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Outline

Motivation
Spatiotemporal chaos and its control in
cardiac arrhythmias.
Effects of conduction inhomogeneities.

Models for cardiac tissue.

Suppressing cardiac chaos.

Numerical simulations of the effects of
conduction and ionic inhomogeneities.

Conclusions.
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Motivation

Cardiac arrhythmias, like ventricular
fibrillation (VF), are a major cause of death in
industrialised countries.

VF: associated with broken spiral waves of
electrical activation on cardiac tissue.

Goal: Understand the dynamics of VF in the
presence of obstacles and develop
low-amplitude defibrillation techniques.
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The Heart
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The Heart

One of the most efficient electro-mechanical
devices.

Rhythm: periodic contractions of atria and
ventricles.

For an average adult 72 bpm, i.e., 2.5 billion
beats in an average life time.

The rhythm is maintained by electrical activity
in heart muscle.

VT or VF destroy this rhythm.
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Cardiac Arrhythmias
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Spiral waves during VF.

VF in a canine heart imaged via voltage sensitive dyes (from W. Ditto).
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Cardiac Cells
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Excitability

Excitation: electrical waves induce
cardiac-muscle contractions which pump
blood.

Threshold: the membrane potential of cardiac
muscle must exceed (≃ -60 mV) before the
action potential is observed.

Once excited, cardiac cells cannot be excited
further during the refractory period (≃ 100
ms).
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Cardiac Action Potential

The Physical Modelling of Cardiac Arrhythmias – p. 13



Cardiac Arrhythmias

They occur when the action potential is
abnormally initiated or abnormally conducted.

They require:
a subtrate, i.e., a region of abnormal tissue;
a trigger, i.e., an ectopic beat;
and possibly other modulating factors.
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Cardiac Arrhythmias

Ectopic beats can arise from metabolic
changes inside a cell.

Reentry or spiral formation can occur
because of an anatomical pathway, a single
premature stimulus, or a steep restitution of
the APD or conduction velocity.
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Reentry
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Underlying Cause of VF

Formation of electrical vortices
2D (spiral) or 3D (scroll) waves of action
potential that create reentrant pathways of
electrical activity.

Spiral waves lead to an abnormally rapid
heart beat (t ≃ 200 ms) (Ventricular
Tachycardia - VT).

VT , if untreated, leads to VF in a few
seconds through the breakup of spiral wave.
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Nonconducting Obstacles

Such inhomogeneities and obstacles, present in
cardiac tissue, can yield the following:

Spiral breakup, i.e., VF.

Partial suppression, i.e., VF → VT transition.

Complete suppression of VF.
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Models of Ventricular Tissue

Basically reaction-diffusion equation of the form

∂V

∂t
+

I

C
= D∇2V

Various Models; we concentrate on:

Luo-Rudy Model (realistic);

Panfilov Model (simplified).
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The Panfilov Model

This is the simplest model that shows spiral
breakup as in VF; here e ≡ V.

∂e/∂t = ∇2e − f(e) − g,

∂g/∂t = ǫ(e, g)(ke − g).

f(e) : piecewise linear;

ǫ(e, g): information about refractory periods.
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Panfilov model

f(e) = C1e, e < e1,

f(e) = C2e + a, e1 ≤ e ≤ e2,

f(e) = C3(e − 1), e > e2;

ǫ(e, g) = ǫ1, e < e2,

ǫ(e, g) = ǫ2, e > e2,

ǫ(e, g) = ǫ3, e < e1, g < g1.
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Numerical Scheme

Forward Euler in time and finite difference in
space.

Space step δx=0.5 dimensionless units.

Time step δt=0.022 dimensionless units.

Dimensioned time T is 5ms times
dimensionless time.

One spatial unit is 1mm. (Ref: A. V. Panfilov
and P. Hogeweg, Phys. Lett. A 176, 295 (1993).)
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The Luo-Rudy Model

Biologically realistic model (Luo and Rudy I
1991; II 1994). Incorporates details of ionic
currents and ion channels.

