d (if some ai−ai+1 is large enough). Fix i, 1 � i � n−1, and let P be the
block upper triangular subgroup with diagonal blocks of size i and n− i; let
M be its block diagonal Levi subgroup, and N its unipotent radical, made
out of the matrices with upper right corner x in M(i(n − i), F ). See N as
the union of its compact subgroups Nk, k in Z, where Nk consists of such
matrices with all coefficients of x in P k

F ; write ek for eNk
. There is certainly

an index k such that ekv = 0 (go back to the definition of V (N) which is
V itself since π is cuspidal). There is also an index l such that Nl fixes λ.
If ai − ai+1 is at least l − k then dNkd

−1 is included in Nl and we compute
λ(π(d)v) = λ(elπ(d)v) = λ(π(d)eN ′v) where N ′ = d−1Nd ; since N ′ contains
Nk we have eN ′v = 0 so f(d) = 0.

The case of a general group G requires more notation. Let us retain the
notation of 2.1 above. The maximal split torus A0 acts on the Lie algebra of
N0 via “roots”, i.e. algebraic group morphisms from A0 to Gm. Then there
is a subgroup Γ of G, open and compact mod.Z(G), such that G = ΓA0 + Γ
where A+

0 is made out of elements a in A0 with |α(a)|F � 1 for each root α of
A0 in N0. The roots which are not product of two other roots will be called
simple. If ε is fixed, 0 < ε � 1, then the set of a in A+

0 with |α(a)|F � ε
for all simple roots α is compact modulo Z(G). A simple root α corresponds
to a standard maximal proper parabolic subgroup Pα = MαN0, where Mα

is the centralizer of Ker(α), and the roots of A0 in the unipotent radical Nα

of Pα are sums of α and other roots. We can exhaust Nα by a sequence of
compact open subgroups Nα,k,k in Z, which Nα,k shrinking to 1 as k tends
to infinity. Fixing integers k and l, we have aNα,ka1 included in Nα,� when a
in A0 is such that |α(a)|F is small enough. Then the proof goes as before.

2.4 Construction of cuspidal representations

The only general way to construct smooth irreducible cuspidal represen-
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tations of G is via compact induction, as we explain now.
Let J be an open subgroup of G, containing Z(G) and compact modulo

Z(G). Let (ρ, W ) be a smooth irreducible representation of J (then W
is finite-dimensional). Form the space C[G] ⊗C[J ] W ; it carries a smooth
representation of G, called the representation compactly induced from ρ and
written ind(J,G, ρ). For g in G let ρg be the representation of g−1Jg given
by ρg(x) = ρ(gxg−1).

Theorem : Assume that for each g in G but not in J , there is no non-
zero J ∩ g−1Jg morphism from ρ to ρg. Then ind(J,G, ρ) is irreducible and
cuspidal.

Note that the condition on g in the theorem only depends on the double
class JgJ .

Example. Let G = GL(n, F ), J = GL(n, OF ). Assume that ρ is trivial
on matrices congruent to 1n mod. PF ; then the restriction of ρ to K =
GL(n, OF ) comes via inflation from a representation of the quotient group
GL(n, kF ). Assume that representation is cuspidal i.e., for any integer i
between 1 and n − 1, it has no non-zero fixed vector under the group of
upper triangular unipotent block matrices with diagonal blocks of size i and
n − i. Then the theorem applies.

For G = GL(n, F ) or G = SL(n, F ), Bushnell and Kutzko have given a
list of pairs (J, ρ) as in the theorem - including the example just given - such
that every smooth irreducible representation of G is of the form ind(J,G, ρ)
for some pair (J, ρ) in the list. That is also true for interior forms of GL(n, F )
(Sécherre and Stevens), for classical groups if p is odd (Stevens), and for any
group G provided p is large enough with respect to G (Yu, Kim).

2.5 Normalization of parabolic induction

Parabolic induction has some good properties with respect to unitarity
and taking contragredients, but they are better expressed with a normaliza-
tion, which we now turn to.

Let P = MN be a parabolic subgroup of G. The group M acts by
conjugation on N and also on its Lie algebra Lie(N), and for m in M we
let δP (m) be the absolute value of the determinant of the action of m on
Lie(N). Then δP is an unramified character of M and on ind(P, G, δP ) there
is a non-zero invariant functional, unique up to scalars; we can take it to
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take non-negative values on non-negative functions, and then it is unique
up to multiplication by a positive real number. Choose such a functional
λP . If (ρ, W ) is a smooth representation of M define iGP ρ (the normalized

parabolic induction of ρ) to be ind(P, G, δ
1/2
P ⊗ ρ). Similarly if (π, V ) is a

smooth representation of G, define the normalized Jacquet functor rG
P π to

be δ
−1/2
P ⊗ πN . Then we still have Frobenius reciprocity for the functors iGP

and rG
P .

If (ρ, W ) is a smooth representation of M , we have a pairing between iGP ρ
and iGP ρ∨ given as follows. Let f be in the space of iGP ρ and φ in the space
of iGP ρ∨; then the function g �→ φ(g)(f(g)) is a function in ind(P, G, δP ) and
we can apply our chosen functional λP to it. One verifies that the pairing
thus obtained gives an isomorphism of iGP ρ∨ onto the contragredient of iGP ρ.
Similarly, if ρ is preunitary and <, >M is an M -invariant scalar product on
W then for f , φ in the space of iGP ρ, the function g �→< φ(g), f(g) >M is
in ind(P, G, δP ) and applying λP gives a G-invariant scalar product on iGP ρ,
which is consequently preunitary.

Beware that if (π, V ) is a preunitary smooth representation of G, πN is
not in general preunitary, neither is rG

P ρ. That is already seen in the example
of G = GL(2, F ), which we now restate in normalized terms.

