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1 The Adelic Language

A finite extension K of Q is called a number field. Let OK denote the ring
of integers in K. Then OK is what is called a Dedekind domain, and has
in particular, unique factorization for ideals, i.e., any ideal a in OK can be
uniquely written as a = pn1

1 · · · pnr
r where pi are nonzero prime ideals in OK .

Therefore for any x ∈ OK , one can write

(x) = pn1
1 · · · pnr

r .

Define vp(x) to be the exponent of p in the prime ideal decomposition of (x).
This can be extended to a homomorphism vp : K∗ → Z. Let Np be the
cardinality of the residue field, OK/p, of p. Define,

||x||p = (Np)−vp(x).

The completion of K with respect to the metric dp(x, y) = ||x− y||p is a field
denoted Kp, containing Op, the completion of OK , as a maximal compact
subring.

The vp’s as p runs over the set of nonzero prime ideals gives rise to what
are called non-Archimedean valuations. Besides these, one also considers
Archimedean valuations which can be taken to be embeddings iv : K → R,C
as the case may be except that when iv(K) is not contained in R, then ıv
and īv are considered to be equivalent valuations.

One can induce a metric on K via embeddings iv : K → R,C, and the
completion of K with respect to these embeddings is nothing but R,C.

Define the Adele ring AK as the subring of
∏

v Kv, product taken over all
valuations of K, consisting of tuples (xv) such that xv belongs to the maximal
compact subring Ov for almost all valuations v. Let K∞ be the product of
Kv taken over all the Archimedean valuations. One can define a topology
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on AK by declaring K∞ ×
∏

p<∞Op to be an open subset with its natural
topology.

This gives AK the structure of a locally compact topological ring in which
K sits as a discrete subgroup.

Lemma 1 AK/K is compact.

Proof : This is a consequence of Chinese remainder theorem which can be
used to prove that K∞×

∏
p<∞Op surjects onto AK/K, and then the lemma

follows from the compactness of K∞/OK . 2

Next we come to the notion of ideles, denoted by A∗
K which consists of

the subgroup of invertible elements of the ring AK . It consists of elements
x = (xv) ∈

∏
v K

∗
v such that xv ∈ O∗

v for all but finitely many places v of
K. We declare K∗

∞ ×
∏

p<∞O∗
p to be an open subset of A∗

K with its natural
topology. This gives A∗

K the structure of a locally compact abelian group. It
is easy to see that K∗ sits naturally via ‘diagonal’ embedding inside A∗

K as a
discrete subgroup.

Define a homomorphism

| · | : A∗
K → R∗,

by

|(xv)| =
∏

v

|xv|,

which makes sense as |xv| = 1 for almost all v. Let A1
K ⊂ A∗

K be the kernel
of | · |.

The following theorem is a reformulation of two of the most basic theo-
rems in Algebraic Number Theory, the finiteness of the class group, and the
Dirichlet unit theorem, in the Adelic language.

Theorem 1 1. K∗ ↪→ A1
K, and sits as a discrete subgroup of A1

K.

2. A1
K/K

∗ is compact.

2

Next we come to the notion of a Grössencharacter which are nothing
but characters of the group A∗

K/K
∗, i.e., a Grössencharacter is a character

χ : A∗/K∗ → C∗.
Remark about convention.
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1. A character on a topological group is a continuous homomorphism χ :
G→ C∗.

2. A unitary character is a homomorphism χ : G→ S1.

A character χv : K∗
v → C∗ is called unramified if χ|O∗v ≡ 1. Define the

local L-function L(s, χv) at non-Archimedean place v by

1. L(s, χv) = 1

(1−χv(πv)
Nvs )

if χv is unramified, in which case χv(πv) is in-

dependent of the choice of πv with v(πv) = 1, called a uniformizing
parameter.

2. L(s, χv) = 1 if χv is ramified.

Because of the way topology is defined on A∗
K , and because C∗ has no

subgroups in a small neighborhood of identity, it easily follows that for a
character χ =

∏
v χv : A∗

K → C∗, χv is unramified for all but finitely many
places v of K. For a character χ =

∏
v χv : A∗

K → C∗, define the global L
function

L(s, χ) =
∏

v

L(s, χv)

where the product is taken only over finite places. (Later we will extend this
definition by taking a product including all the places at infinity too.)

The aim of these lectures is to give a proof of the following theorem
proved first by Hecke, for which Tate in his thesis gave an elegant proof
based on Harmonic Analysis on the Adeles, and which has been generalised
in many ways both to define and analyse global L-functions attached to
(Automorphic) representations of larger adelic groups, such as GLn(AK).