LR I model: 7 coupled ODEs describing the
activity of each cardiac cell for the
transmembrane potential (V ), the intracellular
calcium ion concentration (Cai), and 9
ion-channel gating variables
m,h, j,X,Xi, d, f,K1,Kp.
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LR I model

The transmembrane potential V follows a
reaction-diffusion equation:

∂V

∂t
+

ILR

Cm

= D∇2V

Cm = 1µF/cm2 is the membrane capacitance,
D(kΩ−1) is the conductivity constant and ILR

(µA/cm2) is the instantaneous total ionic current
through the cell:

ILR = INa + ISi + IK + IK1 + IKp + Ib.
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LR I model: Currents

Inward currents (Na and Ca) cause
depolarization.

Outward currents (K) cause repolarization.
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LR I model: Currents

This flow of ions through channels in the
membrane depends on concentration
electrical gradients.

The Nernst potential at which the chemical
and electrical gradients are equal and
opposite is

Eion =
RT

nF
ln

[ion]o
[ion]i

; (1)

R : gas constant; T : temperature; n : valence of the ion; F : Faraday’s constant; [ion]o

and [ion]i : extra- and intra-cellular ionic concentrations.
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LR I model: Currents

The amplitude of an ionic current depends on the
conductance of the membrane and the driving
force:

Iion = ¯Gion(Vm − Eion) (2)

Conductance ¯Gion : product of the maximal
conductance of all ion channels in the cell (Gion)
and the probability ǫ of a channel being in the
open state:

Iion = Gionǫ(Vm − Eion) (3)
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LR I model: Currents

Inward Currents:
INa: Fast sodium current

INa = GNam
3hj(V − ENa)

ENa=54.4 mV; ISi: Slow inward current (Ca++)

ISi = GSidf(V − ESi)

ESi = 7.7 − 13.0287 ln([Ca]i)
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Ca ion dynamics

The intracellular Ca ion concentration equation:

d[Ca]i
dt

= −10−4ISi + 0.07(10−4 − [Ca]i)
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LR I model: Outward Currents

IK : Time-dependent potassium current

IK = GKXXi(V − EK)

IK1: Time-independent potassium current

IK1
= GK1

K1∞(V − EK1
)
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LR I model: Outward Currents

IKp: Plateau potassium current

IKp
= GKp

Kp(V − EKp
)

Ib: Background current

IKb
= GKb

(V − EKb
)
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Gating Variables

The gating variables m,h, j, d, f,X, and K1, are
the probabilities of the channels being in the
open state. They obey ODEs of the form:

dǫ

dt
= αǫ(1 − ǫ) − βǫǫ

αǫ and βǫ : rates at which gates open and close.

The Physical Modelling of Cardiac Arrhythmias – p. 32



Gating Variables

Steady-state: dǫ/dt = 0 yields

ǫ∞ =
αǫ

(αǫ + βǫ).
(4)

ǫ = ǫ∞ − (ǫ∞ − ǫ0) exp(−t/τ) (5)

τ = 1/(αǫ + βǫ) (6)
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Rate Constants

By measuring the voltage dependences of ǫ and
τ and by using the above equations we can
obtain αǫ and βǫ for each value of the membrane
potential. These results for αǫ and βǫ can be
fitted to obtain the following relations:
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Rate Constants

αh = 0, if V ≥ −40 mV,

= 0.135 exp [−0.147 (V + 80)], otherwise;

βh =
1

0.13 (1 + exp [−0.09(V + 10.66)])
,

if V ≥ −40 mV,

= 3.56 exp [0.079 V ] + 3.1 × 105 exp [0.35 V ],

otherwise;
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Rate Constants

αj =

0, if V ≥ −40 mV,

(exp [0.2444 V ] + 2.732 × 10−10 exp [−0.04391 V ])