Let χ = (χ1, χ2) be a character of the diagonal subgroup T . Then the
Jacquet functor rG

BiGBρ has only two irreducible subquotients : χ as a quotient
and χw = (χ1, χ2) as a subrepresentation (the extension splits if and only if
χ1 and χ2 are distinct). Of course iGBχ is preunitary whenever χ is - note
also that the contragredient of iGBχ is isomorphic to iGBχ−1 -, but there are
other cases of unitarity, when χ1 = η| |sF , χ2 = η| |sF , with η unitary and
0 < |s| < 1/2 ; in those cases rG

BiGBχ is not preunitary. Note that the cases
where |s| = 1/2 correspond to reducibility situations : for s = 1/2, iGBχ has
η ◦ det as quotient and η ◦ det⊗St as a subrepresentation, and vice-versa for
s = −1/2.

Note : The only isomorphisms between the irreducible smooth representa-
tions of GL(2, F ) just described are between iGBχ and iGP χw, the isomorphism
actually coming, via Frobenius reciprocity, from the fact that rG

BiGBχ is then
the direct sum of χ and χw.

Nevertheless the normalized Jacquet functor possesses some very nice
property with respect to taking contragredients, due to Casselman for ad-
missible smooth representations, and to Bernstein in general. With notation
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as in 2.1 fix a standard parabolic subgroup P = MN ; then there is a unique
parabolic subgroup P̄ such that P̄ ∩ P = M ; it is called opposite to P .
Moreover there is a subset I of the set of simple roots such that M is the
centralizer in G of the intersections of the kernels of the roots α in I.

Let (π, V ) be a smooth representation of G, and use <, > for the natural
pairing between V ∨ and V . Then we have a functorial isomorphism φ of rG

P̄
π∨

onto (rG
P π)∨ ; equivalently there a natural pairing <, > P between rG

P̄
π∨ and

rG
P π which realizes φ, and is given as follows: let v be in V , and write v̄ for

its image in VN ; let λ be in V ∨, and let λ̄ be its image in V ∨
N ; then we have

< λ, π(a)v >=< λ̄, rG
P π(a)v̄ >P for all a in A0 such that |α(a)|F is small

enough for all roots α in I.
Tied up with those considerations is Bernstein’s “second adjunction” the-

orem :

Theorem : For (ρ, W ) a smooth representation of M and (π, V ) a
smooth representation of G, there is a functorial isomorphism of HomG(iGP ρ, π)
onto HomM(ρ, rG

P̄
π).

See below 2.11 for the origin of such a functorial isomorphism. (Exercise :
deduce from the theorem the preceding result about the contragredient of the
Jacquet functor).

2.6 Let us introduce a convenient tool, the Grothendieck group R(G)
of finite length smooth representations of G. It can be seen as the free Z-
module on the set A(G) of isomorphism classes of smooth irreducible smooth
representations of G. A finite length smooth representation π of G has a class
[π] in R(G), sometimes called the semisimplification of π: the coefficient of
an element σ of A(G) in [π] is the number of quotients in a Jordan-Hölder
series for π which are isomorphic to σ. The support of π or [π] is the set of
such σ with non-zero coefficient in [π].

Theorem : Let P = MN and P ′ = M ′N ′ be parabolic subgroups of G.
Let (ρ, W ) be a smooth irreducible cuspidal representation of M , and (ρ′, W ′)
a smooth irreducible cuspidal representation of M ′. Then the following are
equivalent :

(i) The supports of iGP ρ and iGP ′ρ′ intersect.

(ii) iGP ρ and iGP ′ρ′ have the same image in R(G).
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(iii) There is an element g in G such that M ′ = gMg−1 and ρ′ is isomorphic
to ρg.

We say that the pairs (M, ρ) and (M ′, ρ′) are equivalent if condition (iii)
of the theorem is satisfied. If π is an irreducible smooth representation of
G, then there is a pair (M, ρ) as in the theorem, unique up to equivalence,
such that π is in the support of iGP ρ for any parabolic subgroup P with Levi
subgroup M ; in fact it can be proved that given M it is always possible
to choose the parabolic subgroup P with Levi subgroup M so that π is a
subrepresentation of iGP ρ. The equivalence class of the pair (M, ρ) is called
the supercuspidal support of π. If s is such an equivalence class, we write
Ss(G) for the full subcategory of S(G) made out of finite length smooth
representations of G with all irreducible subquotients having supercuspidal
support s. Then the category Sfl(G) of finite length smooth representations
of G is the direct product, over all equivalence classes s, of the subcategories
Ss(G).

More general, but more difficult to prove, is the following decomposition
of the entire category S(G), due to Bernstein. Say that two pairs (M, ρ)
and (M ′, ρ′) as above are inertially equivalent if there is an element g in
G and an unramified character χ of M such that the pairs (M, χ ⊗ ρ) and
(M ′, ρ′) are equivalent. If s is the inertial equivalence of (M, ρ), write S(s, G)
for the full subcategory of S(G) made out of those smooth representations
of G with all their irreducible subquotients having supercuspidal support
(M, χ⊗ρ) for some unramified character χ of M . Then the category S(G) is
the direct product of its subcategories S(s, G), where s runs through inertial
equivalence classes.

2.7 Unramified principal series

Let us examine a particular case of parabolic induction. Let us start
with a minimal parabolic P0 with Levi subgroup M0. If xhi is an unramified
character of M0 then iGP0

χ is not always irreducible but generically so.
It can be shown that there is a particular open compact subgroup I of G

such that the following are equivalent, for a smooth irreducible representation
(π, V ) of g :

(i) V I is non-zero.
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(ii) The supercuspidal support of π is (the class of) (M0, χ), for some un-
ramified character χ of M0.

Note that we can replace I by any conjugate in G in condition (i), and
that χ in condition (ii) is well-defined up to the action of the normalizer of
M0 in G. For G = GL(n, F ), we can take I to be the Iwahori subgroup,
made out of matrices in K = GL(n, OF ) which are upper triangular modulo
PF .

