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COHOMOLOGY OF SHIMURA VARIETIES

T. N. VENKATARAMANA

Abstract. We review very briefly, the Hodge- de Rham theorem
on computing cohomology of manifolds via harmonic differential
forms and apply it to the case of compact locally symmetric man-
ifolds to obtain the Matsushima formula. We then describe the
classification of the representations which can contribute to the
Matsushima formula, reviewing the Vogan-Zuckerman theory. We
then work out the cohomology of some representations of certain
unitary groups.

1. The Hodge-de Rham Theorem

Consider smooth projective varieties S(Γ) = Γ\X which are (com-
pact) quotients of hermitian symmetric domains X of non-compact
type by (congruence) arithmetic groups Γ. These are (connected com-
ponents of ) Shimura varieties. These varieties have a rich structure.
In these lectures, we will study the cohomology of these varieties.

Most of the results we describe do not really depend on the fact that
the symmetric space is of Hermitian type; we will therefore describe
the results first in the general case and later specialise to the Hermitian
case.

1.1. Definition. A second countable Hausdorff topological space M is
a said to be a manifold or a C∞-manifold of dimension n, if M can
be covered by a collection {Ui : i ∈ I} of open sets (indexed by a set
I) and homeomorphisms φi : Ui → Vi of Ui with an open set Vi in
Rn such that on each intersection Ui ∩ Uj, the two maps φi : Ui → Vi
and φj : Uj → Vj “differ” by a smooth map; that is, the map

φi ◦ φ−1
j : φj(Ui ∩ Uj) → φi(Ui ∩ Uj)

of open sets in Rn is infinitely differentiable. Each pair (φi, Ui) is called
a co-ordinate chart.
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1.2. Examples. (1) The vector space Rn is an n- dimensional mani-
fold.

(2) The n-dimensional sphere Sn is an n-dimensional manifold (to
see this, one may use the stereographic projection).

(3) The projective space Pn(R) is an n-dimensional manifold. By
definition, Pn(R) is the space of lines through the origin in Rn+1 =
Rn+1 \ {0}/scalars. For each integer i with 0 ≤ i ≤ n, take Ui =
{(x0, x1, · · · , xn) : xi 6= 0}, and φi : Ui → Rn defined by

φi(x0, · · · , xn) = (x0/xi, x1/xi, · · · , xi−1/xi, xi+1/xi, · · · , xn/xi).
One easily checks that (φi, Ui) give a coordinate chart on Pn(R).

(4) Open subsets of an n-dimensional manifold M are n-manifolds.

1.3. Definition. If M and N are manifolds of dimensions m and n,
then a mapping f : M → N is smooth if for each point p ∈ M
and coordinate charts (φi, Ui) with p ∈ Ui ⊂ M , and (ψj, Vj) with
f(p) ∈ Vj ⊂ N , the composite mapping

φi(Ui ∩ ψ−1
j (Vj))

φ−1
i→ Ui ∩ ψ−1

j (Vj)
f→ Vj

ψj→ ψj(Vj) ⊂ Rn,

is an infinitely differentiable function as a map from an open set in Rm

to an open set in Rn.

1.4. Examples. (1) The maps xi : Rn 7→ R are smooth.

(2) The map (x0, x1, · · · , xn) 7→ (xixj)1≤i,j≤n from Rm+1 into R(m+1)2

yields a smooth map from Pn(R) into Pm2+2m(R).

1.5. The Cotangent Bundle. Given a point p in an m-dimensional
manifold M , consider the space Op of germs of smooth functions at p:
two complex valued functions defined on an open neighbourhood of p
are said to be equivalent if they coincide on a smaller open neighbour-
hood of p. The space of such equivalence classes forms a commutative
C-algebra under the usual addition and multiplication of functions and
is denoted Op; elements of Op are called germs at p. The ring of germs
has a natural maximal ideal mp, namely those germs which vanish at
p. Then the quotient T ∗

p (M) = mp/m
2
p is called the cotangent space

at p to M .
It is easy to see that the dimension of the vector space mp/m

2
p is m.

1.6. Example. Take M = Rm, and p = 0 ∈ M the origin. Then it is
easily seen that the contangent space is the direct sum:

mp/m
2
p = Rdx1 ⊕ · · · ⊕ Rdxm,

where dxi is the image of the germ xi in mp/m
2
p.
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We may replace T ∗(M)p above by its dual, and obtain the (complex)
tangent space T (M)p = (m/m2)∗ to M at the point p. We can simi-
larly define the (complexified) tangent bundle T (M).

