A Unified Approach to Attractor Reconstruction

Lou Pecora, Linda Moniz, Jon Nichols, \& Tom Carroll
Naval Research Lab, Washington, DC

CHAOS 17 to appear March 2007

Thanks to: Matt Kennel, Lev Tsimring, \& Henry Abarbanel, INLS@UCSD

Workshop: Perspectives in Nonlinear Dynamics July 2007

General Problem

We can go from time series to attractor geometry.

"Geometry from time series," N.H. Packard, J.P. Crutchfield, J.D. Farmer et al., Physical Review Letters 45, 712 (1980).

$$
\begin{gathered}
x\left(t_{1}\right), x\left(t_{2}\right), x\left(t_{3}\right), x\left(t_{4}\right), \ldots, x\left(t_{N}\right) \\
\mathbf{v}\left(t_{1}\right)=\left(x\left(t_{1}\right), x\left(t_{2}\right), x\left(t_{3}\right)\right) \\
\mathbf{v}\left(t_{2}\right)=\left(x\left(t_{2}\right), x\left(t_{3}\right), x\left(t_{4}\right)\right)
\end{gathered}
$$

FIG. 1. (x, y) projection of Rossler (Ref. 7).

FIG. 2. (x, \dot{x}) reconstruction from the time series.

$$
\mathbf{v}\left(t_{n}\right)=\left(\dot{x}\left(t_{n}\right), x\left(t_{n}+\tau\right), x\left(t_{n}+2 \tau\right)\right)
$$

We can go from time series to attractor geometry.

"Geometry from time series," N.H. Packard, J.P. Crutchfield, J.D. Farmer et al., Physical Review Letters 45, 712 (1980).

$$
\begin{gathered}
x\left(t_{1}\right), x\left(t_{2}\right), x\left(t_{3}\right), x\left(t_{4}\right), \ldots, x\left(t_{N}\right) \\
\mathbf{v}\left(t_{1}\right)=\left(x\left(t_{1}\right), x\left(t_{2}\right), x\left(t_{3}\right)\right) \\
\mathbf{v}\left(t_{2}\right)=\left(x\left(t_{2}\right), x\left(t_{3}\right), x\left(t_{4}\right)\right)
\end{gathered}
$$

FIG. 1. (x, y) projection of Rossler (Ref. 7).

FIG. 2. (x, \dot{x}) reconstruction from the time series.
$\mathbf{v}\left(t_{n}\right)=\left(\dot{x}\left(t_{n}\right), x\left(t_{n}+\tau\right), x\left(t_{n}+2 \tau\right)\right)$

We can go from time series to attractor geometry.

"Geometry from time series," N.H. Packard, J.P. Crutchfield, J.D. Farmer et al., Physical Review Letters 45, 712 (1980).

$$
\begin{gathered}
x\left(t_{1}\right), x\left(t_{2}\right), x\left(t_{3}\right), x\left(t_{4}\right), \ldots, x\left(t_{N}\right) \\
\mathbf{v}\left(t_{1}\right)=\left(x\left(t_{1}\right), x\left(t_{2}\right), x\left(t_{3}\right)\right) \\
\mathbf{v}\left(t_{2}\right)=\left(x\left(t_{2}\right), x\left(t_{3}\right), x\left(t_{4}\right)\right)
\end{gathered}
$$

FIG. 1. (x, y) projection of Rossler (Ref. 7).

FIG. 2. (x, \dot{x}) reconstruction from the time series.

$$
\mathbf{v}\left(t_{n}\right)=\left(\dot{x}\left(t_{n}\right), x\left(t_{n}+\tau\right), x\left(t_{n}+2 \tau\right)\right)
$$

We can go from time series to attractor geometry.

"Geometry from time series," N.H. Packard, J.P. Crutchfield, J.D. Farmer et al., Physical Review Letters 45, 712 (1980).

$$
\begin{gathered}
x\left(t_{1}\right), x\left(t_{2}\right), x\left(t_{3}\right), x\left(t_{4}\right), \ldots, x\left(t_{N}\right) \\
\mathbf{v}\left(t_{1}\right)=\left(x\left(t_{1}\right), x\left(t_{2}\right), x\left(t_{3}\right)\right) \\
\mathbf{v}\left(t_{2}\right)=\left(x\left(t_{2}\right), x\left(t_{3}\right), x\left(t_{4}\right)\right)
\end{gathered}
$$

FIG. 1. (x, y) projection of Rossler (Ref. 7).

FIG. 2. (x, \dot{x}) reconstruction from the time series.

$$
\mathbf{v}\left(t_{n}\right)=\left(\dot{x}\left(t_{n}\right), x\left(t_{n}+\tau\right), x\left(t_{n}+2 \tau\right)\right)
$$

We can go from time series to attractor geometry.