That relation between unramified principal series iGP0
χ and fixed points

under compact open subgroups of G goes even further. There is a choice of
maximal compact subgroup K of G, called special, such that the following
holds for such a special group K :

(i) For each unramified character χ of M0, the representation iGP0
χ has a

unique irreducible subquotient V (χ) with non-zero vectors fixed by K.

(ii) The map χ �→ V (χ) induces a surjective map from Xnr(M0) onto the
set of isomorphism classes of irreducible smooth representations of G
with non-zero vectors fixed under K.

(iii) V (χ) and V (χ′) are equal if and only if χ and χ′ are conjugate under
the action of the normalizer NG(M0) of M0 in G∗.

It is not so easy to give a full definition of a special maximal compact
subgrou K. For G = GL(n, F ) they are the conjugates of GL(n, OF ). Rele-
vant properties are that K ∩M0 is the (unique) maximal compact subgroup
M1

0 of M0, that G = KP0 (Iwasawa decomposition), and that K contains a
set of representatives for NG(M0)/M0. In general, the group G will have sev-
eral conjugacy classes of maximal compact subgroups (investigate the cases
of SL(2, F ) and PGL(2, F )), and several of those conjugacy classes might
consist of special subgroups : all for SL(2, F ) and only the conjugacy class
of PGL(2, OF ) for PGL(2, F ). If the group G is unramified, i.e. its minimal
parabolic subgroup M0 is a torus which splits over an unramified extension
of F , then the maximal compact subgroups of maximal volume are special,
indeed they are called hyperspecial.

Note: Let G be a reductive algebraic group defined over a number field
E. View G as a closed subgroup of some GL(n); for a finite place v of E
outside a finite set S, the group G over the completion Ev is unramified, and
Kv = G(Ev) ∩ GL(n, OEv) is a hyperspecial maximal compact subgroup of
G(Ev). The same result is valid for a global function field E.
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Interlude: We have just mentioned the volume of compact open sub-
groups of G. If J and J ′ are two such subgroups of G, then J ∩ J ′ is of finite
index in both J and J ′, and we can say that J has bigger volume than J ′

if the corresponding index is bigger for J . Another possibility is to intro-
duce an actual measure of the volumes. Let C∞

c (G) be the space of locally
constant functions from G to C with compact support. It is easily seen that
there is a non-zero linear functional on that space which is invariant under
the left translations by elements of G, and that such a functional is unique
up to scalar ; it can be chosen to take non-negative values on functions with
non-negative values, and then it is unique up to multiplication by a positive
real number. Such a functional is called a (left) Haar measure on G ; as
G is reductive it can be proved that it is also invariant under the action of
elements of G by right translations, so is also a right Haar measure. If X is
an open and compact subset of G then its characteristic function is in the
space C∞

c (G), and its Haar measure is the volume of X. If J is a compact
open subgroup of G and J ′′ an open subgroup of J , then the volume of J
is card(J/J ′′) times the volume of J ′′ (by G-invariance), so having bigger
volume has the same meaning as before.

2.8 The Satake isomorphism

We keep the situation and notation of 2.7, and explain the classification
of unramified principal series in a different way.

Recall that unramified characters of M0 correspond to isomorphism classes
of simple modules over the Hecke algebra H(M0, M

1
0 ) - which in this case is

the group algebra of M0, M
1
0 with complex coefficients. Note that the nor-

malizer NG(M0) of M0 in G acts on H(M0, M
1
0 ), and on its simple modules,

via its quotient W by M0.
On the other hand, smooth irreducible representations of G with non-

zero K-fixed vectors correspond to simple modules over the Hecke algebra
H(G, K). The map χ �→ V (χ) of 2.7 is in fact implemented via an algebra
homomorphism S from H(G, K) to H(M0, M

1
0 ), as we now explain.

Let f be an element of H(G, K) ; as it is a linear combination of double
classes in K\G/K, it can be seen as a function on G, bi-invariant under K and
with compact support. For a fixed m in M0, the function fm : n �→ f(mn) on
N0 is locally constant with compact support. Choose on C∞

c (N0) the Haar
measure lambda giving volume 1 to N0 ∩ K. Then we define a function Sf
on M0 by Sf(m) = δP (m)1/2λ(fm). The main results, due to Satake, are :
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(i) The map S gives and algebra isomorphism of H(G, K) onto the algebra
of W -invariant elements in H(M0, M

1
0 ).

(ii) Let χ be an unramified character of M0. If we view C as a simple
module over H(M0, M

1
0 ) via χ, then we obtain via the map S a simple

module over H(G, K), which is associated to V (χ).

In the case where G = GL(n, F ), K = GL(n, OF ), with M0 being
the diagonal subgroup, H(M0, M

1
0 ) identifies with the algebra of finite type

C[X1X
−1
1 , . . . , Xn, X

−1
n ], W is the symmetric group Sn permuting the diago-

nal entries and the variables Xi, and we recover the description of H(G, K)
given in 1.6.

2.9 Let us exploit further the parametrization of unramified principal
series given by 2.8, which is important for global purposes. Indeed let E be
a global field and G a reductive group over E. Let π be an automorphic
cuspidal representation of G(AE) ; then π appears as a (generalized) tensor
product, over the places v of E, of representations πv, where for v finite
πv is a smooth irreducible representation of Gv = G(Ev). As mentioned
above, outside a finite set of places of E, Gv has a natural hyperspecial
maximal compact subgroup Kv ; it comes from the definition of automorphic
representations that outside a possibly bigger set of places of E, πv has a
non-zero vector fixed by Kv, so is parametrized by an unramified character
of the minimal parabolic subgroup.

Let us revert back to the local case, and our usual notation. Fix a
special maximal compact subgroup K of G. As we have seen, irreducible
smooth representations of G with non-zero K-fixed vectors are parametrized
by Xnr(M0), up to the action of W = NG(M0)/M0.

