Dynamics of 3D Volume
 J.D. Meiss
 Uniyersity of Colorado
 at Boulder

with H. Lomelí, A. Gomez, P. Mullowney, K. Julien, \& H. Dullin

Why Maps?

A dynamical system is a rule for evolution on a space of states

Dynamical systems can have continuous time (flow) or discrete time (map)

Maps that preserve volume are common in applications

Poincaré sections of Hamiltonian flows
Magnetic field line maps $\quad \frac{d \mathbf{x}}{d t}=\mathbf{B}(\mathbf{x}, t), \quad \nabla \cdot \mathbf{B}=0$
Structure of field lines in a Plasma confinement device or the magnetosphere
Lagrangian particle motion in an incompressible, time dependent flow
Geostrophic dynamics
Turbulent mixing problems $\quad \frac{d \mathbf{x}}{d t}=\mathbf{u}(\mathbf{x}, t), \nabla \cdot \mathbf{u}=0$

Volume Preserving Maps

Specialize to the 3D case

$$
\begin{gathered}
f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, \quad \operatorname{det}(D f)=1 \\
\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=f(x, y, z)
\end{gathered}
$$

where $D f$ is the Jacobian matrix, and ' means the new point
A canonical example is the abc map

$$
\begin{aligned}
& x^{\prime}=x+a \sin (2 \pi z)+c \cos (2 \pi y) \\
& y^{\prime}=y+b \sin \left(2 \pi x^{\prime}\right)+a \cos (2 \pi z) \\
& z^{\prime}=z+c \sin \left(2 \pi y^{\prime}\right)+b \cos \left(2 \pi x^{\prime}\right)
\end{aligned}
$$

Trace Maps
 $$
\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=(y, z,-x+2 y z)
$$

$$
\Phi(x, y, z)=x^{2}+y^{2}+z^{2}-2 x y z-1
$$

Maps with an Invariant

(Suris, (1989). "Integrable Mappings of the Standard Type." Func. Anal. \& Appl. 23: 74-76.)

Fluid Mixing Models

Mixing vs Diffusion

A passive scalar (blob of die) mixes in a fluid when
it stretches and folds due to fluid motion
it diffuses due to Brownian motion
Here we ignore the diffusive time scale and only consider advective mixing

Advective Mixing

A passive scalar follows the fluid:

$$
\dot{\mathbf{X}}=\mathbf{u}\left(\mathbf{X}, \overleftarrow{t), \quad \mathbf{X}(0)=\mathbf{X}_{o}} \mathbf{u (x , t)} \quad \begin{array}{l}
\text { is solution of Navier- } \\
\text { Stokes PDEs }
\end{array}\right.
$$

Neglect diffusion if time scale is short enough
We assume that the flow is laminar, so turbulent mixing is not active.

Laminar flows are common for small-scale mixers (MEMs devices, Microbiology devices)

Experimental Advection

Leong (1989): periodically modulated cavity flow

Experimental Advection Off-axis stirring

Fountain, Khakhar, Mezic, and Ottino

Aref's Blinking Vortex

Aref defined the blinking vortex flow by periodically stirring an incompressible, viscous fluid

$$
\frac{d x}{d t}=u(x, t)=\nabla \psi(x, t) \times \hat{z}
$$

Modeled as point vortices applied for times T_{1} and T_{2}
Explicit map can be obtained.

Roll Switching

Binary Convection

Ethanol-Water mixture in thin layer, heated from below

FIG. 10. Flow patterns in $\Gamma=24$ square cell at $T=25^{\circ} \mathrm{C}, 40$ wt. \% of ethanol: (a) induced "perfect" square grid at $r=1.07$; (b) roll pattern at $r \simeq 2.6$, (c), (d), (e) sequential pictures of the oscillating structure at $r=1.19$. The time difference between pictures is $12.5 \tau_{\mathrm{u}, 7}$.

FIG. 11. The light intensity of the shadowgraph at a chosen location in the large square cell with $40 \mathrm{wt} . \%$ of ethanol for five different values of r. The numbers given on the figure are averaged values of r.

3D Stirring Model

Incompressible fluid written as a sum of stream functions:
$d \mathbf{x}$
$\frac{d \mathbf{x}}{d t}=\mathbf{u}(\mathbf{x}, t)=\nabla \psi_{1} \times \hat{x}+\nabla \psi_{2} \times \hat{y}+\nabla \psi_{\psi_{3}} \psi_{3} \times \hat{z}$
Roll form:

$$
\begin{aligned}
& \psi_{1}=A(t) g(y) h(z) \\
& \psi_{2}=B(t) f(x) h(z) \\
& \psi_{3}=C(t) f(x) g(y)
\end{aligned}
$$

Surprise!

There is an Invariant!

$$
J=f(x) g(y) h(z)
$$

$$
\begin{aligned}
& 0=\frac{d J}{d t}=v \cdot \nabla J \Rightarrow v=\nabla J \times E \\
& 0=\nabla \cdot v=-\nabla J \cdot(\nabla \times E) \\
& E=\left(\frac{A}{f}, \frac{B}{g}, \frac{C}{h}\right)
\end{aligned}
$$

Blinking Rolls

Periodic rolls $\quad \psi_{1}=A(t) \cos (y) \cos (z)$

$$
\psi_{3}=C(t) \cos (x) \cos (y)
$$

with on/off stirring protocol

Blinking Roll Map

For a single roll, the flow can be obtained analytically. For $\psi_{1}=\cos (y) \cos (z)$ the time T flow is:

$$
\Phi^{(1)}(x, y, z)=\left(\begin{array}{c}
x \\
\sin ^{-1}\left(\frac{\sin (y) \operatorname{cn}(T) \operatorname{dn}(T)-\sin (z) \cos ^{2}(y) \operatorname{sn}(T)}{1-\sin ^{2}(y) \operatorname{sn}(T)}\right) \\
\sin ^{-1}\left(\frac{\sin (z) \operatorname{cn}(T) \operatorname{dn}(T)+\sin (y) \cos ^{2}(z) \operatorname{sn}(T)}{1-\sin ^{2}(z) \operatorname{sn}(T)}\right)
\end{array}\right)
$$