Let k ≤ m and ∧kT ∗(M)p the k-th exterior power of the vector space
T ∗(M)p. Denote by ∧kT ∗(M) the set of pairs (p, ξ) with p ∈ M and
ξ ∈ ∧kT ∗(M)p; denote by π : ∧kT ∗(M) → M the projection to the
map (p, ξ) 7→ p. Then ∧kT ∗(M) has a natural structure of a manifold
such that π is a smooth map.

To see this, we first consider the example M = Rm. In that case, it is
easy to see that the map (a1, a2, · · · , am) 7→ a1dx1 + a2dx2 + · · · amdxm
is an isomorphism of vector spaces Rm → T ∗(Rm)p, which gives an
isomorphism

T ∗(Rm) = Rm × Rm.

Similarly, there is an isomorphism

∧kT ∗(Rm) ' Rm × Rl

with l = (
m

k).
These “local” isomorphisms may be patched together to obtain the

manifold structure on ∧kT ∗(M).

1.7. Differential Forms. A smooth function ω : M → ∧kT ∗(M) is
called a differential form of degree k. For example, if M = Rm,
then a differential form may be written as

ω =
∑

fi1,i2,··· ,ikdxi1 ∧ dxi2 ∧ · · · ∧ dxik ,

with fi1,i2,···ik a smooth function on Rm. The space of differential forms
of degre k on a manifold M is denoted Ωk(M). This is a vector space
over R or C in a natural fashion.

1.8. Integration. A manifold is orientable if there exists a nowhere
vanishing differential form of degree m(=Dimension of the manifold).

If M is a compact manifold witha fixed orientation, and ω ∈ Ωm(M),
then define the integral of ω over M by constructing first a partition
of unity of M . This is a collection of functions φi of smooth functions
on M with compact support such that the support lies in a coordinate
neighbourhood Ui of M . We assume (one can always secure such a
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system of co-ordinate charts, provided M is orientable) that the co-
ordinate charts are such that they take the standard orientation on Rn

into the given orientation on M . Our assumptions ensure that there is
always a partition of unity of M (even one with only finitely many φi).
The integral of a compactly supported smooth function on an open set
U in Rm is just the definition of the Lebesgue integral of the function
on the open set. The integral of an m-form ω′ on U is by definition the
Lebesgue integral of f where ω′ = fdx1 ∧ · · · ∧ dxm. Now the integral
of ω on M is the sum over i of the integrals of ωψi over the coordinate
neighbourhood Ui. One checks, using the Jacobian formula for change
of variables on Rm, that these definitions are independent of the choice
of the partition of unity and of the coordinate neighbourhoods of M .

1.9. Vector Fields. Similarly, a vector field is a section X : M →
T (M) of the tangent bundle T (M). We can view differential oper-
ators as smoothly varying alternating forms on the space of vector
fields. Vector fields may be thought of as operators on the space of
smooth functions on M : a smooth function f ∈ C∞(M) yields a map
df : T (M) → T (R) = R × R since it pulls back smooth functions
on R to smooth functions on M and pulls back elements of the max-
imal ideal mf(p) into mp. If X : M → T (M) is a vector field, then
Xf : M →M×R is the composite of the second projection R×R → R
followed by df ◦X.

If X and Y are vector fields, then the commutator operators XY −
Y X on smooth functions turns out to be a vector field denoted [X, Y ],
and is called the Lie Bracket of X and Y .

1.10. The Operator d. Given a differential form ω ∈ Ωk(M) of degree
k, define the differential form dω ∈ Ωk+1(M) by the formula

dω(X0, X1, · · · , Xk) =
∑

1≤i≤m

(−1)iXiω(X0, · · · , Xi−1, Xi+1, · · · , Xk)+

∑
i<j

(−1)i+jω([Xi, Xj], X0, · · ·Xi−1, Xi+1, · · · , Xj−1, Xj+1, · · · , Xk)

where [Xi, Xj] is the Lie bracket of Xi and Xj. Thus, d is a linear map
from Ωk(M) to Ωk+1. It can be proved that d2 = 0 (this is a purely
local statement, and can be verified on Rm). The elements of degree k
in the space

ker(d : Ωk(M) → Ωk+1(M))

Im(d : Ωk−1(M) → Ωk(M))
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form the k-th de-Rham cohomology group of the manifold M ; it
is denoted Hk(M).

