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Why Maps?
• A dynamical system is a rule for evolution on 

a space of states 
• Dynamical systems can have continuous time (flow) or discrete 

time (map)

• Maps that preserve volume are common in 
applications
• Poincaré sections of Hamiltonian flows

• Magnetic field line maps

• Structure of field lines in a Plasma confinement device or the magnetosphere

• Lagrangian particle motion in an incompressible, time dependent flow

• Geostrophic dynamics

• Turbulent mixing problems     

dx
dt

= u(x,t), ∇⋅u = 0

    

dx
dt

= B(x,t), ∇⋅B = 0
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Volume Preserving Maps
• Specialize to the 3D case

• where Df is the Jacobian matrix, and ′ means the 
new point

• A canonical example is the abc map

Dombre, T., U. Frish, et al. (1986). “Chaotic streamlines in the ABC flows.” J. Fluid Mech. 167: 353.

� 

′ x = x + a sin(2πz)+ ccos(2πy)
′ y = y + b sin(2π ′ x )+ acos(2πz)
′ z = z + c sin(2π ′ y )+ bcos(2π ′ x )

  

� 

f :R 3 → R 3 , det(Df ) =1
( ′ x , ′ y , ′ z ) = f (x, y, z)
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Trace Maps

Level sets of Φ have 
components that are 
topological spheres 
for small enough Φ. 

Critical surface, Φ = 0 
is a tetrahedron.

� 

( ′ x , ′ y , ′ z ) = (y,z,−x + 2yz)

� 

Φ(x, y, z) = x 2 + y2 + z2 − 2xyz −1



Maps with an Invariant
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A. Gómez and J. D. Meiss (2002). “Volume Preserving Maps with an 
Invariant.” Chaos 12: 289-299.

(Suris, (1989). “Integrable Mappings of the Standard Type.” Func. Anal. & Appl. 23: 74-76.)



Fluid Mixing Models
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Mixing vs Diffusion

• A passive scalar (blob of die) mixes in a fluid when

• it stretches and folds due to fluid motion

• it diffuses due to Brownian motion

•  Here we ignore the diffusive time scale and only 
consider advective mixing

Welander, 1955
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Advective Mixing

• A passive scalar follows the fluid:

• Neglect diffusion if time scale is short enough 

• We assume that the flow is laminar, so turbulent 
mixing is not active.

• Laminar flows are common for small-scale mixers 
(MEMs devices, Microbiology devices)

u(x,t) is solution of Navier-
Stokes PDEs

 x = u(x,t), x(0) = xo
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Experimental Advection 
• Leong (1989): periodically modulated cavity flow
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Experimental Advection
• Off-axis stirring

Fountain, et al. (2000). “Chaotic Mixing in a Bounded Three-Dimensional Flow.” J. 
Fluid Mech. 417(265–301).
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Fountain, Khakhar, Mezic, and Ottino



12

• Aref defined the blinking vortex flow by 
periodically stirring an incompressible,  viscous 
fluid

• Modeled as point vortices applied for times T1 and 
T2

• Explicit map can be obtained.

a

Aref, H. (1984). “Stirring by Chaotic Advection.” 
J. Fluid Mech. 143: 1-21.

Aref’s Blinking Vortex

dx
dt

= u(x,t) = ∇ψ (x,t)× ẑ
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Roll Switching
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Binary Convection
• Ethanol-Water mixture in thin layer, heated from 

below

Moses, E. and V. Steinberg (1991). "Stationary convection in a binary mixture." Phys. Rev. A 53: 707–722.
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ψ

1

ψ
2

ψ

3

x
y

z

ψ 1 = A(t)g(y)h(z)
ψ 2 = B(t) f (x)h(z)
ψ 3 = C(t) f (x)g(y)

Roll form:

3D Stirring Model
• Incompressible fluid written as a  sum of stream 

functions:

Mullowney, Julien, & Meiss (2005). "Blinking rolls: chaotic advection in a 3D flow with 
an Invariant." SIAM J. Appl. Dyn. Sys. 4: 159-186.

dx
dt

= u(x,t) = ∇ψ 1 × x̂ +∇ψ 2 × ŷ +∇ψ 3 × ẑ
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for any functions A(t), B(t), C(t) and f,g,h!