"Geometry from time series," N.H. Packard, J.P. Crutchfield, J.D. Farmer et al., Physical Review Letters 45, 712 (1980).

$$
\begin{gathered}
x\left(t_{1}\right), x\left(t_{2}\right), x\left(t_{3}\right), x\left(t_{4}\right), \ldots, x\left(t_{N}\right) \\
\mathbf{v}\left(t_{1}\right)=\left(x\left(t_{1}\right), x\left(t_{2}\right), x\left(t_{3}\right)\right) \\
\mathbf{v}\left(t_{2}\right)=\left(x\left(t_{2}\right), x\left(t_{3}\right), x\left(t_{4}\right)\right)
\end{gathered}
$$

FIG. 1. (x, y) projection of Rossler (Ref. 7).

FIG. 2. (x, \dot{x}) reconstruction from the time series.

$$
\mathbf{v}\left(t_{n}\right)=\left(\dot{x}\left(t_{n}\right), x\left(t_{n}+\tau\right), x\left(t_{n}+2 \tau\right)\right)
$$

We can go from time series to attractor geometry.

"Geometry from time series," N.H. Packard, J.P. Crutchfield, J.D. Farmer et al., Physical Review Letters 45, 712 (1980).

$$
x\left(t_{1}\right), x\left(t_{2}\right), x\left(t_{3}\right), x\left(t_{4}\right), \ldots, x\left(t_{N}\right)
$$

$$
\begin{aligned}
& \mathbf{v}\left(t_{1}\right)=\left(x\left(t_{1}\right), x\left(t_{2}\right), x\left(t_{3}\right)\right) \\
& \mathbf{v}\left(t_{2}\right)=\left(x\left(t_{2}\right), x\left(t_{3}\right), x\left(t_{4}\right)\right)
\end{aligned}
$$

FIG. 1. (x, y) projection of Rossler (Ref. 7).

FIG. 2. (x, x) reconstruction from the time series.
$\mathbf{v}\left(t_{n}\right)=\left(\dot{x}\left(t_{n}\right), x\left(t_{n}+\tau\right), x\left(t_{n}+2 \tau\right)\right)$
D F. Takens, in Dynamical Systems and Turbulence, Warwick 1980, edited by D. Rand and L.-S. Young (Springer, Berlin, 1981), pp. p. 366.

$$
\begin{gathered}
\mathbf{x}(t) \in \mathbf{R}^{n} \quad s(t)=h[\mathbf{x}(t)] \quad \mathbf{x}(t+\tau)=\Phi_{\tau}[\mathbf{x}(t)] \\
\mathbf{v}\left(t_{n}\right)=\left(h\left[\mathbf{x}\left(t_{n}\right)\right], h\left[\Phi_{\tau}\left[\mathbf{x}\left(t_{n}\right)\right]\right], h\left[\Phi_{2 \tau}\left[\mathbf{x}\left(t_{n}\right)\right]\right]\right)=\Psi\left(\mathbf{x}\left(t_{n}\right)\right)
\end{gathered}
$$

We can go from time series to attractor geometry.

"Geometry from time series," N.H. Packard, J.P. Crutchfield, J.D. Farmer et al., Physical Review Letters 45, 712 (1980).

$$
x\left(t_{1}\right), x\left(t_{2}\right), x\left(t_{3}\right), x\left(t_{4}\right), \ldots, x\left(t_{N}\right)
$$

$$
\begin{aligned}
& \mathbf{v}\left(t_{1}\right)=\left(x\left(t_{1}\right), x\left(t_{2}\right), x\left(t_{3}\right)\right) \\
& \mathbf{v}\left(t_{2}\right)=\left(x\left(t_{2}\right), x\left(t_{3}\right), x\left(t_{4}\right)\right)
\end{aligned}
$$

FIG. 1. (x, y) projection of Rossler (Ref. 7).

FIG. 2. (x, \dot{x}) reconstruction from the time series.

$$
\mathbf{v}\left(t_{n}\right)=\left(\dot{x}\left(t_{n}\right), x\left(t_{n}+\tau\right), x\left(t_{n}+2 \tau\right)\right)
$$

F. Takens, in Dynamical Systems and Turbulence, Warwick 1980, edited by D. Rand and L.-S. Young (Springer, Berlin, 1981), pp. p. 366.

$$
\begin{gathered}
\mathbf{x}(t) \in \mathbf{R}^{n} \quad s(t)=h[\mathbf{x}(t)] \quad \mathbf{x}(t+\tau)=\Phi_{\tau}[\mathbf{x}(t)] \\
\mathbf{v}\left(t_{n}\right)=\left(h\left[\mathbf{x}\left(t_{n}\right)\right], h\left[\Phi_{\tau}\left[\mathbf{x}\left(t_{n}\right)\right]\right], h\left[\Phi_{2 \tau}\left[\mathbf{x}\left(t_{n}\right)\right]\right]\right)=\Psi\left(\mathbf{x}\left(t_{n}\right)\right)
\end{gathered}
$$

τ ?
Embedding dim? Multivariate data?