−7.865 × 10−6{1 + exp [0.311 (V + 79.23)]}

×(V + 37.78),

otherwise;
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Rate Constants

βj =
0.3 exp [−2.535 × 10−7 V ]

1 + exp [−0.1 (V + 32)]
, if V ≥ −40 mV,

=
0.1212 exp [−0.01052 V ]

1 + exp [−0.1378 (V + 40.14)]
, otherwise;
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Rate Constants

αm =
0.32 (V + 47.13)

1 − exp [−0.1 (V + 47.13)]
;

βm = 0.08 exp [−0.0909 V ];

αd =
0.095 exp [−0.01 (V − 5)]

1 + exp [−0.072 (V − 5)]
;

βd =
0.07 exp [−0.017 (V + 44)]

1 + exp [0.05 (V + 44)]
;
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Rate Constants

αf =
0.012 exp [−0.008 (V + 28)]

1 + exp [0.15 (V + 28)]
;

βf =
0.0065 exp [−0.02 (V + 30)]

1 + exp [−0.2 (V + 30)]
;

αx =
0.0005 exp [0.083 (V + 50)]

1 + exp [0.057 (V + 50)]
;

βx =
0.0013 exp [−0.06 (V + 20)]

1 + exp [−0.04 (V + 20)]
;
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Rate Constants

αK1 =
1.02

1 + exp [0.2385 (V − EK1 − 59.215)]
;

βK1 =
[0.49124 exp [0.08032 (V − EK1 + 5.476)]

1 + exp [−0.5143 (V − EK1 + 4.753)]

+ exp [0.06175 (V − EK1 − 594.31]].

Xi =
2.837 exp 0.04(V + 77) − 1

(V + 77) exp 0.04 (V + 35)
, if V > −100mV,

= 1, otherwise;

Kp =
1

1 + exp [0.1672 (7.488 − V )]
.
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Initial Condition
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Spiral Turbulence (Panfilov Model)

Animation
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Spiral Turbulence (Panfilov Model)

The Initial condition used in the simulation for the field V and g shown in A and B

respectively. C and D shows e and g fields after t=2750 ms. Local time series and power

spectrum is shown in E and F respectively.
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Panfilov Model

The maximum Lyapunov exponent λm at time t versus t (left) for for the Panfilov model.

λm approaches a positive constant (0.2) and then decays at large times to negative

values indicating a long-lived chaotic transient which finally decays to a quiescent state

with and everywhere. The Kaplan-Yorke dimension DKY (right) in the spatiotemporally

chaotic transient versus the linear system size L.
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The Reduced P B Model

Uses human cell data

Incorporates ion pumps

Dynamics similar to, but more complicated
than, the LR I model.
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LR Model: Numerical Method

Forward Euler in time and finite difference in
space.

δt=0.01ms, δx=0.0025 cm.

The resting-state value of V is -84 mV. All
gating variables are initialised to their
steady-state value, i.e., ǫ∞.
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Initial Conditions

Initial stimulus: 150 µA/cm2 at the top
boundary for 1ms. This initiates a plane wave.

Next stimulus: from left boundary at 285 ms
after the first stimulus (for 0.45 ms).

Last stimulus:from the top boundary at 465
ms for 0.45 ms.

Spiral formation by 665 ms.

Spiral breakup by 850 ms.
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Spiral Turbulence: LR Model
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Spiral Turbulence: LR Model

Initial conition used for the simulation of

LR I model. The simulation domain is 90 × 90 mm2. The initial transmembrane voltage

V shown in (A) evolves into (B) after 600 ms and into (C) after 1000 ms. D, E, and F

show the local time series, interbeat interval, and powerspectrum calculated from a

sample of 261 424 iterations.
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Spiral Turbulence: redPB Model
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Defibrillation

Pharmaceutical means: Administer
medication ...