Theorem 2 L(s, χ) defined initially for re(s) large has analytic continuation
to all of C with possibly a pole at s = 1 (which happens if and only if χ = 1),
and no where else. Further L(s, χ) satisfies a functional equation.

2

Remark : It is possible to define Grössencharacters in the classical language
too, which is often used in some literature, so we give it here. Let I denote
the free abelian group on the set of nonzero prime ideals. For any ideal a,
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let I(a) denote the subgroup of ideals generated by primes p such that p is
coprime to a. A character χ : I(a) → C∗ is said to be a Grössencharacter if

χ((a)) =
∏
v|∞

χv(av),

for all a ∈ K∗ such that (a− 1) ∈ a.

2 Recalling Fourier Analysis

We recall that a locally compact group has a Haar measure which is unique
up to scaling. The existence and uniqueness of Haar measure on totally
disconnected groups, those arising from non-Archimedean valuations, is a
straightforward matter.

Given a locally compact abelian group G, let Ĝ = {χ : G→ S1}. Clearly
Ĝ is a group. It can be given what is called the compact-open topology,
to make it a locally compact group. The group Ĝ comes equipped with the
natural bilinear form G×Ĝ→ S1 which is a perfect pairing, and in particular
gives an identification of closed subgroups of G with quotients of Ĝ.

Given f ∈ L1(G), one can define f̂ : Ĝ→ C by

f̂(χ) =

∫
G

f(g)χ−1(g)dg.

For appropriate choice of Haar measures on G and Ĝ, one has the Fourier
inversion theorem

ˆ̂
f(x) = f(−x).

If B : G×G→ S1 is a perfect pairing, then any character on G is of the
form x → B(x, g) for some g ∈ G, so G ∼= Ĝ; such groups G are called self-
dual. For such groups, Fourier transform can be considered to be a function
on G, and there is a unique choice of Haar measure (given the bilinear form
B : G×G→ S1) such that the Fourier inversion holds.

Examples :

1. Kv is self-dual: For this fix a nontrivial character ψ : Kv → S1. Then
B : Kv ×Kv → S1 defined by B(x, y) = ψ(xy) is a perfect pairing.

2. AK is self-dual.
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3 Local Zeta functions

Observe that for a non-Archimedean local field K∗
v , K∗

v = O∗
v×{πv}Z. Define

characters ωs(x) = |x|s for s ∈ C. This gives the set of characters the struc-
ture of a Riemann Surface which is a disjoint union of connected Riemann
surfaces Mχ = {χωs|s ∈ C}.

Given any character χ on K∗
v , there is a unique real number t such that

χωt is a unitary character. The real number −t is called the exponent of χ.
Define S(kv) in the usual way for Archimedean fields R and C, consist-

ing of functions which together with all their derivatives, decay at infinity
even when multiplied by any polynomial. For non-Archimedean fields, define
S(kv) to be the space of locally constant, compactly supported functions.

It will be important for us to note that S(kv) is left stable by the Fourier
transform.

Zeta function : Given f ∈ S(k), define the local zeta function

Z(f, chi, s) =

∫
k∗
f(x)χ(x)|x|sd∗x.

This is called a local zeta function on k; it is initially defined for re(s) suf-
ficiently large, in fact for re(s) > 0 if χ is unitary, but turns out to have
analytic continuation and functional equation.

An Example : We calculate Z(f, χ, s) where f is the characteristic function
of O, and χ is an unramified character. We will fix aHaar measure on k∗

such that the volume of O∗ is 1.

Z(f, χ, s) =

∫
k∗
f(x)χ(x)|x|sd∗x

=

∫
O
χ(x)|x|sd∗x

=
∞∑

n=0

∫
πnO−πn+1O

χ(x)|x|sd∗x

=
∞∑

n=0

χ(π)nq−ns

=
1

1− χ(π)
qs

.
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We next observe that if for χ unramified we defined,

Z0(f, χ, s) =

∫
k∗

[f(x)− f(π−1x)]χ(x)|x|sd∗x

then,

Z0(f, χ, s) =

∫
k∗

[f(x)− f(π−1x)]χ(x)|x|sd∗x

=

∫
k∗
f(x)χ(x)|x|sd∗x− χ(π)

qs

∫
k∗
f(x)χ(x)|x|sd∗x

= (1− χ(π)

qs
)Z(f, χ, s)

=
Z(f, χ, s)

L(χ, s)

Since f(x)−f(π−1x) is a compactly suported locally constant function on
k∗, Z0(f, χ, s) is a finite Laurent polynomial in qs, i.e., Z0(f, χ, s) ∈ C[qs, q−s].

For χ ramified, note that

Z(f, χ, s) =

∫
k∗−πnO

f(x)χ(x)|x|sd∗x,

for all n sufficiently large. Therefore in this case, Z(f, χ, s) ∈ C[qs, q−s].
Remark :

1. From the foregoing, we find that in all cases,

Z(f, χ, s)

L(χ, s)

is an entire function which in fact belongs to C[qs, q−s].