Current Approaches

Delay time τ ? - autocorrelation or mutual info.

Delay time τ ? - autocorrelation or mutual info.
$-2 \mathrm{D}, \tau=$ const., multiple time scales?

Delay time τ ? - autocorrelation or mutual info.
$-2 \mathrm{D}, \tau=$ const., multiple time scales?

Embedding dimension? - FNN

Delay time τ ? - autocorrelation or mutual info.
$-2 \mathrm{D}, \tau=$ const., multiple time scales?

Embedding dimension? - FNN

- pick scale (1 std?), chaotic systems $=>$ FNN at large τ

Delay time τ ? - autocorrelation or mutual info.
$-2 \mathrm{D}, \tau=$ const., multiple time scales?

Embedding dimension? - FNN

- pick scale (1 std?), chaotic systems=> FNN at large τ

Multivariate time series? - extend univariate methods?

Delay time τ ? - autocorrelation or mutual info.
$-2 \mathrm{D}, \tau=$ const., multiple time scales?

Embedding dimension? - FNN

- pick scale (1 std?), chaotic systems=> FNN at large τ

Multivariate time series? - extend univariate methods?

- not rigorous or optimal - heuristic

Theory - The Reconstruction Criterion

What Takens theorem tells us: Make Independent Coordinates

To add a component to \mathbf{v}, pick time series and τ so new component is independent of previous ones.

$$
\begin{aligned}
& \text { new } \\
& \text { component }
\end{aligned} s_{j_{k+1}}\left(t+\tau_{k+1}\right) \neq f\left(s_{j_{1}}\left(t+\tau_{1}\right), s_{j_{2}}\left(t+\tau_{2}\right), \ldots, s_{j_{k}}\left(t+\tau_{k}\right)\right)
$$

Unified approach $\left(\tau, d, s_{i}\right)$:

What Takens theorem tells us: Make Independent Coordinates

To add a component to \mathbf{v}, pick time series and τ so new component is independent of previous ones.

$$
\begin{aligned}
& \text { new } \\
& \text { component }
\end{aligned} s_{j_{k+1}}\left(t+\tau_{k+1}\right) \neq f\left(s_{j_{1}}\left(t+\tau_{1}\right), s_{j_{2}}\left(t+\tau_{2}\right), \ldots, s_{j_{k}}\left(t+\tau_{k}\right)\right)
$$

Unified approach $\left(\tau, d, s_{i}\right)$:
a statistic to check

Statistics for Functional Dependence

The general mathematical criterion: $s_{j_{k+1}}\left(t+\tau_{k+1}\right)_{=}^{\neq} f\left(s_{j_{1}}\left(t+\tau_{1}\right), s_{j_{2}}\left(t+\tau_{2}\right), \ldots, s_{j_{k}}\left(t+\tau_{k}\right)\right)$
$\left(s_{j_{1}}\left(t+\tau_{1}\right), s_{j_{2}}\left(t+\tau_{2}\right), \ldots, s_{j_{k}}\left(t+\tau_{k}\right)\right) \quad s_{j_{k+1}}\left(t+\tau_{k+1}\right)$

The general mathematical criterion:

$$
s_{j_{k+1}}\left(t+\tau_{k+1}\right)_{=}^{\neq} f\left(s_{j_{1}}\left(t+\tau_{1}\right), s_{j_{2}}\left(t+\tau_{2}\right), \ldots, s_{j_{k}}\left(t+\tau_{k}\right)\right)
$$

$$
\left(s_{j_{1}}\left(t+\tau_{1}\right), s_{j_{2}}\left(t+\tau_{2}\right), \ldots, s_{j_{k}}\left(t+\tau_{k}\right)\right)
$$

$$
s_{j_{k+1}}\left(t+\tau_{k+1}\right)
$$

Function Null Hypothesis:

The general mathematical criterion:

$$
s_{j_{k+1}}\left(t+\tau_{k+1}\right)_{=}^{\neq} f\left(s_{j_{1}}\left(t+\tau_{1}\right), s_{j_{2}}\left(t+\tau_{2}\right), \ldots, s_{j_{k}}\left(t+\tau_{k}\right)\right)
$$

$\left(s_{j_{1}}\left(t+\tau_{1}\right), s_{j_{2}}\left(t+\tau_{2}\right), \ldots, s_{j_{k}}\left(t+\tau_{k}\right)\right)$

$$
s_{j_{k+1}}\left(t+\tau_{k+1}\right)
$$

R^{1}

Function Null Hypothesis:

δ points are mapped into ϵ with a probability $p .=>$ Binomial distribution of probability of getting m points out of n into the ε set. Reject the Null when this probability is in the "tail" of the binomial distribution, i.e. very low probability of this happening.