Electrical means:
Electrical defibrillation: Two paddles are
placed on the chest and a large electric
shock (∼ 5 kV) applied across them.
Internal defibrillation: Administer electrical
shocks (∼ 600 V) through an implantable
electrical defibrillator which also detects
the onset of VF.
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Defibrillation
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Defibrillation
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Control in 2-D Models

The models have non-conducting boundaries
(no-flux or Neumann boundary conditions):
ventricles are electrically insulated from atria.
Observations:

Non-conducting boundaries absorb spiral
defects.

Spirals do not last for appreciable periods in
small systems.
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Operating Principles

Divide the system (L × L) into K2 smaller
blocks.

Isolate the blocks (size L/K) by stimulating
the system along the block boundaries -
making them refractory.
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Operating Principles

Each block is too small to sustain spiral
activity - spirals absorbed by block
boundaries.

After the system is driven to the quiescent
state, controlling stimulation is withdrawn-
block boundaries recover from refractory
state.
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Without Control
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Control ON

Animation The Physical Modelling of Cardiac Arrhythmias – p. 58



Control Parameters in 2-D

Panfilov Model
L = 256
Pulse amplitude ≃ 57.3 mV/ms.
Kept on for τ = 41.2 ms.
This implies a defibrillation current density of
57 µ A/cm2.
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Control in 2-D Panfilov
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Control in 2-D LR
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Panfilov Model : Control in 3-D

Control algorithm as in 2-D with the following
modifications:

Control mesh only on free face of a 3-D
domain (L × L × Lz).

With L = 256 control obtained for Lz.
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Panfilov Model : Control in 3-D

For LZ >4 pulsed control is necessary:

activate control mesh after τ ms;

keep it on for τON ms;

turn it off for τOFF ms;

keep it on for τON ms;

repeat n times.
We find τON=0.11 ms, τOFF =22 ms and
n = 30 suffices. τOFF is comparable to the
duration of one action potential.
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3D Control
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Nonconducting Obstacles

In our models we have introduced nonconducting
inhomogeneities (say 80 × 80 in a 400 × 400
simulation domain) and we find all the three
types of behaviours mentioned above:

Sometimes the inhomogeneity causes spiral
breakup (red).

Sometimes it suppresses VF partially and
converts it into VT (blue).

It can even suppress VF completely (green).
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Obstacle: Panfilov Model, ST

When an obstacle of side 40 mm is

placed at (x =100 mm, y=160 mm) the spiral breaks up. A, B and C shows snapshots at

time 1100 ms, 1650 ms and 2750 ms respectively. The local time series, interbeat

interval IBI,and power spectrum of the transmembrane potential e(x,y,t) are shown in D,

E, and F respectively.
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Obstacle: Panfilov Model, RS

When an obstacle of side 40 mm is placed at (x =100 mm, y=150 mm) the spiral gets

attached to it. A, B and C shows snapshots at time 1100 ms, 1650 ms and 2750 ms

respectively. The wave gets attached to the obstacle.
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Obstacle: Panfilov Model, NS

Spiral wave moves away from the medium in presence of the obstacle. When a square

obstacle of side 40 mm is placed in the medium such that its lower-left corner is at (x

=100 mm, y=140 mm) the the spiral moves away from the medium. A, B and C shows

snapshots at time 1100 ms, 1650 ms and 2750 ms respectively.
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Obstacle: Luo-Rudy Model, ST

An obstacle of side l=18mm is placed at (x = 58.5 mm, y = 63 mm). The spiral

turbulence persist in this case. A,B, and C shows snap shots taken at 200, 600, and

1000 ms respectively. D, E, and F show the local time series, interbeat interval, and

powerspectrum calculated from a sample of 261 424 iterations.
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Obstacle: Luo-Rudy Model, RS

Obstacle of side l=18mm is placed at (x = 58.5 mm, y = 63 mm). The spiral anchores

to the obstacle. A,B, and C shows snap shots taken at 200, 600, and 1000 ms

respectively. D, E, and F show the local time series (taken from (x=45 mm, y=45 mm),

interbeat interval, and powerspectrum calculated from a sample of 261 424 iterations.
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Obstacle: Luo-Rudy Model, NS