(1) (Poincaré Lemma) The k-th de-Rham cohomology groups oi Rm

are all zero, except the zero-th one, which is R.
(2) (de Rham) If M is a compact manifold, the the de-Rham coho-

mology groups are all finite dimensional.
(3) The de Rham cohomology is naturally isomorphic to the singular

cohomology of the manifold M , and is thus a topological invariant M .
Differential forms which are in the kernel of the boundary operator

are called closed forms and those that are in the image of d are the ex-
act forms. One says that two closed forms ω and η are cohomologous
if their difference is a coboundary.

1.11. Riemannian manifolds. We will now assume that M is a man-
ifold such that for each point p ∈ M , there exists an inner prod-
uct <,>p in the tangent space T (M)p which varies smoothly in p.
That is, every pair of vector fields X, Y on M , the inner product
p 7→< Xp, Yp >p= < X, Y > (p) is a smooth function. The pair
(M,<,>) is called a Riemannian manifold.

The metric yields a metric on the contangent space T ∗(M)p and one
on its exterior powers as well. If M is a compact manifold which is ori-
entable i.e. has a nowhere vanishing section of ∧mT ∗(M) (m=dimension
of M), then we get an associated metric on the space Ωk(M) of differ-
ential forms as follows.

The dual of ∧kT ∗(M)p is identifiable with ∧m−kT (M)p; thus a metric
on T ∗(M)p defines an isomorphism (of T (M) with T ∗(M) and hence) ∗
of the exterior power ∧k(T ∗(M)p with ∧m−kT ∗(M)p. Consequently we
have an isomorphism ∗ : Ωk(M) → Ωm−k(M). If ω, η are two differen-
tial forms in Ωk(M), define their inner product by < ω, η >=

∫
M
ω∧∗η.

With this inner product, define the adjoint δ of the boundary oper-
ator d; this is a mapping δ : Ωk(M) → Ωk−1(M). Define the Laplacian
of M by ∆ = dδ+δd. More precisely, this is dk−1δk+δk+1dk : Ωk → Ωk.
the kernel of the Laplacian is called the space of harmonic forms. Har-
monic forms are automatically closed and are not exact. We have the
Hodge Theorem:

Theorem 1. On a compact orientable Riemannian manifold M , every
closed form is cohomologous to a unique harmonic differential form.
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2. Locally Symmetric Spaces

We will now specialise to the case when the manifold in question
is the quotient of a symmetric space by a discrete group of automor-
phisms.

2.1. Notation. Let G denote the a linear semi-simple Lie group and
K a maximal compact subgroup, It can be shown that G/K is a man-
ifold. Suppose that Γ ⊂ G is a discrete subgroup, which is torsion-free
and such that the quotient Γ\G is compact. It can then be proved
that Γ operates properly discontinuously and freely on G/K. The quo-
tient Γ\G/K is a locally symmetric manifold which -under our
assumptions- is compact.

Let g denote the complexified Lie algebra of G. The group G is
parallelizable; that is, there are n vector fields (n = dim(G)) on G
which are linearly independent at every point. Such are provided by
elements of g which can be thought of as left invariant vector fields.

2.2. Metric defined by the Killing Form. On the real Lie algebra
Lie(G), we have the operators ad(X) with X ∈ Lie(G). Consider the
form κ(X, Y ) = trace(ad(X)ad(Y ) with X, Y ∈ Lie(G). This is the
Killing form on Lie(G). Fix a maximal compact subgroup K of G.
Then on Lie(K) the Killing form κ is negative definite. Let p0 de-
note the orthogonal complement of Lie(K) in Lie(G). The restriction
of κ to p0 is positive definite.

Thus, The Killing form is non-degenerate on p and defines a metric
on p0 the real tangent space. This metric is invariant under conjuga-
tion under K and hence we have a metric on G/K which is G invariant.

Let k and g be the complexified Lie Algebras of K and G respec-
tively. Let p denote the orthogonal complement of k in g. It is easily
seen that the Lie Brackets [k, p] ⊂ p and [p, p] ⊂ k.