The general mathematical criterion:

$$
s_{j_{k+1}}\left(t+\tau_{k+1}\right)_{=}^{\neq} f\left(s_{j_{1}}\left(t+\tau_{1}\right), s_{j_{2}}\left(t+\tau_{2}\right), \ldots, s_{j_{k}}\left(t+\tau_{k}\right)\right)
$$

Function Null Hypothesis:
δ points are mapped into ϵ with a probability $p . \quad=>$ Binomial distribution of probability of getting m points out of n into the ε set. Reject the Null when this probability is in the "tail" of the binomial distribution, i.e. very low probability of this happening.

The general mathematical criterion:

$$
s_{j_{k+1}}\left(t+\tau_{k+1}\right)_{=}^{\neq} f\left(s_{j_{1}}\left(t+\tau_{1}\right), s_{j_{2}}\left(t+\tau_{2}\right), \ldots, s_{j_{k}}\left(t+\tau_{k}\right)\right)
$$

The general mathematical criterion:

$$
s_{j_{k+1}}\left(t+\tau_{k+1}\right)_{=}^{\neq} f\left(s_{j_{1}}\left(t+\tau_{1}\right), s_{j_{2}}\left(t+\tau_{2}\right), \ldots, s_{j_{k}}\left(t+\tau_{k}\right)\right)
$$

$p=1 / N$ points fall anywhere on $p=1 / 2$ points fall in or out of ε the attractor set by chance ("flip of a coin").

The general mathematical criterion:

$$
s_{j_{k+1}}\left(t+\tau_{k+1}\right)_{=}^{\neq} f\left(s_{j_{1}}\left(t+\tau_{1}\right), s_{j_{2}}\left(t+\tau_{2}\right), \ldots, s_{j_{k}}\left(t+\tau_{k}\right)\right)
$$

Vary δ and ε to find the smallest ε for which we can reject the Null. Call this ε^{*}. It is the smallest scale at which we can say there is a functional relationship. $=>$ continuity statistic

Average over time series points < $<{ }^{*}>$.

$$
\begin{gathered}
\left(s_{j_{1}}\left(t+\tau_{1}\right)\right) \rightarrow s_{j_{2}}(t+\tau) \Rightarrow \varepsilon^{*}\left(\tau_{2}\right) \\
\mathrm{R}^{1} \rightarrow \mathrm{R}^{1} \\
\left.\left(s_{j_{1}}\left(t+\tau_{1}\right), s_{j_{2}}\left(t+\tau_{2}\right)\right) \rightarrow s_{j_{3}}(\tau)>\tau\right) \Rightarrow \varepsilon^{*}\left(\tau_{3}\right) \quad<\varepsilon^{*}(\tau)> \\
\mathrm{R}^{2} \rightarrow \mathrm{R}^{1}
\end{gathered}
$$

Vary δ and ε to find the smallest ε for which we can reject the Null. Call this ε^{*}. It is the smallest scale at which we can say there is a functional relationship. $=>$ continuity statistic

Average over time series points < $<{ }^{*}>$.

$$
\begin{gathered}
\left(s_{j_{1}}\left(t+\tau_{1}\right)\right) \rightarrow s_{j_{2}}(t+\tau) \Rightarrow \varepsilon^{*}\left(\tau_{2}\right) \\
\mathrm{R}^{1} \rightarrow \mathrm{R}^{1} \\
\left.\left(s_{j_{1}}\left(t+\tau_{1}\right), s_{j_{2}}\left(t+\tau_{2}\right)\right) \rightarrow s_{j_{3}}(\tau)>\tau\right) \Rightarrow \varepsilon^{*}\left(\tau_{3}\right) \quad<\varepsilon^{*}(\tau)> \\
\mathrm{R}^{2} \rightarrow \mathrm{R}^{1}
\end{gathered}
$$

Vary δ and ε to find the smallest ε for which we can reject the Null. Call this ε^{*}. It is the smallest scale at which we can say there is a functional relationship. $=>$ continuity statistic

Average over time series points < $<{ }^{*}>$.