Here sn, cn and dn are Jacobi Elliptic functions with modulus

$$
k=\sqrt{1-\cos ^{2} y \cos ^{2} z}
$$

Blinking Roll Map: Two Orthogonal Rolls

Composition of flows for Ψ_{1} and Ψ_{3} give the two roll map:

$$
f=\Phi_{T_{1}}^{(1)} \circ \Phi_{T_{3}}^{(3)}=\Phi_{T_{1}}^{(1)} \circ R^{-1} \circ \Phi_{T_{3}}^{(1)} \circ R
$$

where R is rotation by $\pi / 2$ about y

Küppers-Lortz Instability

Convection in a rotating fluid layer
Assume that rotation is small (centripetal acceleration \ll gravity).
Onset of instability: rolls grow, then loose stability to new rolls at an angle $\theta \approx 120^{\circ}$

Küppers-Lortz Instability

Model using Boussinesq equations
Instability gives tilted rolls

$$
\mathbf{u}_{\eta}=-(\tan \eta \sin y \sin z,-\sin y \sin z,-\cos y \cos z)
$$

where $\tan \eta$ is proportional to the rotation rate

Busse-Heikes Model

$$
\mathbf{u}(\mathbf{x}, t)=A_{1}(t) \mathbf{u}_{\eta}(\mathbf{x})+A_{2}(t) R \mathbf{u}_{\eta}\left(R^{T} \mathbf{x}\right)+A_{3}(t) R^{T} \mathbf{u}_{\eta}(R \mathbf{x})
$$

$$
\begin{aligned}
& \dot{A}_{1}=A_{1}\left(1-\left|A_{1}\right|^{2}-\alpha\left|A_{2}\right|^{2}-\beta\left|A_{3}\right|^{2}\right) \\
& \dot{A}_{2}=A_{2}\left(1-\left|A_{2}\right|^{2}-\alpha\left|A_{3}\right|^{2}-\beta\left|A_{1}\right|^{2}\right) \\
& \dot{A}_{3}=A_{3}\left(1-\left|A_{3}\right|^{2}-\alpha\left|A_{1}\right|^{2}-\beta\left|A_{2}\right|^{2}\right)
\end{aligned}
$$

$\mathrm{T}=0.2$

$$
T=\frac{\tau_{\text {switch }}}{\tau_{\text {roll }}}
$$

$\mathrm{T}=0.5$

$$
T=\frac{\tau_{\text {switch }}}{\tau_{\text {roll }}}
$$

$\mathrm{T}=1.0$

$$
T=\frac{\tau_{\text {switch }}}{\tau_{\text {roll }}}
$$

Elliptic Invariant Circles

Circle Bifurcations

Circle Bifurcations

Confined \& Regular

Confined Mixing

Exit Time Distribution

Mean-Square Displacement

Volume Preserving Normal Forms

Bifurcations

Characteristic polynomial has two parameters

$$
\begin{gathered}
p(\lambda)=\lambda^{3}-\tau \lambda^{2}+\sigma \lambda-1 \\
\tau=\operatorname{Tr}(D f), \quad \sigma=1 / 2\left(\tau^{2}-\operatorname{Tr}\left(D f^{2}\right)\right) \\
\sigma=\tau: \quad \lambda=1 \\
\sigma+\tau=-1: \quad \lambda=-1 \\
\sigma=\tau=2: \quad \lambda=(1,1,1) \\
\sigma=\tau=-1: \quad \lambda=(-1,-1,1)
\end{gathered}
$$

Bifurcations

Quadratic Volume Preserving Maps

Lomelí \& Meiss, Nonlinearity 11 557(98).

Every quadratic volume preserving diffeomorphism with a quadratic inverse is conjugate to the a normal form

$$
\begin{aligned}
& x^{\prime}=\alpha+\tau x+z+Q(x, y) \\
& y^{\prime}=x \\
& z^{\prime}=y
\end{aligned}
$$

Where $Q(x, y)$ is a quadratic form.
This map also arises in homoclinic bifurcations of 3D flows near a quadratic homoclinic tangency.

(III) Normal Form

$$
\begin{gathered}
(x, y, z) \rightarrow(x+y, y+z+p, z+p) \\
p=-\varepsilon+\mu y+x^{2}+1 / 2 x y+1 / 2 y^{2}
\end{gathered}
$$

Bounded Orbits

Fraction of orbits in a cube of size
$\sqrt{ } \in$ that remain bounded for 100 iterations.

Saddle-node-Hopf

Normal form near $\left(e^{2 \pi i \omega}, e^{-2 \pi i \omega}, 1\right), \omega$ irrational

$$
\begin{aligned}
& r^{\prime}=r(1-2 \gamma z) \\
& \theta^{\prime}=\theta+\omega+\tau z \quad+O(3) \\
& z^{\prime}=-\delta+z+\beta r+\gamma z^{2}
\end{aligned}
$$

$$
0 \text { 2in }
$$

Many more Questions

- Can experimentalists see the invariant tori in convection experiments?
- How to better quantify and control transport for 3D Systems
- How are invariant tori created/destroyed?
- Are there remnants of invariant tori in the chaotic seas? Cantori?
- What parameters optimize the mixing?
- Can one develop robust algorithms for finding tori and their invariant manifolds?
- Generalizations of KAM theory exist, but critical tori not studied.