Consider the quotient Γ\G; this is a manifold and we have the
quotient map Γ\G → Γ\G/K (this is automatically a smooth map);
elements of g still give linearly independent vectors in Γ\G and de-
fine vector fields. Hence the tangent bundle is trivial. Hence so is
the cotangent bundle : the cotangent bundle is simply the product
T ∗(Γ\G) = Γ\G × g∗. Consequently, the space ∧kT ∗(Γ\G) is isomor-
phic to Γ\G× ∧kg∗, and the space of differential forms is therefore

Ωk(Γ\G) = ∧kg∗ ⊗ C∞(Γ\G) = Hom(∧kg, C∞(Γ\G).
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Note that G operates on both sides of this isomorphism ( on Γ\G
by right translations, and on g by inner conjugation) and that the
isomorphism respects the G-action. The d-operator takes the form

dω(X0, · · · , Xk) =
∑

0≤i≤k

(−1)iXiω(X0, , · · · ,
i
∧ , · · · , Xk)

+
∑
i<j

(−1)i+jω([Xi, Xj], X0, · · · ,
i
∧ , · · · ,

j
∧ , · · · , Xk)

We can now identify Ωk(Γ\G/K) = HomK(∧k(g/k), C∞(Γ\G)). This
is a sub-complex of the complex Ω∗(Γ\G) of differential forms on Γ\G.
Hence, if Xi ∈ p, we get

dω(X0, · · · , Xk) =
∑

0≤i≤k

(−1)iXiω(X0, · · · , Xk).

for all differential forms on Γ\G/K identified as above.

2.3. (g, K)-cohomology. Suppose now that π is a (g, K)-module and
consider the complex Ck = ⊕k(∧kg∗ ⊗ π) with values in π. the differ-
entials d : Ck → Ck+1 is defined by

dω(X0, · · · , Xk) =
∑
i

(−1)iπ(Xi)(ω(X0, · · · , Xi−1, Xi+1, · · · , Xk)).+

∑
i<j

(−1)i+jω([Xi, Xj], X0, · · · , Xi−1, Xi+1, · · · , Xj−1, Xj+1, · · · , Xk).

The complex Ck has a subcomplex⊕kC
k
0 , where Ck

0 = HomK(∧kg/k, π).
The cohomology of this sub-complex Ck

0 is by definition the (g, K)-
cohomology of π.

2.4. Example. The above calculation shows that the de-Rham coho-
mology of Γ\G/K is the (g, K)-cohomology of the module C∞(Γ\G).

The metric on G/K is G invariant and hence gives a metric on
Γ\G/K. We may construct the Lapliacian on the differential forms
with respect to this metric.

Theorem 2. (Matsushima-Kuga) Under the identification of the com-
plex Ωk(Γ\G/K) with HomK(∧kp, C∞(Γ\G)), the Laplacian on the left
becomes the action of the Casimir of g on the right hand side.

For a proof, see [Bo-Wa].
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Corollary 1. (The Matsushima-Kuga Formula) The de-Rham coho-
mology group of Γ\G/K is isomorphic to the vector space Hk(Γ\G/K) =
HomK(∧kp, C∞(Γ\G)(0)) where C∞(Γ\G)(0) is the space of functions
killed by the Casimir.

This is a corollary of the Hodge Theorem together with the calcula-
tion of the Laplacian.

Remark. If π is a unitary (g, K)-module, then one can define the Lapla-
cian on the complex defining the cohomology in a similar way, and the
Matsushima-Kuga calculation on the complex associated to π then im-
plies that the Laplacian is related to the Casimir in the same way.

Moreover, in the space of cocycles, one may choose representatives
from the space of the orthogonal complement of the space of cobound-
aries. If π is irreducible, these spaces are all finite dimensional and the
whole space is a direct sum of these spaces. Further, the orthogonal
complement consists of harmonic forms as is easily seen.

In conclusion, we have, for a unitary representation with π(C) = 0,
the cohomology is computed as

H∗(g, K, π) = HomK(∧∗p, π).