$$
\begin{gathered}
\left(s_{j_{1}}\left(t+\tau_{1}\right)\right) \rightarrow s_{j_{2}}(t+\tau) \Rightarrow \varepsilon^{*}\left(\tau_{2}\right) \\
\mathrm{R}^{1} \rightarrow \mathrm{R}^{1} \\
\left.\left(s_{j_{1}}\left(t+\tau_{1}\right), s_{j_{2}}\left(t+\tau_{2}\right)\right) \rightarrow s_{j_{3}}(t+\tau) \Rightarrow \varepsilon^{*}(\tau)>\tau_{3}\right)<\varepsilon^{*}(\tau)> \\
\mathrm{R}^{2} \rightarrow \mathrm{R}^{1}
\end{gathered}
$$

Some examples.

- Periodic Systems

- Quasiperiodic

Multiple Time Scales

Systems

$$
s(t)=(5+\cos (2 \pi t)) \cos (0.8 t)
$$

$$
\frac{\text { fast }}{\text { slow }} \approx 8
$$

- Quasiperiodic Systems

Using function statistic

Multiple Time Scales

Constant τ (old way)

- Chaotic Systems and large delays

- All statistics (FNN, Redundancy, Continuity) will show minimum functional relationships for large τ in chaotic systems.
- Components of reconstruction vectors become "unrelated" for large τ. Finite data puts an upper bound on the size of τ we can use.

- Chaotic Systems and large delays

- All statistics (FNN, Redundancy, Continuity) will show minimum functional relationships for large τ in chaotic systems.
- Components of reconstruction vectors become "unrelated" for large τ. Finite data puts an upper bound on the size of τ we can use.

- Chaotic Systems and large delays

- All statistics (FNN, Redundancy, Continuity) will show minimum functional relationships for large τ in chaotic systems.
- Components of reconstruction vectors become "unrelated" for large τ. Finite data puts an upper bound on the size of τ we can use.

Henon 3D reconstruction
$\tau_{1}=0, \tau_{2}=1$

Henon 3D reconstruction

$$
\tau_{1}=0, \tau_{2}=1, \tau_{3}=2
$$

ε^{*} for $\mathbb{R}^{d} \rightarrow \mathbb{R}^{1}$

$$
\tau_{1}=0, \tau_{2}=1, \tau_{3}=\underline{10}
$$

Get NN vector ξ in \mathbb{R}^{d+1}

Henon 3D reconstruction

$\tau_{1}=0, \tau_{2}=1, \tau_{3}=2$

ε^{*} for $\mathbb{R}^{d} \rightarrow \mathbb{R}^{1}$
$\tau_{1}=0, \tau_{2}=1, \tau_{3}=\underline{10}$

Get NN vector ξ in \mathbb{R}^{d+1}

Logistic map, 8 iterations, $a=3.77 \quad a x(1-x)$

5000 point sampling
100 point sampling

Logistic map, 8 iterations, $a=3.77 \quad a x(1-x)$

5000 point sampling
100 point sampling

Logistic map, 8 iterations, $a=3.77 \quad a x(1-x)$

5000 point sampling
100 point sampling

Logistic map, 8 iterations, $a=3.77 \quad a x(1-x)$

5000 point sampling
100 point sampling

Logistic map, 8 iterations, $a=3.77 \quad a x(1-x)$

- "Scalar observations from a class of highdimensional chaotic systems: Limitations of the time delay embedding," H. Kantz and E. Olbrich, Chaos 7 (3), 423 (1997).

5000 point sampling
100 point sampling

Logistic map, 8 iterations, $a=3.77 \quad a x(1-x)$

- "Scalar observations from a class of highdimensional chaotic systems: Limitations of the time delay embedding," H. Kantz and E. Olbrich, Chaos 7 (3), 423 (1997).
- "Inferring chaotic dynamics from time-series: On which length scale determinism becomes visible.," E. Olbrich and H. Kantz, Physics Letters A 232, 63 (1997).

5000 point sampling
100 point sampling

- Chaotic Systems and large delays

Null Hypothesis: One component of the reconstruction vector is statistically independent of all others.