J=f (x)g(y)h(z)

0 = dJ
dt

= v ⋅∇J    ⇒   v = ∇J × E

0 = ∇⋅v = −∇J ⋅ ∇ × E( )

Surprise!
• There is an Invariant!

E = A
f
, B
g
,C
h

⎛
⎝⎜

⎞
⎠⎟
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• Periodic rolls

• with on/off stirring protocol

Blinking Rolls
ψ 1 = A(t)cos(y)cos(z)
ψ 3 = C(t)cos(x)cos(y)

aaaa

t

A(t)

C(t)

T1 T2T3
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Blinking Roll Map
• For a single roll, the flow can be obtained 

analytically. For                                   the time T 
flow is:

Here sn,cn and dn are Jacobi Elliptic functions with modulus

k = 1− cos2 ycos2 z

Φ(1)
T (x, y, z) =

x

sin−1 sin(y)cn(T )dn(T ) − sin(z)cos2 (y)sn(T )
1− sin2 (y)sn(T )

⎛
⎝⎜

⎞
⎠⎟

sin−1 sin(z)cn(T )dn(T ) + sin(y)cos2 (z)sn(T )
1− sin2 (z)sn(T )

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

ψ 1 = cos(y)cos(z)
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Blinking Roll Map:
 Two Orthogonal Rolls

• Composition of flows for ψ1 and ψ3 give the two 

roll map:

 
f = ΦT1

(1)
ΦT3

(3) = ΦT1
(1)
R−1

ΦT3
(1)
R

where R is rotation by π/2 about y
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Küppers-Lortz Instability
• Convection in a rotating fluid layer

• Assume that rotation is small (centripetal 
acceleration << gravity).

• Onset of instability: rolls grow, then loose stability 
to new rolls at an angle θ ≈120º

Summary of Küppers-Lortz Instability (3)

When , convection rolls are unstable solutions of weakly

nonlinear Boussinesq approximation.

Roll solutions lose stability to rolls rotated at angle in the

direction of rotation

These rolls lose stability to rolls rotated at ,

Characteristic frequency for roll switching is observed in

experiments

In the limit of large Prandtl number, (or , some

ambiguity here) (Lortz, 1969, Clune, 1993)

Lagrangian Particle Transport/Mixing in Blinking Roll Systems – p.19

Kuppers, G. and D. Lortz (1969). “Transition for Laminar Convection to 
Thermal Turbulence in a Rotating Fluid Layer.” J. Fluid Mech 35: 609-620.
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Küppers-Lortz Instability
• Model using Boussinesq equations

• Instability gives tilted rolls

• where tanη is proportional to the rotation rate

y

x

z

y

x

a b

uη = −(tanη sin y sin z,− sin y sin z,− cos y cos z)



Busse-Heikes Model
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A1 = A1 1− A1
2 −α A2

2 − β A3
2( )

A2 = A2 1− A2
2 −α A3

2 − β A1
2( )

A3 = A3 1− A3
2 −α A1

2 − β A2
2( )

b

1

1 A
1

2
A

a

1

1 A

A
2

A

1

d

1
3

A

1
1

1

2

A 1

1

2

c

A

A
1

u(x, t) = A1(t)uη (x)+ A2 (t)Ruη (R
Tx)+ A3(t)R

Tuη (Rx)

Attracting heteroclinic cycle
Periodic orbit stabilized with small noise

Busse, F. H. and K. E. Heikes (1980). “Convection in a 
Rotating Layer - Simple Case of Turbulence.” Science 208: 

173-175.