Spiral moving away from simulation domain because of the obstacle at (x = 54

mm,y = 63 mm). A,B, and C shows snap shots taken at 200, 600, and 1000 ms

respectively.
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Obstacle: redPB Model, RS

Obstacle of side l=18mm is placed at (x = 67.5 mm, y = 72 mm). The spiral anchors to

the obstacle. A,B, and C shows snap shots taken at 200, 600, and 1000 ms respectively.

D, E, and F show the local time series (taken from (x=45 mm, y=45 mm)), interbeat

interval, and powerspectrum calculated from a sample of 261 424 iterations.
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Animations

Square obstacle, VF
Square obstacle, VT
Square obstacle, NS
Two obstacles, VF
Two obstacles, VT
Two obstacles, NS
3D, ST
3D, RS
3D, NS
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Stability Diagram

The colour of each small square indicates the final state of the system: red indicates

spiral turbulence, blue a single anchored spiral, and green a quiescent state with no

spirals, when the position of the lower-left hand corner of the obstacle coincides with that

of the small square.
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Ionic Inhomogeneities

How do other kinds of heterogeneities in
cardiac tissue affect spiral-wave dynamics ?

The role of ionic heterogeneities in the
system.

Ionic heterogeneities can arise from
ischemia, chronic heart failure or even from
genetic disorders.

They typically affect APD, and its timescales.
They can also change the system from
periodic to quasiperiodic and chaotic states.
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Changing ǫ1 in Panfilov Model

Figure shows the snap shots of V values after 3300 ms and associated powerspectra for

different values of ǫ1. (A) When ǫ1=0.03; Note that there is only fundamental frequency

in the powerspectrum corresponding to Hz indicating periodic spiral wave dynamics. (B)

When ǫ1=0.02, there are two independent fundamental frequencies indicating

quasiperiodic nature of the spiral-wave dynamics. (C) When ǫ1=0.01, the spiral waves

break up and power spectrum is broad, indicating spatiotemporally chaotic dynamics.The Physical Modelling of Cardiac Arrhythmias – p. 76



Changing ǫ1 in Panfilov Model

With ǫout

1
=0.01 and ǫin

1
=0.02, and ihomogeneity placed at (130 mm, 80 mm) spiral

moves away from the medium. The above snap shots are taken at 1100 ms (A), 1650

ms (B) and 2200 ms (C).
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Changing ǫ1 in Panfilov Model

The Spiral wave gets anchored to the inhomogeneity. Here ǫout

1
=0.01 and ǫin

1
= 0.02.

The inhomogeneity is placed at (100 mm, 90 mm). Though the spiral gets anchored note

that the period of spiral wave is not constant, and exhibits quasiperiodic behaviour.
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Conclusions

VF: breakup of spiral/scroll waves induced by
reentrant activity.

Spiral turbulence is a spatiotemporally chaotic
phenomenon in Panfilov, BR and LR models.

The durations of chaotic transients depend on
system size (small mammals are less likely to
get heart attacks than large mammals).

Spiral breakup in these models can be
controlled by low-amplitude pulses.
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Conclusions

Our simulations show that cardiac
arrhythmias depend sensitively on the shape,
size, and positions of conduction
inhomogeneities in ventricular tissue.

This must arise because of a fractal basin
that separates the domain of attraction of VF
from those of VT and quiescent behaviour.

Our work provides a natural explanation for
the large variety of experimental results.

The Physical Modelling of Cardiac Arrhythmias – p. 80



Conclusions

Ionic and timescale heterogeneities also
result in spiral suppression, anchoring, and
complex spiral wave dynamics.

Optimal anti-tachycardia pacing and
defibrillation protocols might well have to be
tailor made for different patients (as is done
already to some extent).
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