Maximum τ Statistic: Test
components of differences between nearest neighbors ξ against the distribution of differences between randomly chosen points in the time series distribution

$$
\Delta \mathbf{x}=\text { NN vector }
$$

Lorenz x time series reconstruction

Lorenz x time series reconstruction

Lorenz x time series reconstruction

epsNH - x(0)

- Multivariate Time Series

Lorenz: $\quad x(t), y(t), z(t)$
$\longrightarrow x(0)$ vs. $x($ tau $)$
$\because x(0)$ vs. $y($ tau $)$
$\ldots x(0)$ vs. $z($ tau $)$
$x(t) \rightarrow x(t+\tau), y(t), z(t)$
$\longrightarrow y(0)$ vs. $x($ tau $)$
$<\mathcal{E}^{*}>$
$y(t) \rightarrow x(t), y(t+\tau), z(t)$
.- $z(0)$ vs. $x($ tau $)$

$z(t) \rightarrow x(t), y(t), z(t+\tau)$
epsNH - x(0)

- Multivariate Time Series

Lorenz: $x(t), y(t), z(t)$

$\longrightarrow x(0)$ vs. $x($ tau $)$
$\therefore \quad x(0)$ vs. $y($ tau $)$
$\ldots x(0)$ vs. $z($ tau $)$
$x(t) \rightarrow x(t+\tau), y(t), z(t)$
$\longrightarrow y(0)$ vs. $x($ tau $)$
$\ldots y(0)$ vs. y (tau)
$\ldots y(0)$ vs. $z(t a u)$
$y(t) \rightarrow x(t), y(t+\tau), z(t)$
$x(t), x(t+\tau), z(t)$

$\ldots \mathrm{z}(0)$ vs. $\mathrm{x}(\mathrm{tau})$
$\because z(0)$ vs. y (tau)
$\ldots z(0)$ vs. $z($ tau $)$
$z(t) \rightarrow x(t), y(t), z(t+\tau)$

Neuronal time series. Lobster stomatogastric ganglia. CPG for swallowing. INLS - UCSD
R.C. Elson, A.I. Selverston, R. Huerta et al., Physical Review Letters 81 (25), 5692 (1998).
J.L. Hindmarsh and R.M. Rose, Proceedings of the Royal Socienty of London B221, 87 (1984).

Martin Falcke, Ramón Huerta, Mikhail I. Rabinovich et al., Biological Cybernetics 82, 517 (2000).

Neuronal time series.

Continuity statistic.

Underembedding statistic.

Neuronal attractor (projected into 3D)

Conclusions \& Remarks
\star A unified approach $<\varepsilon^{*}>$ that offers solutions of delay or advances - multiple time scales
embedding dimension - able to give 'minimal' dimension multivariate time series - choice of which to use
\star A geometric view of the effect of large delays: an undersampling of a highly folded manifold.
\leadsto The Maximum τ statistic offers a reasonable stopping point for delay times.
\star Here we used a "greedy algorithm". Optimal reconstruction: a combinatorial problem. Test all combinations of possible time series and delays.

A Unified Approach to Attractor Reconstruction, CHAOS 17 to appear March 2007

Multidimensional state space and attractors capture the geometry of a dynamical system (x, y, z).

Measurements of physical systems come from sensors that rarely measure the dynamical variables directly and usually are smaller in number than the number of dynamical variables.

Multidimensional state space and attractors capture the geometry of a dynamical system (x, y, z).

Measurements of physical systems come from sensors that rarely measure the dynamical variables directly and usually are smaller in number than the number of dynamical variables.

$$
s\left(t_{1}\right), s\left(t_{2}\right), s\left(t_{3}\right), \ldots, s\left(t_{N}\right)
$$

Multidimensional state space and attractors capture the geometry of a dynamical system (x, y, z).

Measurements of physical systems come from sensors that rarely measure the dynamical variables directly and usually are smaller in number than the number of dynamical variables.

- Finding the time delay - heuristic approaches to independence.

Auto correlation.

time series

autocorrelation

phase plot

Mutual information.

$I(\tau)=\sum_{i j} P_{i j} \ln \left[P_{i j}\right]-2 \sum_{i} P_{i} \ln \left[P_{i}\right]$
A.M. Fraser and H.L. Swinney, Physical Review A 33, 1134 (1986).

Weaknesses.

2D only, good for $s(t)$ vs. $s(t+\mathrm{T})$, but what about $(s(t), s(t+\mathbf{T}))$ vs. $s(t+2 \mathrm{~T})$?
Autocorrelation may not go to zero.
Mutual information is symmetric and requires choice of bin size.
How to handle multiple time scales? Unsolved problem.

Issues in Reconstruction and current approaches

- Finding the embedding dimension.

False Nearest Neighbors (FNN).

M.B. Kennel, R. Brown, and H.D.I. Abarbanel, Physical Review A 45, 3403 (1992).
M.B. Kennel and H.D.I. Abarbanel, Physical Review E 47, 3057 (1993).

M.B. Kennel and H.D.I. Abarbanel, Physical Review E66, 026209 (2002).

emb.dim

Weaknesses.