Assume first that G is split, i.e. M0 is a split torus ; we can the introduce a
complex reductive group Ĝ called the dual group of G, with a maximal (split)
torus T̂ , in such a way that the group of characters X(T̂ ) of T̂ is identified
with the group of cocharacters Y (M0) of M0, the group of cocharacters Y (T̂ )
of T̂ with the group of characters X(M0) of M0, and the Weyl group W with
the group NĜ(T̂ )/T̂ . Then Xnr(M0), seen as X(M0) ⊗ C×, identifies with

T̂ (C) = Y (T̂ ) ⊗ C×, with the action of W , so that the W -orbits in Xnr(M0)
correspond to W orbits in T̂ , and those are the same as semisimple conjugacy
classes in Ĝ. So in this split case, smooth irreducible representations with
non-zero K-fixed vectors are parametrized, up to isomorphism, by semisimple
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conjugacy classes in Ĝ. For G = GL(n), SL(n), PGL(n), SO(2n), SO(2n+1),
Sp(2n), we have Ĝ = GL(n, C), PGL(n, C), SL(n, C), SO(2n, C), Sp(2N, C),
SO(2n + 1, C) respectively.

If G is not split, but is unramified, then M0 is a torus split over the
maximal unramified extension Fnr of F , and we can then still concoct a
group Ĝ, by using G over Fnr, and use the action of the Galois group of
Fnr/F to construct a semidirect product LG of Ĝ with that Galois group, or
rather its variant, the Weil group W (Fnr/F ) of Fnr/F , which is simply the
free abelian group generated by the Frobenius automorphism. In that case
unramified characters of M0, up to the action of W , correspond to conjugacy
classes of group morphisms from W (Fnr/F ) to LG, which induce identity
when projecting to W (Fnr/F ) - of course such morphisms are characterized
by the image of the Frobenius automorphims, so that in the split case we
recover the facts in the preceding discussion. As an example, when G is a
unitary group with respect to a Hermitian form on a vector of dimension n
over a quadratic unramified extension E of F , the group Ĝ is GL(n, C) and
W (Fnr/F ) acts on it through its quotient Gal(E/F ), the non-trivial element
acting by g �→ Atg−1A−1, where A is the matrix with 1 on the antidiagonal
and 0 elsewhere.

Remark: Let G = SL(2, F ) ; its diagonal torus T has a unique or-
der 2 unramified character ω, and the parabolically induced representation
iGBω (where B is the upper trianguar subgroup), is the direct sum of two
irreducible preunitary representations. Those two representations are not
isomorphic to one another, and they can be distinguished by their fixed
points under (hyper)special maximal compact subgroups: there are two con-
jugacy classes of such, K = SL(2, OF ) has non-zero fixed points in one of
the components π1, not in the other π2, and conversely the other group K ′,
conjugate (in GL(2, F )) to K by the antidiagonal matrix with antidiagonal
coefficients 1 and a uniformizer of F , has non-zero fixed points in π2 but not
in π1. Both π1 and π2 are parametrized by the homomorphism of W (Fnr/F )
to LG = PGL(2, C) × W (Fnr/F ) which send the Frobenius automorphism
to the element of LG with first component the image in PGL(2, C) of the
diagonal matrix diag(1,−1): those two representations are said to be in the
same L-packet.

2.10 To classify all irreducible smooth representations of a general reduc-
tive group G over F is more complicated. Fixing a separable algebraic closure
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F̄ of F , we can form the Weil group WF = W (F̄ /F ) consisting of those el-
ements in the Galois group acting on the residue field of F̄ as an integral
power of Frobenius. There is an L-group LG which is a semi-direct product
of Ĝ with WF ( in the unramified case of 2.8, this is obtained by pulling
back the L-group of 2.9 via the projection of W (F̄ /F ) onto W (Fnr/F )),
and L-packets of (isomorphism classes of) irreducible smooth representations
of Ĝ are parametrized by (certain) continuous group homomorphisms from
WF ×SU(2, C) to LG such that the composite homomorphism to WF restricts
to the identity on WF , conjugate group homomorphisms parametrizing the
same class of representation.

For G = GL(n, F ) the L-group is simply the direct product of GL(n, C)
and WF , the L-packets are singletons, and the parametrization is a one-
to-one correspondence between semisimple continuous homomorphisms from
WF ×SU(2) to GL(n, C), up to conjugation by GL(n, C) (or, which amounts
to the same thing, continuous semisimple complex representations of WF ×
SU(2) of dimension n, up to isomorphism), and isomorphism classes of irre-
ducible smooth representations of GL(n, F ). The irreducible smooth cuspidal
representations of GL(n, F ) correspond to the irrreducible continuous repre-
sentations of WF × SU(2) of dimension n which are trivial on SU(2).

For G = GL(1, F ) the correspondence is between characters of WF and
characters of G = F× : that correspondence is given by class-field theory.
For G = GL(n, F ), n > 1, the correspondence is a theorem (due to M. Harris
and R. Taylor), and there is a complete characterization via invariants called
the L - and ε- factors - more about that below in chapter 4. For a general
group G, the L-packets are not singletons in general, and the parametrization
is still conjectural (a conjecture formulated by Langlands) in most cases,
except, of course, that for unramified groups G and unramified principal
series representations we have the correspondence in 2.8.

Remark: the appearance of SU(2, C) in the conjecture might be surpris-
ing. In fact that group occurs only via its continuous complex representa-
tions, the point being that for each positive integer there is an irreducible
continuous representation of that dimension, and only one up to isomorphism.
So the literature offers other versions, where for example SU(2) is replaced
with SL(2, C), and we consider only representations which are analytic on
SL(2, C).

Beware that switching from one model to another involves some normal-
ization. A convenient version for G = GL(n, F ) is that we are looking at

21



pairs (σ,N), where σ is a continuous semisimple representation of WF over a
complex vector space, say V , of dimension n, and N is a nilpotent endomor-
phism of V such that for g in WF projecting to a Frobenius endomorphism
in W (Fnr/F ) we have σ(g)Nσ(g−1) = qF N . Such pairs are taken only up to
isomorphisms, with the obvious notion of isomorphisms.