For example, if π = C is the trivial (g, K)-module, then the Kuga
calculation shows that

H∗(g, K,C) = HomK(∧∗p,C) = (∧∗p∗)K ,

where the K-superscript denotes the space of K-invariants. Note that
if gu = Lie(K)⊕p0, then gu is a real Lie subalgebra of the complex Lie
algebra g and is the Lie algebra of the compact dual Gu ( a maximal
compact of G(C)) of the group G. Under a Gu invariant metric met-
ric on Gu/K, we have - using the de-Rham theorem for the compact
manifold Gu/K- that

H∗(g, K,C) = H∗(Gu/K).

Remark. The cohomology groups H∗(g, K, π) can be shown to be the
Ext groups Ext∗(g,K)(C, π) where C is the trivial (g, K)-module. This
easily implies that the centre of the universal enveloping algebra acts
the same way as it does on the trivial module, provided the represen-
tation has non-vanishing cohomology.

It follows that the action of the centre of the enveloping algebra on
H∗(Γ\G/K) is trivial, which means that

HomK(∧∗p, C∞(Γ\G)(0)) = HomK(∧∗p, C∞(Γ\G/K)(00))
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where (00) refers to the space of functions which are annihilated by all
elements of the centre. This shows that these functions on the right
hand side of the Matsushima formula are automorphic forms.

Recall that the space L2(Γ\G) is a Hilbert space direct sum of ir-
reducible representations π each occurring with a finite multiplicity
denoted m(π).
We can then write the Matsushima formula in the form

Hk(Γ\G/K) = ⊕m(π)Hk(g, K, π),

where the sum is over those π such that the Casimir π(C) = 0. Note
that this is an algebraic direct sum.

We have “reduced” the problem of cohomology of Γ\G/K to two
questions: determine the representations π with cohomology, and de-
termine when they occur in L2(Γ\G). The second question will not be
dealt with in these notes.

3. Cohomological Representations

We seek to determine the representations π of G(R) which contribute
to the Matsushima formula. In particular, we wish to find representa-
tions π of G(R) which are unitary and such that the Casimir acts by
zero. Furthermore, we want that H∗(g, K, π) 6= 0. By our computa-
tions, this is the same as

H∗(g, K, π) = HomK(∧∗p, π).

(It is then a consequence that any element of the centre of the envelop-
ing algebra acts on π by a scalar, namely the scalar by which it acts
on the trivial representation.

There is a complete characterisation (the Vogan-Zuckerman Theory)
of these representations. To describe the final result, we first need to
introduce some notation.

To motivate the definitions below, we first state the result for the
group U(p, q). Fix positive integers a1, a2, · · · , al and b1, · · · bl with∑
ai ≤ p and

∑
bi ≤ q. Define the groups

L =
∏

1≤i≤l

U(ai, bi)) andX̂L =
∏

U(ai + bi)/U(ai)× U(bi)).

Let R = pq −
∑
aibi. The result for U(p, q) states the following.
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Theorem 3. If G = U(p, q) and π is a cohomological representation,
there exist integers ai and bi as above such that the (g, K) cohomology
of π is given by

H i(g, K, π) = H i−R(X̂L),

where the latter is the de-Rham cohomology of the space in question.

The description is easier when G/K is a Hermitian symmetric do-
main, and we will assume this. In particular, G/K is a complex mani-
fold such that the connected component G0 of identity of G (mod cen-
tre) is the group of holomorphic automorphisms of G/K. If we assume
that G0 is a simple Lie group (has no connected normal subgroups) this
is equivalent to the connected component Z(K)0 of the centre Z(K)
being isomorphic to S1. For example, when G = Spg, the maximal
compact subgroup is K = U(g) has centre the scalar unitary matrices,
i.e. S1. If G = SU(p, q) then the maximal compact K = S(U(p)×U(q)
has centre S1.

Recall that if π is irreducible, unitary and cohomological, then

H∗(g, K, π) = HomK(∧∗p, π).

Thus, a related question is : what are the common K-types between
a cohomological representation and ∧∗p? It tuns out the common K-
types are of a very special type (termed the canonical K-types). These
are described in terms of certain θ-stable parabolic subalgebras, where
θ is a Cartan Involution.