Necessary to pick a scale (threshold): ~ 1 std is recommended - why?
When to stop adding components? Chaotic signals always generate FNN for large enough T

Suggested implementation has same T for each emb. dim

Issues in Reconstruction and current approaches

- Finding the embedding dimension.

False Nearest Neighbors (FNN).

M.B. Kennel, R. Brown, and H.D.I. Abarbanel, Physical Review A 45, 3403 (1992).
M.B. Kennel and H.D.I. Abarbanel, Physical Review E 47, 3057 (1993).

M.B. Kennel and H.D.I. Abarbanel, Physical Review E66, 026209 (2002).

Note: like a (dis)continuity statistic
emb.dim

Weaknesses.

Necessary to pick a scale (threshold): ~ 1 std is recommended - why?
When to stop adding components? Chaotic signals always generate FNN for large enough T

Suggested implementation has same T for each emb. dim

Issues in Reconstruction and current approaches

- Finding the embedding dimension.

False Nearest Neighbors (FNN).

M.B. Kennel, R. Brown, and H.D.I. Abarbanel, Physical Review A 45, 3403 (1992).
M.B. Kennel and H.D.I. Abarbanel, Physical Review E 47, 3057 (1993).

M.B. Kennel and H.D.I. Abarbanel, Physical Review E66, 026209 (2002).

Note: like a (dis)continuity statistic
emb.dim

Weaknesses.

Necessary to pick a scale (threshold): ~ 1 std is recommended - why?
When to stop adding components? Chaotic signals always generate FNN for large enough \mathbf{T} (unexplored problem)
Suggested implementation has same T for each emb. dim

What Takens theorem tells us.

$$
s_{1}(t), s_{2}(t), \ldots, s_{m}(t)
$$

\downarrow
$\mathbf{v}=\left(s_{j_{1}}\left(t+\tau_{1}\right), s_{j_{2}}\left(t+\tau_{2}\right), \ldots, s_{j_{k}}\left(t+\tau_{k}\right)\right) \longrightarrow \mathbf{v}=\left(s_{j_{1}}\left(t+\tau_{1}\right), s_{j_{2}}\left(t+\tau_{2}\right), \ldots, s_{j_{d}}\left(t+\tau_{d}\right), s_{j_{k+1}}\left(t+\tau_{k+1}\right)\right)$

To add a component to \mathbf{v}, pick time series and \mathbf{T} independent of previous ones.

$$
\text { new } \text { component } s_{j_{k+1}}\left(t+\tau_{k+1}\right) \neq f\left(s_{j_{1}}\left(t+\tau_{1}\right), s_{j_{2}}\left(t+\tau_{2}\right), \ldots, s_{j_{k}}\left(t+\tau_{k}\right)\right)
$$

What Takens theorem tells us.

$$
s_{1}(t), s_{2}(t), \ldots, s_{m}(t)
$$

\downarrow
$\mathbf{v}=\left(s_{j_{1}}\left(t+\tau_{1}\right), s_{j_{2}}\left(t+\tau_{2}\right), \ldots, s_{j_{k}}\left(t+\tau_{k}\right)\right) \longrightarrow \mathbf{v}=\left(s_{j_{1}}\left(t+\tau_{1}\right), s_{j_{2}}\left(t+\tau_{2}\right), \ldots, s_{j_{d}}\left(t+\tau_{d}\right), s_{j_{k+1}}\left(t+\tau_{k+1}\right)\right)$

To add a component to \mathbf{v}, pick time series and \mathbf{T} independent of previous ones.

$$
\begin{aligned}
& \text { new } \\
& \text { component }
\end{aligned} s_{j_{k+1}}\left(t+\tau_{k+1}\right) \neq f\left(s_{j_{1}}\left(t+\tau_{1}\right), s_{j_{2}}\left(t+\tau_{2}\right), \ldots, s_{j_{k}}\left(t+\tau_{k}\right)\right)
$$