For G = GL(2, F ) for example, if χ = (χ1, χ2) is a character of the diago-
nal subgroup T , the parabolically induced representation iGBχ, if irreducible,
corresponds to the pair (σ, 0), where σ is the direct sum of the two charac-
ters of WF corresponding to χ1 and χ2 via class field theory. In the reducible
cases, the nilpotent part of the pair is trivial for characters of GL(2, F ),
non-trivial for the infinite-dimensional component : for example the trivial
character of GL(2, F ) corresponds to (σ1, 0), where σ1 is the direct sum of

the two characters of WF corresponding to | |−1/2
F and | |1/2

F , whereas the
Steinberg representation St corresponds to the pair (σ1, N), with N a non
trivial nilpotent.

The version with such pairs (σ, N) is in fact more natural. It stems from
the fact that the natural representations of WF are not complex represen-
tations, but representations on vector spaces over l-adic fields, coming from
etale cohomology. When l is different from p at least, it is possible to translate
such l-adic representations into complex ones, at the cost of introducing the
nilpotent operator N (see for example the corresponding chapter in reference
(2)).

2.11 The geometric lemma

To conclude this long chapter, let us explain an important argument in
the proof of the Theorem in 2.6, which will crop up again in chapter 3. Let
us revert to the situation of 2.6. Investigating the parabolically induced
representations iGP ρ means in particular knowing when two such representa-
tions are isomorphic, so that we want to understand HomG(iGP ′ρ′,iGP ρ), which
by Frobenius reciprocity is HomM(rG

P iGP ′ρ′, ρ). In that case the “geometric
lemma” gives a natural filtration of rG

P ′iGP ρ, for any smooth representation ρ
of M , and identifies the successive quotients of the filtration.

The first step is to restrict to P the representation iGP ′ρ ; clearly we are lead
to considering double cosets P ′gP . Such cosets are finite in number, and one
can choose an ordering X(1), . . . , X(r) such that the union of X(1), . . . , X(i)
is open in the union of X(1), . . . , X(i + 1), for i = 1, . . . , r − 1. For example
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for G = GL(2, F ), and P = B the upper triangular subgroup there are only

two double cosets X(1) = BwB and X(2) = B with w =

(
0 1
−1 0

)
. The

space V of iGP ′ρ can be filtered by P -invariant subspaces V (i) where V (i) is
made out of the functions in V with support in the union of X(1), . . . , X(i).
The quotient space V (i)/V (i + 1) (for i = 1, . . . , r), putting V (0) = 0) can
be identified with a space W (i) of functions on X(i) with values in the space
Y of ρ′, with the obvious action of P . Write X(i) = P ′gP for some g in G,

and put Q = g−1P ′g ∩ P ; defining σ(q) = δ
−1/2
P ρ(gqg−1) for q in Q, we can

identify W (i) with the space of functions f from P to Y , tranforming along σ
under left translations by elements of Q, and with compact support modulo
Q, that space carrying a representation ind(Q, P, σ) under the action of P
by right translations.

The second step is to identify the Jacquet functor of that representation
of P . We can choose the coset representative g in the coset P ′gP so that :

(i) the subgroup QN of P is a parabolic subgroup of G, with Levi subgroup
MQ = g−1P ′g ∩ M ;

(ii) g−1P ′g∩M is a parabolic subgroup of M with unipotent radical g−1N ′g∩
M and Levi subgroup MQ ;

(iii) M ′ ∩ gPg−1 is a parabolic subgroup of M ′.

One can then apply the following lemma :

Lemma: Let P be a locally profinite group, Q a closed subgroup of P ,
N an invariant closed subgroup of G which is the union of its compact sub-
groups, and assume QN is closed in G. Then there is a specific unramified
character δ of Q/Q ∩ N such that for each smooth representation (σ, U) of
Q we have a natural isomorphism of the N-coinvariants of ind(Q, P, σ) with
ind(QN/N, P/N, δσQ∩N).

Here the representation σQ∩N is obtained from σ by taking coinvariants
under Q ∩ N , it is a representation of Q trivial on Q ∩ N , which we see as
a representation of QN/N trivial on N ; the induced representation has the
usual meaning. The character δ is obtained by looking at the action of Q by
conjugation on Haar measures on N and Q ∩ N .
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Keeping careful track of the different characters δ , one checks that
rG
P W (i) identifies with iMg−1P ′g∩M ◦ Adg ◦ rM ′

gPg−1∩Mσ.
As a first application take P = P ′ and take for ρ = ρ′ a smooth cuspidal

representation of M . Then of course rM
M∩gPg−1ρ is zero unless gPg−1 con-

tains M . A consequence of such remarks is that rG
P iGP ρ has a filtration with

quotients Ad(g) ◦ ρ, where g normalizes M .
As a second application replace P ,P ′ by P̄ and P , where P̄ is the parabolic

subgroup opposite to P with respect to M . Then P̄P is open in G, we can
take it to be X(1) in the notation above, and we get that rG

P̄
iGP ρ contains ρ

naturally as a subrepresentation, for any smooth representation ρ of M . If
π is a smooth representation of G, applying the functor rG

P̄
gives a natural

homomorphism of HomG(iGP ρ, π) into HomM(rG
P̄
iGP ρ, rG

P̄
π), and composing

with the inclusion of ρ just mentioned, we get a natural homomorphism from
HomG(iGP ρ, π) into HomM(ρ, rG

P̄
π). It is an isomorphism (not easy to prove!)

which realizes the adjointness of iGP and rG
P̄
.

Chapter 3 The Langlands classification

3.1 Asymptotics of coefficients

As we have seen, among the irreducible smooth representations of G, the
cuspidal representations are characterized by the fact that their coefficients
have compact support mod.Z(G).

More generally the asymptotics of the coefficients of an irreducible smooth
representation π of G are governed by the normalized Jacquet functors rG

P π
when P = MN runs through parabolic subgroups of G - by conjugation we
can restrict to standard parabolic subgroups.