2. Furthermore, it is easy to see that there is a choice of a function f ∈
S(k) such that Z(f, χ, s) = L(χ, s).

We now turn our attention to the functional equation satisfied by such
zeta functions. The approach we take was suggested by A. Weil, for which
we follow the treatment given by Kudla in [Ku].

Let D(k) denote the space of distributions, which are just the dual space
of the space S(k) for k non-Archimedean. Note that k∗ operates on S(k),
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and therefore also on D(k). The following lemma, for which we omit details,
is simple to check using the following exact sequence,

0 → S(k∗) → S(k) → C → 0.

Lemma 2 1. For any character χ of k∗, the χ-eigenspace in D(k) is of
dimension 1.

2. f → Z(f,χ,s)
L(χ,s)

is a distribution which belongs to χωs eigenspace.

3. f → f̂ is an isomorphism of S(k) onto itself, and takes χ-eigenspace
to χ−1ω eigenspace.

Corollary 1
Z(f̂ , χ−1, 1− s)

L(χ−1, 1− s)
= ε(χ, s)

Z(f, χ, s)

L(χ, s)
,

for a certain ε(χ, s) which is of the form aqns for some n ∈ Z.

Proof. As already observed, Z(f,χ,s)
L(χ,s)

∈ C[qs, q−s], therefore since there is an

f with Z(f,χ,s)
L(χ,s)

= 1, ε(χ, s) ∈ C[qs, q−s]. Arguing with f̂ instead of f , we find

that ε(χ, s) is in fact a unit in C[qs, q−s], therefore of the form aqns.

4 Archimedean Theory

We first need to define L(χ, s) in the Archimedean case. We note that the
definitions are so made that L(χwt, s) = L(χ, s+ t), and therefore it suffices
to define L(χ, s) for χ an equivalence class of the relation defined by {χωt}.

We begin with k = R, in which case there are exactly two equivalence
classes of character, which are defined below together with their L-functions.

1. χ = 1. In this case L(1, s) = π−s/2Γ(s/2).

2. χ = ε, the sign character R∗ → ±1. In this case L(ε, s) = L(1, s+ 1) =
π−(s+1)/2Γ([s+ 1]/2).

Now for C, we note that the equivalence classes of characters on C∗ are
represented by χn(reiθ) = einθ. Define L(χn, s) by

L(χn, s) = (2π)1−sΓ(s+ |n|/2).
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Lemma 3 1. f → Z(f,χ,s)
L(χ,s)

is a distribution which represents an entire
function of s ∈ C.

2. There exists an explicit choice of functions fχ in S(k) such that Z(fχ, χ, s) =

L(χ, s), and such that f̂χ = c(χ)fχ−1 for a certain constant c(χ) which
is a 4th root of unity.

3.
Z(f̂χ, χ

−1, 1− s)

L(χ−1, 1− s)
= ε(χ, s)

Z(fχ, χ, s)

L(χ, s)
,

for a certain constant ε(χ, s) which is in fact a 4th root of unity.

Remark : Part 1. follows from integration by parts. The explicit functions
fχ satisfying the properties in 2. are given in Tate’s thesis. Given 2., 3. is
obvious.

5 Global Zeta function

We begin by noting that if a group G is the restricted product of groups Gv

with given compact open subgroups Hv, then one can define a Haar measure
on G by taking the product of Haar measures on Gv chosen so that Hv has
volume 1.

Define the Schwartz space S(AK) to be the tensor product of the Schwatz
space ofK∞ with the space of locally constant compactly supported functions
on Kf =

∏
v<∞Kv.

Global Zeta function : Given f ∈ S(AK), and a Grössencharacter χ :
A∗

K/K
∗ → C∗, define the global zeta function

Z(f, χ, s) =

∫
A∗K

f(x)χ(x)|x|sd∗x.

This is called a global zeta function on AK ; it is initially defined for re(s)
sufficiently large, infact for re(s) > 1 if χ is unitary (by the same reason
why the Euler product

∏
p

1
1− 1

ps
converges for re(s) > 1, and hence similar

products over places of a number field). It has analytic continuation and
functional equation as follows.
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Theorem 3 (a) Z(f, χ, s) has analytic continuation to all of C.
(b)Z(f, χ, s) = Z(f̂ , χ−1, 1− s).

Corollary 2 Analytic continuation and Functional equation for Λ(χ, s) which
is the product of L(χ, s) defined earlier using the finite places, together with
the places at infinity for which the L-factors have now been defined.