Rotation 
by 120◦

t

c d

A

3A

1 A2



T = 0.2
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z

x y

z

x
y

a b c d

Lyapunov Cross Section Phase Space

T = τ switch
τ roll
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T = 0.5

Lyapunov Cross Section Phase Space

T = τ switch
τ roll
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T = 1.0

ba

y
x

z

T = τ switch
τ roll



Elliptic Invariant Circles
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Circle Bifurcations
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Confined & Regular

T=1.0
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Confined Mixing

T=1.172



Exit Time Distribution
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Probability of First 
exit from Hexagonal 

cell at time t

p ~ t γ

cb
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Mean-Square Displacement
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Volume Preserving 
Normal Forms



Bifurcations
• Characteristic polynomial has two parameters
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0<λ1=λ2≤1

1≤λ1=λ2

sad
dle

 no
de 
λ=

1

−1≤λ1=λ2<0

period doubling λ=−1

105-5-10

σ

10

5

-5

-10

τ

λ1=λ2≤−1

Codimension-one curves:

Codimension-two points:
σ = τ = 2 : λ = (1,1,1)

σ = τ = −1: λ = (−1,−1,1)

 
τ = Tr(Df ), σ = τ 2 −Tr(Df 2 )( )

σ = τ : λ = 1
σ + τ = −1: λ = −1

p(λ) = λ 3 −τλ2 +σλ −1



Bifurcations
• (1,1,1) Normal Form
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Unfolding of bifurcation:

Equivalent to Lomelí 
Quadratic map!

0<λ1=λ2≤1

1≤λ1=λ2

sad
dle

 no
de 
λ=

1

−1≤λ1=λ2<0

period doubling λ=−1

105-5-10

σ

10

5

-5

-10

τ

λ1=λ2≤−1

f (x, y, z) =
1 1 0
0 1 1
0 0 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

x
y

z + p(x, y)

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

p = −ε + µy + ax2 + bxy + cy2



Quadratic Volume Preserving Maps
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• Every quadratic volume preserving 
diffeomorphism with a quadratic inverse is 
conjugate to the  a normal form

Where Q(x,y) is a quadratic form.

• This map also arises in homoclinic bifurcations  of 
3D flows near a quadratic homoclinic tangency.

′ x = α + τx + z + Q(x, y)
′ y = x
′ z = y

Lomelí & Meiss, Nonlinearity 11 557(98).

Gonchenko, S. V., I. I. Ovsyannikov, C. Simó and D. V. Turaev (2005). “Three-Dimensional  
Hénon-Like Maps and Wild Lorenz-Like Attractors” Int. J. of Bifurcation and Chaos 15(11).



(111) Normal Form

• Two fixed points

• Saddle-node-Hopf 
bifurcation along 
ε = 0 and –4<μ<0.

• Period doubling at 
ε  = 0, μ = –4.
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ω = 1/3

ω = 1/4

ω = 1/5

ω = 1/6

−2

2

μ

0

–4

0.5
ε

0.30.1

 p = −ε + µy + x2 +xy +y2

(± ε ,0,0)

(x, y, z)→ (x + y, y + z + p, z + p)



Lomelí, H. E. and J. D. Meiss (2000). “ Codimension One Melnikov Method” Chaos 10(1): 109-121.



Bounded Orbits
• Fraction of orbits 

in a cube of size 
√ε that remain 
bounded for 100 
iterations. 
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ω = 1/3

ω = 1/4

ω = 1/2

ω = 1/5

ω = 1/6

−2

μ

0

–4

0.5ε 0.30.1



Saddle-node-Hopf
• Normal form near                       , ω irrational
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e2π iω ,e−2π iω ,1( )
′r = r 1− 2γ z( )
′θ = θ +ω + τ z
′z = −δ + z + βr + γ z2

+O(3)

0 1 2 3 4

-2

-1

1

2

!

"

(s,!) = (1,–1)

0 1 2 3 4

-2

-1

1

2

!

"
(s,!) = (1,1)

Supercritical case
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μ=–2.4

ε=0.1

ε=0.11

ε=0.1ε=0.1

ε=0.12



μ=–2.8

ε=0.01
ε=0.026

ε=0.01

ε=0.028

ε=0.02
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Many more Questions
• Can experimentalists see 

the invariant tori in 
convection experiments?

• How to better quantify 
and control transport for 
3D Systems

• How are invariant tori 
created/destroyed?

• Are there remnants of 
invariant tori in the 
chaotic seas? Cantori?

• What parameters 
optimize the mixing?

• Can one develop robust 
algorithms for finding tori 
and their invariant 
manifolds?

• Generalizations of KAM 
theory exist, but critical 
tori not studied.