More precisely, if A is a maximal split torus in the centre of M (we
can take A contained in A0 if M contains M0) the finite length representa-
tion rG

P π of M is the direct sum over characters χ of A of the generalized
eigenspaces rG

P π[χ], where that space is the intersection of the kernels of
(rG

P π(a) − χ(a))kk for k large enough, a running through A. Only a finite
number of those generalized eigenspaces are non-zero, those for which χ is
the central character of some irreducible subrepresentation of rG

P π ; we call
them the central characters of rG

P π. They control the asymptotics of the
coefficients of π.
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3.2 Discrete series

Apart from cuspidal representations, the most important notion is that
of square integrable (smooth irreducible) representations, also called discrete
series representations of G. A smooth irreducible representation π of G is
said to be square integrable if :

(i) its central character is unitary ;

(ii) the absolute value |f | of any coefficient f of π is square integrable on
G/Z(G), with respect to a Haar measure on that quotient - it does not
matter which.

A discrete series representation (π, V ) of G is preunitary. Indeed take
a non-trivial functional λ in V ∨ ; then the map which to a vector v in V
associates the function φv : g �→ λ(π(g)v) is a G-embedding of V into the
space of functions on G transforming via ωπ under tranlations by Z(G) and
the absolute value of which is square integrable on G/Z(G). On that space
there is a natural scalar product which is G-invariant :

< φ,ψ >=

∫
G/Z(G)

φ̄(g)ψ(g)dg

If π is cuspidal, it is a discrete series as soon as ωπ is unitary.
We say that π is essentialy square integrable if χ⊗ π is square integrable

for some character χ of G (which we can take to have real positive values).
If π is cuspidal, it is essentially square integrable. For a general group G, it
is not so easy to construct the remaining discrete series; see below for the
case of GL(n, F ).

A criterion for square integrability :

A smooth irreducible representation π of G is square integrable if and
only if :

(i) its central character is unitary ;

(ii) for each parabolic subgroup P = MN of G, all central characters χ of
rG
P π verify |χ(a)|F < 1 whenever a in A contracts N .
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Here we say that a contracts N if for each root α of A in Lie(N) we
have |α(a)|F < 1. We can restrict to standard parabolic subgroups of G if
we want.

3.3 Tempered representations

If we weaken condition (ii) above to a large inequality, we get the notion
of tempered representation. In fact it can be shown that a smooth irreducible
representation of G is tempered if and only if all its coefficients have ”mod-
erate growth”, meaning they are bounded by a multiple of a natural ”size
function” on G.

For us the relevant properties are the following :

(i) a smooth irreducible tempered representation is preunitary.

(ii) If P = MN is a parabolic subgroup of G and ρ a smooth irreducible
tempered representation of M , then the preunitary representation iGP ρ
is the orthogonal direct sum of finitely many smooth irreducible tem-
pered representations of G.

(iii) Any smooth irreducible tempered representation π of G is a subrepre-
sentation of iGP ρ where ρ is an irreducible smooth tempered representa-
tion of M ; the Levi subgroup M is determined by π up to conjugation
in G, and once M is fixed, ρ is determined up to isomorphism.

The way to prove that is to define a ”weak” Jacquet functor (rG
P )0, cutting

only the part of rG
P where the central characters have absolute value 1, and

use a variant of the geometric lemma.

3.4 The Langlands classification

Every smooth irreducible representation of G can be obtained form tem-
pered representations of Levi subgroups, in the following manner.

Here it is convenient to fix a minimal parabolic subgroup P0 = M0N0 of
G with A0 being the maximal split torus in the centre of M0. To each simple
root α of A0 in Lie(N0) is attached a coroot α∨ which is an algebraic group
morphism of F× into A0.

Let P = MN be a standard parabolic subgroup containing P0, with Levi
subgroup M containig M0. A character χ of M with positive real values is
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said to be positive (with respect to N) if for every simple root α of A0 in
Lie(N) we have |χ ◦ α∨(πF )|F < 1. Let ρ be a smooth irreducible tempered
representation of M , and χ a character of M with positive real values which
is positive with respect to N . Then iGP χ⊗ρ has a unique irreducible quotient
J(P, χ, ρ).

Any smooth irreducible representation of G is isomorphic to such a quo-
tient, where P , χ and the isomorphism class of ρ are determined.

3.5 For G = GL(n, F ), all discrete series can be constructed from cuspidal
representations in the following manner. Let r be a divisor of n,n = rs, and
let ρ be a smooth irreducible cuspidal representation of GL(s, F ). Form
the representation ρ(r) = ρ ⊗ ρ| |F ⊗ · · · ⊗ ρ| |r−1

F of GL(s, F )r, seen as a
block diagonal subgroup M of GL(n, F ). Form the parabolically induced
representation iGP ρ(r), where P is the upper triangular parabolic subgroup of
G with Levi subgroup M . It has a unique irreducible quotient L(ρ, r) which

is essentially square integrable, and square integrable if and only if ωρ||(r−1)/2
F

is unitary. A discrete series representation of G is of the form L(ρ, r) where
the integer r is unique and ρ is unique up to isomorphism. For G = GL(2, F ),

L(| |−1/2
F , 2) is the Steinberg representation.

Always for G = GL(n, F ), a smooth irreducible square integrable repre-
sentation of a Levi subgroup of G induces irreducibly to G, so the classifica-
tion of tempered representations of G is obvious.

To explicit the Langlands clssification, fix the upper triangular subgroup
P0 as minimal parabolic subgroup, with the diagonal subgroup M0 = A0 as
Levi subgroup. Let P = MN be a standard parabolic subgroup of G ; then M
is a product of groups GL(n1, F ), . . . , GL(nt, F ) as blocks along the diagonal.
A positive real valued character χ of M is of the form (m1, . . . , mt) �→ χ1 ◦
det(m1) · · ·χt ◦ det(mt), and χ is positive with respect to N if and only if
χi/χi+1(πF ) < 1 for i = 1, . . . , t − 1.

