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Abstract 

      A new effect called nonlinerly induced diffraction is proposed and discussed. This effect 

is due to the nonlinearity in the  div D  term in Maxwell equations and prevents in a natural 

way the “catastrophical collapse” known from the cubic nonlinear Schroedinger equation. A 

new model equation is derived and its solitary solutions are discussed. 

 

Nonlinear wave equation 

Let us consider propagation of a light-beam ),0,( ZX EE=E  of frequency ω along the z-axis 

in a bulk isotropic Kerr-medium with nonlinear polarization . The 

wave equation [1,2, 3]  can be written in the dimensionless form  
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where E≡ γEX, γ 2=(3ω2χ)/(16β 2c2), 2

2

2
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yx ∂
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+
∂
∂

≡Δ⊥  and the co-ordinates are normalized by 

2βx→x, 2βy→y, 2βz→z; with Lc
εωβ = for the linear wavenumber. Equation (1) accounts 

for a vector, nonparaxial model (see, e.g., [10]) of self-focussing in (2+1)D.  

First three terms in (1) correspond to the NLSE obtained in a paraxial approximation:                                      
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In (1+1) dimension this reads 
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This equation is fully integrated, and has an infinite number of soliton solutions. One of the 

predictions of NLSE is the self-focusing.  The beam focusing increases the field intensity. 
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The higher field intensity – the higher value of PNL which results in further focusing and so 

on. This leads, however, to an unphysical collapse of the beam, known as the catastrophycal  

collapse. A natural limitation of the focusing are the next nonlinear terms introduced first by 

Pushkarov, Pushkarov and Tomov (1979) [1]. They derived qubic-quintic NLSE which 

possesses soliton-like solutions too, even if the equation itself is not fully integrated. The 

behavior of the solutions depends on the sign of the fifth-order term, and, for the appropriate 

sign, prevents beam collapse.  

There is however a fundamental problem whether a restriction exists which follows from the 

internal properties of Maxwell eqs. and does not depend on model properties. We show here 

that such a mechanism exists due to the nonlinearity in the  div D  term (neglected in the 

paraxial approximation). To find the effect of this nonlinearity one has to consider the vector 

model (taking into account all components of E). This leads to Eq. (1). It can be shown [2,3] 

that the leading terms in Eq. (1) are included in the following  “simplified” version: 
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This equation does not contain free parameters. It is written in a dimensionless form and can 

serve as a model equation which describes the nonlinear induced diffraction (NLID) with the 

same generality as NLSE. Note, that even if the NLID equation was derived by means of the 

vector model, it represents a scalar effect.  

 

Solitary wave solutions 

 

In order to see the difference between the vector model Eq. (1) and the NLID Eq. (2) we 

consider them in parallel. We look for solitary-wave solutions of the form     

                                                    )exp(),(),,( ziyxFzyxE μ= , 

where μ is the nonlinear wavenumber shift. Then  Eqs. (1) and (2) reduce to one and the same 

equation, but with different values of the coefficients: 
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The quantities a=12, b=24 and k=μ refer to the solution of Eq. (2) whereas a=32/3, b=68/3 

and k=μ+μ2 refer to Eq. (1). A variational method [7, 11] leads to the following form of Eq. 

(3) for NLID: 
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where
242

242

0
kFFF

L +−
∇

=  is the Lagrangian associated with the stationary NLS 

equation. For a trial function ( ) ( )[ ]2222),( byaxAexpyxF −−=  (see, e.g., [7]) the 

parameters of the solution are related to each other according to: 
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A perturbation scheme is another approach to solving Eq. (3). With transformation 

ϕcosrx = , ϕsinry =  the solution can be written  in the form 

ϕϕ 2cos)(( 1 rr )() 0 frf ++),( 0FrF = , kkk Δ+= 0 , where f0,  f1 and Δk are the first order 

corrections, and Eq. (3) reduces to: 
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Equations (6), (7) and (8) are solved by using the shooting technique. The solution of 

Eq. (6) is checked by comparison with the result in Ref. [13].  
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Fig. 1. The solutions of Eq. (3) show that the NLID prevails over the longitudinal-field-

component effect. In the NLID model (Eq. (2)) the obtained nonlinear wavenumber shift is   

( ) ( )74.1/86.4/ 42 AANLID +≈μ   

(up to the A4–order), whereas the full – vector and nonparaxial model (Eq. (1)) – gives  

( ) ( )[ ])52.13/1()52.20/1(174.1/86.4/ 42 −−+≈ AAVNμ .  

The first correction in the second term is due to the longitudinal field component and the 

second one is related to the nonparaxiality, thus validating the use of Eq. (2) instead of Eq.(1).  

 

Beam propagation analysis 

With an assumption for a small deviation from a circular symmetry of the beam (which is 

equivalent to not too strong NLID) the power invariant of Eq. (4) is given by 

ϕdrdEErP )( 4
π2

0 0

2

∫ ∫
∞

+= , up to 4E –order.  

The solitary wave beams display oscillations (periodical focusing and defocusing) as 

Fig 2(a), (b) shows. The period of the oscillations rapidly decreases with the increase of the 

input power. The oscillating behaviour can not be associated only with the deviations of the 

initial condition (obtained from the perturbation scheme) from the exact solution of Eq. (3) 

because if this is the case, the decrease of the input power increases the accuracy of the 

perturbative approach and, thus, the amplitude of the oscillations should decrease. 
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However, the situation is the opposite one: 

the stabilizing action of NLID increases 

with the power increase. The sensitivity of 

the beam behaviour to small changes of the 

input shape, at lower power values, is 

demonstrated in Fig. 2(c). This sensitivity 

is a leftover from the collapse instability,

removed by NLID.Fig. 2  (c) 

The increase of the power (more narrow beams) makes the solitary waves less sensitive to 

deviations of their shape from that of the exact solutions of Eq. (3), i.e. they are more stable. 

 

Conclusions 

Bright spatial solitary waves in bulk self-focusing Kerr medium influenced by NLID are 

studied both with respect to their stationary (amplitude, width, power etc.) and dynamical 

(stability) properties. The stabilizing role of NLID is demonstrated.  
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