If z ∈ Z(K)0 = S1, then the Lie algebra g decomposes as g =
p+ ⊕ p− ⊕ k the z, the z−1 and 1 eigenspaces. Fix a maximal torus T
of K. Then by the foregoing, T is also a maximal torus in G. Since
Lie(T ) acts by imaginary eigenvalues, iLie(T ) acts by real eigenval-
ues. Fix a Borel subalgebra bK of k containing t. We have the root
space decomposition g = t ⊕ gα where α runs through the roots of
T . Fix a system of positive roots of g such the roots occurring Fix
X ∈ iLie(T ) such that α(X) ≥ 0 for all positive roots in bK . Define
q = q(X) = gX ⊕α(X)>0 gα l = l(X) = gX and u = u(X) = ⊕α(X)>0gα.
Then q is a parabolic subalgebra of g and l and u are the Levi part
and the nil-radical of q. Note also that the Cartan involution leaves
q, l and u stable. Let R = dim(u ∩ p. Define e(q) = ∧Ru ∩ p, a line
in ∧rp. Define the K-span of e(q) to be V (q). It can be easily proved
that V (q) is irreducible.
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Let W (q) denote the isotypic of the representation V (q) in ∧∗p. It
can easily be proved that as a K-module, W (q) is generated by the
vectors (∧∗l∩p)L∩K ∧e(q) (the latter are highest weight vectors for the
Borel subalgebra bK). We have then the following theorem

Theorem 4. (Kumaresan-Parthasarathy) Given π, there exists a unique
V (q) such that HomK(∧∗p, π) = HomK(W (q), π). That is, the only
K-type of π common with ∧∗p is V (q).

Moreover, the cohomology is

H∗(g, K, π) = H∗−R(l, L ∩K,C) = H∗−R(X̂L).

Theorem 5. (Vogan-Zuckerman) To each cohomological representa-
tion π there is a unique canonical K-type V (q) occurring in π.

Given a parabolic q as before, there is a unique cohomological repre-
sentation π = Aq which contains V (q) as a canonical K-type.

Corollary 2. (Vanishing Theorems) Let RG = infdim(u(q)∩ p where
the infimum runs over all the θ-stable parabolic subalgebras of g. If π
is a non-trivial irreducible representation of g, K then H i(g, K, π) = 0
for all integers i < RG.

In particular, if R-rank of G is at least two, then H1(Γ\G/K) = 0
(Kazhdan’s Theorem). The same holds even if G is not locally isomor-
phic to SU(n, 1) or SO(n, 1).

Remark. The construction of these representations Aq was done by dif-
ferent methods: one by Parthasarathy imitated the Enright Varadara-
jan construction of discrete series. Later Zuckerman constructed these
using derived functors. It can also be proved ([Wong]) that the Dol-
beaux complex of a suitable line bundle on G/L (L being the Levi
subgroup of the parabolic Q ⊂ G(C) in question - it is easy to show
then that G/L is a complex manifold on which G operates by holo-
morphic automorphisms) at the degree S = dim(K/L ∩ K) has the
property that the coboundaries are a closed subset of the space of co-
cycles, and that (K-finite vectors in) the Dolbeaux cohomology space
is the module Aq.

4. Examples

Set G = U(p, q) and K = U(p) × U(q). Let T=diagonals in K.
Then, iLie(T ) consists of dagonal matrics with real entries. Fix the
Borel sugroup BK of the complex group KC (Th complexified group is
GL(p,C)×GL(q,C)) to be the group of upper trangular atrices in KC.
We assume that the eignvalues of ad(X) are non-negative on the Lie
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algera of BK .

Write X = (a1, a2, · · · ap;1 , · · · , bq). Our assumptions imply that
a1 ≥ a2 ≥ · · · ≥ ap and similarly the bj are decreasing. We divide the
i′s and the j′s into subsets I−1, · · · , Ir and J1, · · · , Jr (possibly empty)
such that for all 1 ≤ µ ≤ r, we have ai = bj ∀i ∈ Iµ and ∀j ∈ Jµ. It is
then immediate that the centraliser of X in G is the product group

L =
∏

1≤µ≤r

U(pµ, qµ).

Moreover, the compact dual of the symmetric space of L is∏
U(pµ + qµ)/U(pµ)× U(qµ) =

∏
Grpµ(Cpµ+qµ)

is a product (over the µ’s ) of grassmannians of pµ planes in the pµ+qµ
dimensional complex vector space.

This implies the result for U(p, q) stated earlier.
Acknowledgement: I extend to the organisers (Fargues, Ngo, Prasad
and Ramadas) my hearty thanks for their invitation to take part in this
conference.
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