For G = GL(2, F ), the trivial representation of G is the unique quotient
of iGBχ where χ is the character (a, b) �→ |a/b|1/2.

A different way of expressing the classification for GL(n, F ) has been ob-
tained by Zelevinsky, an approach which actually gives more precise results.
A segment is a pair (ρ, r) where ρ is an isomorphism class of smooth irre-
ducible cuspidal representation of some GL(s, F ), and rs is its length. If (ρ, r)
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is a segment and (ρ′, r′) another segment, say that the first one precedes the
second if ρ′ = ρ||tF , where t is a positive integer verifying r − r′ < t � r + 1.

Let (ρ1, r1), · · · , (ρu, ru) be segments of length l1, . . . , lu of sum n, and
such that for 1 � i < j � u, (ρi, ri) does not precede (ρj, rj). Let ρ be
the upper triangular subgroup of G with diagonal blocks of size l1 · · · , lu,
forming the Levi subgroup M . Form iGP ρ where ρ is the tensor product
L(ρ1, r1) ⊗ · · · ⊗ L(ρu, ru).

Then it has a unique irreducible quotient written L((ρ1, r1), · · · (ρu, ru)).
Every smooth irreducible representation π of G is of that form and the seg-
ments are determined by π up to ordering.

Chapter 4 Odds and ends

4.1 The Hecke algebra

Let us choose a Haar measure dg on G, which we see as integration
on G and write f �→ ∫

f(g)dg. On the space of locally constant complex
functions on G with compact support we then have the convolution product
(f, φ) �→ f × φ given by f × φ(h) =

∫
f(hg−1)φ(g)dg for h in G. That gives

an associative algebra written H(G) and called the Hecke algebra of G (with
respect to dg).

To a compact open subgroup J of G is attached an idempotent eJ in
H(G) which is the characteristic function of J divided by its volume. For
f in H(G) we have f × eJ = f if and only if f is invariant under right
translations by elements of J , and similarly on the left. Thus eJH(G)eJ is
a subalgebra of H(G) with unit eJ and consists of functions which are bi-
invariant under J . One verifies that the map which to a double coset JgJ
associates its characteristic function divided by the volume of J induces an
algebra isomorphism of H(G, J) onto eJH(G)eJ .

Let V be a complex vector space. The Haar measure dg induces a linear
map from C∞

c (G) ⊗ V to V ; identifying that tensor product with the space
C∞

c (G; V ) of locally constant maps from G to V with compact support, we
get an integration map f �→ ∫

f(g)dg on C∞
c (G; V ).

Let (π, V ) be a smooth representation of G. Let f be in H(G) and v in
V . Then the map v �→ f(g)π(g)v is locally constant with compact support;
integrating, we get a map (f, v) �→ π(f)v =

∫
f(g)π(g)vdg which makes

V into a H(G)-module - we write π(f) for the operator v �→ π(f)v. That
module is non-degenerate in the sense that for every vector v in V there is a
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compact open subgrop J of G such that eJv = v.
It is easily seen that the previous procedure yields an isomorphism from

the category S(G) of smooth representations of G onto the category of non-
degenerate H(G)-modules.

Remark : if J is a compact open subgroup of G, the idempotent eJ acts
on the space V of a smooth representation of G as the canonical J-invariant
projector with image V J . The subalgebra eJH(G)eJ of H(G) stabilizes V J

and via the isomorphism of H(G, J) onto eJH(G)eJ we recover the action of
H(G, J).

4.2 Traces

Let (π, V ) be an admissible representation of G. If f in H(G) is bi-
invariant under a compact open subgroup J , the operator π(f) on V takes
values in the finite-dimensional space V J , hence its trace is well-defined.The
linear form trπ : f �→ tr(π(f)) is an invariant distribution on G that is a
linear form on H(G) which is invariant under the action of G on H(G) by
conjugation.

If we have a family (πi, Vi) of smooth irreducible representations of G;
having distinct isomorphism classes, then, for a given compact open subgroup
J of G, the spaces V J

i which are non-zero give simple modules over H(G, J)
with distinct isomorphism classes. We deduce that the linear forms trπi are
linearly independent.

4.3 Characters

There is a way to define the character of an irreducible smooth represen-
tation of G as a class function on G as is done for finite groups. But because
smooth irreducible representations of G are usually infinite-dimensional, such
character-functions are not defined on the whole of G. We let Greg be the
set of regular semisimple elements in G, i.e. semisimple elements with cen-
tralizer of minimal dimension: for GL(n, F ) they are the elements with n
distinct eigenvalues in an algebraic closure. The set Greg is open and dense
in G, even Zariski-open.

Theorem (Harish-Chandra): let π be an irreducible smooth representa-
tion of G. Then there exists a unique locally constant function χπ on Greg

such that for f in H(G) we have trπ(f) =
∫

Greg
χπ(g)f(g)dg whenever f has
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support in Greg.

Note that for such an f the integral makes sense since the support of f
is compact in Greg : we simply extend the integrand by 0 outside Greg. Also
by uniqueness χπ is clearly a class function on Greg, and it does not depend
on the choice of the Haar measure dg.

When F has characteristic zero, the character function has nice proper-
ties :

Theorem (Harish-Chandra): Assume that the field F has characteristic
zero. Let π be a smooth irreducible representation of G. then χπ is a locally
L1 function on G and for any f in H(G)we have trπ(f) =

∫
G

χπ(g)f(g)dg.

Corollary : Let πi be inequivalent smooth irreducible representations
of G. Then the character-functions χπi

are linearly independent.

The proof involves control of χπ(g) as g approaches G−Greg. That anal-
ysis is more difficult in positive characteristic because of possiby inseparable
elements. But the theorem is still true for G = GL(n, F ) in positive char-
acteristic (Lemaire), which also gives the corollary (due to Rodier in that
case).