Proof : Let f =
∏

v fv be a function in S(AK) such that Z(fv, χv, s) =
L(χv, s) for all places v of K. We know that this is possible both at finite
and infinite places. Thus the analytic continuation of Z(f, χ, s) implies the
analytic continuation of Λ(χ, s).

Choosing a finite set of places including all the places at infinity and all
the places where χv or the field is ramified, we write the functional equation

Z(f, χ, s) = Z(f̂ , χ−1, 1− s)

as ∏
v∈S

Z(fv, χv, s)

L(χv, s)
Λ(χ, s) =

∏
v∈S

Zv(f̂V , χ
−1
v , 1− s)

L(χ−1
v , 1− s)

Λ(χ−1, 1− s).

This implies that,

Λ(χ, s) =
∏
v∈S

ε(χv, s)Λ(χ−1, 1− s).

It remains to prove the analytic continuation and functional equation for
the zeta functions. But for this we begin by recalling the Poisson summation
formula.

6 Poisson summation formula

LetG be a self-dual locally compact abelian group, given with a non-degenerate
bilinear form B : G×G→ S1. Let Γ be a discrete subgroup of G such that
Γ⊥ = Γ. Then for a suitable space of functions (for applications we have in
mind, it will suffice to take G = AK , Γ = K, and the space of functions to
be S(AK)), we have ∑

γ∈Γ

f(γ) =
∑
γ∈Γ

f̂(γ).
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The proof of this follows by applying the Fourier inversion formula to the
function

F (g) =
∑
γ∈Γ

f(gγ),

on G/Γ.

Corollary 3 For f ∈ S(AK),∑
γ∈K

f(γ) =
∑
γ∈K

f̂(γ).

Corollary 4 For f ∈ S(AK),∑
γ∈K

f(aγ) =
1

||a||
∑
γ∈K

f̂(
γ

a
).

7 Analytic Continuation, Functional Equation

We now come to the main theorem of Tate’s thesis which is about analytic
continuation and functions equation of zeta functions.

Theorem 4 Z(f, χ, s) has analytic continuation and functional equation.

Proof : For simplicity of exposition, we give the proof only in the case when
χ restricted to A1

K is nontrivial. When it is trivial, a minor modification is
needed to the proof (and to the results). We will assume without loss of
generality that χ is a unitary character.

We begin by writing the integral defining the zeta function as a sum of
two integrals:

Z(f, χ, s) =

∫
A∗K

f(x)χ(x)|x|sd∗x

=

∫
|x|≤1

f(x)χ(x)|x|sd∗x+

∫
|x|≥1

f(x)χ(x)|x|sd∗x.

We note that the term,
∫
|x|≥1

f(x)χ(x)|x|sd∗x has analytic continuation

as an entire function of s ∈ C. This follows for re(s) > 1 as in this region
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the integral is absolutely convergent, and since for re(s) ≤ 1, the value of
the integrand decreases in absolute value, it is all the more convergent in this
region too, and hence represents an entire function. In our next lemma, we
prove that ∫

|x|≤1

f(x)χ(x)|x|sd∗x =

∫
|x|≥1

f̂(x)χ−1(x)|x|1−sd∗x,

which will then yield,

Z(f, χ, s) =

∫
|x|≥1

f̂(x)χ−1(x)|x|1−sd∗x+

∫
|x|≥1

f(x)χ(x)|x|sd∗x,

which gives both analytic continuation and the functional equation.
It thus suffices to prove the following lemma.

Lemma 4 For re(s) > 1,∫
|x|≤1

f(x)χ(x)|x|sd∗x =

∫
|x|≥1

f̂(x)χ−1(x)|x|1−sd∗x.

Proof : Observe that for a fundamental domain E in A1
K for the action of

K∗ on A1
K , and for any t > 0, a real number,∫

A1
K

f(tb)χ(tb)|tb|sd∗b =
∑
γ∈K∗

∫
E

f(γtb)χ(γtb)|γtb|sd∗b

=

∫
E

[
∑
γ∈K∗

f(γtb)]χ(tb)tsd∗b

=

∫
E

[
∑
γ∈K

f(γtb)]χ(tb)tsd∗b

=

∫
E

[
1

t

∑
γ∈K

f̂(
γ

tb
)]χ(tb)tsd∗b

=

∫
A1

K

[
1

t
f̂(

1

tb
)]χ(tb)tsd∗b.

(We have twice used the fact that the integral of a nontrivial character
on a compact group is 0.) Therefore,∫

t≤1

∫
A1

K

f(tb)χ(tb)|tb|sd∗bd∗t =

∫
t≥1

∫
A1

K

[f̂(tb)]χ−1(tb)t1−sd∗bd∗t,

completing the proof of the lemma, and hence that of the theorem.
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