4.4 The Jacquet-Langlands correspondence

Characters, or variants, are very important in the formulation of natural
relations between representations of different reductive groups over F , an
area known as Langlands functoriality. The first example is the “Jacquet-
Langlands” correspondence between G = GL(rs, F ) and G′ = GL(r,D)
where D is a central division algebra over F with dimension s2.

Theorem : There is a unique bijection π �→ π′ between isomorphism
classes of discrete series representations of G and G′, such that χπ(g) =
(−1)n−rχπ′(g′) whenever g in Greg and g′ in G′

reg have the same characteristic
polynomial.

The correspondence for general r and s is due to Deligne, Kazhdan and
Vignéras in characteristic zero, and to Badulescu in positive characteristic.
It is obtained by global means. One chooses a global field K with a place v
such that Kv = F , and a global division algebra B isomorphic to M(r,D)
at the place v. Then for almost all places w of K, Bw is isomorphic to
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M(rs, Kw). Using the trace formula, one sets up a correspondence Π′ �→ Π
between automorphic discrete representations of B∗ and GL(rs) over the
adele ring of K, such that, at almost all places w of K, where the two groups
are isomorphic, the representations Π′

w and Πw are isomorphic too. The local
correspondence at v (that is, over F ) is obtained by relating Πv and Π′

v.

4.5 Whittaker models

Let us assume that G is a quasi-split reductive group over F , i.e. that the
Levi subgroup M0 of a minimal parabolic subgroup P0 is a torus. A smooth
character of the unipotent radical N0 of P0 is non-degenerate if its stabilizer
in P0 is Z(G)N0. For G = GL(n, F ) and P0 the upper triangular subgroup,
the non-degenerate characters of N0 are those of the form (nij) �→ Σθi(nii+1)
where the sum runs form 1 to n− 1 and θi is a smooth non-trivial character
of F . In that case they are all conjugate to each other under P0.

Fix a non-degenerate smooth character Θ of N0. let (π, V ) be a smooth
representation of G. A functional λ on V is a Whittaker functional for π
(with respect to θ) if we have λ(π(n)v) = θ(n)λ(v) for v in V , n in N0. In
other words λ is an N0-morphism of π into the representation θ of N0 on C.

Theorem: Let π be a smooth irreducible representation of G. Then the
space of Whittaker functionals for π has dimension 0 or 1.

We say that π is θ-generic if the dimension is 1. Of course it is then
θ′-generic for any conjugate of θ in P0, so for G = GL(n, F ) we simply
say generic. Moreover for G = GL(n, F ) any smooth irreducible cuspidal
representation is generic. Even more important, local components of auto-
morphic cuspidal global representations of GL(n) are generic. In terms of
the Zelevinsky classification in Chapter 3, the classes of smooth irreducible
generic representations of GL(n, F ) are the L((ρ1, n1), . . . , (ρu, nu)), where
none of the (ρi, ni) precedes any other - in which case the quotient L is
actually the full induced representation.

Returning to a general G, if λ is a Whittaker functional on a smooth
representation π of G, we get a G-equivariant map from V to the space
C∞(G, θ) of locally constant functions f on G such that f(ng) = θ(n)f(g)
for n in N0 and g in G. If lambda is non-zero and π is irreducible it is an
embedding of π into a concrete space of functions, which by the theorem is
uniquely determined by π. That space is called the Whittaker model of π
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(with repect to θ).

4.6 L- and ε-factors

It is often possible to use the Whittaker model from a smooth irreducible
generic representation of G to construct invariants of the representation π.
Let us simply give the important example of general linear groups.

Fix a non-trivial character ψ of F , which gives a non-degenerate char-
acter θ for the upper triangular unipotent subgroup of any GL(n, F ) (take
all θi to be ψ in the above formula). Let π1 be a smooth irreducible generic
representation of GL(n1, F ), and π2 be a smooth irreducible generic repre-
sentation of GL(n2, F ). Then using the Whittaker models for π1 and π2 it is
possible to concoct invariants L(π1×π2, s) and ε(π1×π2, s, ψ) which enter the
formulation of the Langlands correspondence. Actually there are two con-
structions of such invariants, the Rankin-Selberg convolution appproach due
to Jacquet, Piatetski-Shapiro and Shalika, and the local coefficient approach
of Shahidi, but Shahidi proved they give the same formulas. The L-function
is of the form P (q−s

F )−1 where P is a polynomial with complex coefficients
and value 1 at 0. When π1 and π2 are cuspidal it is very easy to compute,
as it is the product of (1 − χ(πF )q−s

F )−1 where χ runs through unramified
characters of F× such that χ ◦ det⊗π∨

1 is isomorphic to π2. The ε-factor is
more subtle : it is a monomial in q−s

F whose value at 0 is related to Gauss
sums. One version of the Langlands correspondence for GL(n, F ) proved by
Harris and Taylor via the geometry of Shimura varieties is the following :

Theorem: There is a unique family of maps πn, for positive integers n,
from the set G0

F (n) of isomorphism classes of irreducible smooth represen-
tations of WF of dimension n, to the set of isomorphism classes of smooth
irreducible cuspidal repesentations of GL(n, F ), such that :

(i) for n = 1 π1 is given by class field theory ;

(ii) for σ1 in G0
G(n1) and σ2 in G0

F (n2) we have
(L) L(πn1(σ1) × πn2(σ2), s) = L(σ1 ⊗ σ2, s) and
(ε) ε(πn1(σ1) × πn2(σ2), s, ψ) = ε(σ1 ⊗ σ2, s, ψ) for all non-trivial char-
acters ψ of F .

The maps πn are bijections.
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The L-factor on the right is the Artin L-factor, whereas the ε-factor on
the right is the one defined by Deligne and Langlands : for n = 1 they both
originate in Tate’s thesis, but ironically the two sides of the inequality are
very different generalizatons of Tate’s thesis, which turn out to be the same
after all ! (see Rajan’s lectures for the summer school).
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