$$
s_{k+1}=f\left(s_{1}, s_{2}, \ldots, s_{k}\right)\left|\begin{array}{cccc}
\frac{\partial s_{1}}{\partial x_{1}} & \frac{\partial s_{1}}{\partial x_{2}} & \cdots & \frac{\partial s_{1}}{\partial x_{n}} \\
\operatorname{det} \frac{\partial \Psi}{\partial \mathbf{x}}
\end{array}=\left|\begin{array}{ccccc}
\frac{\partial s_{2}}{\partial x_{1}} & \frac{\partial s_{2}}{\partial x_{2}} & \cdots & \frac{\partial s_{2}}{\partial x_{n}} \\
\vdots & \vdots & \cdots & \vdots \\
\frac{\partial s_{k+1}}{\partial x_{2}} & \cdots & \frac{\partial s_{1}}{\partial x_{n}} \\
\frac{\partial s_{k+1}}{\partial x_{2}} & \cdots & \frac{\partial s_{k+1}}{\partial x_{n}}
\end{array}\right|=\left|\begin{array}{ccc}
\frac{\partial s_{2}}{\partial x_{1}} & \frac{\partial s_{2}}{\partial x_{2}} & \cdots \\
\vdots & \vdots & \frac{\partial s_{2}}{\partial x_{n}} \\
\sum_{i=1}^{k} \frac{\partial s_{k+1}}{\partial s_{i}} \frac{\partial s_{i}}{\partial x_{1}} & \sum_{i=1}^{k} \frac{\partial s_{k_{1+1}}}{\partial s_{i}} \frac{\partial s_{i}}{\partial x_{2}} & \cdots \\
\vdots & \sum_{i=1}^{k} \frac{\partial s_{k+1}}{\partial s_{i}} \frac{\partial s_{i}}{\partial x_{n}}
\end{array}\right|\right.
$$

What Takens theorem tells us.

$$
s_{1}(t), s_{2}(t), \ldots, s_{m}(t)
$$

\downarrow
$\mathbf{v}=\left(s_{j_{1}}\left(t+\tau_{1}\right), s_{j_{2}}\left(t+\tau_{2}\right), \ldots, s_{j_{k}}\left(t+\tau_{k}\right)\right) \longrightarrow \mathbf{v}=\left(s_{j_{1}}\left(t+\tau_{1}\right), s_{j_{2}}\left(t+\tau_{2}\right), \ldots, s_{j_{d}}\left(t+\tau_{d}\right), s_{j_{k+1}}\left(t+\tau_{k+1}\right)\right)$

To add a component to \mathbf{v}, pick time series and \mathbf{T} independent of previous ones.

$$
\begin{aligned}
& \text { new } \\
& \text { component }
\end{aligned} s_{j_{k+1}}\left(t+\tau_{k+1}\right) \neq f\left(s_{j_{1}}\left(t+\tau_{1}\right), s_{j_{2}}\left(t+\tau_{2}\right), \ldots, s_{j_{k}}\left(t+\tau_{k}\right)\right)
$$

$$
\begin{aligned}
& \boldsymbol{s}_{k+1}=f\left(s_{1}, s_{2}, \ldots, s_{k}\right)\left|\begin{array}{cccc}
\frac{\partial s_{1}}{\partial x_{1}} & \frac{\partial s_{1}}{\partial x_{2}} & \cdots & \frac{\partial s_{1}}{\partial x_{n}} \\
\operatorname{det} \frac{\partial \Psi}{\partial \mathbf{x}}
\end{array}=\left|\begin{array}{ccccc}
\frac{\partial s_{1}}{\partial x_{1}} & \frac{\partial s_{2}}{\partial x_{2}} & \cdots & \frac{\partial s_{2}}{\partial x_{n}} \\
\vdots & \vdots & \cdots & \vdots \\
\frac{\partial s_{k+1}}{\partial x_{2}} & \frac{\partial s_{k+1}}{\partial x_{2}} & \cdots & \frac{\partial s_{k+1}}{\partial x_{n}}
\end{array}\right|=\left|\begin{array}{ccc}
\frac{\partial s_{1}}{\partial x_{n}} \\
\frac{\partial s_{2}}{\partial x_{1}} & \frac{\partial s_{2}}{\partial x_{2}} & \cdots \\
\vdots & \vdots & \frac{\partial s_{2}}{\partial x_{n}} \\
\sum_{i=1}^{k} \frac{\partial s_{k+1}}{\partial s_{i}} \frac{\partial s_{i}}{\partial x_{1}} & \sum_{i=1}^{k} \frac{\partial s_{k_{1+1}}}{\partial s_{i}} \frac{\partial s_{i}}{\partial x_{2}} & \cdots \\
\vdots & \sum_{i=1}^{k} \frac{\partial s_{k+1}}{\partial s_{i}} \frac{\partial s_{i}}{\partial x_{n}}
\end{array}\right|\right. \\
& \text { NO } \\
& \text { increase in } \\
& \text { rank by } \\
& \text { adding } s_{k}
\end{aligned}
$$

If we have enough reconstruction components $(=d)$

$$
\begin{gathered}
\mathbf{x}\left(t_{n}\right)=\Psi '\left(\left(s_{j_{i}}\left(t+\tau_{1}\right), s_{j_{2}}\left(t+\tau_{2}\right), \ldots, s_{j_{d}}\left(t+\tau_{d}\right), s_{j_{d+1}}\left(t+\tau_{d+1}\right)\right)\right) \\
=\Psi\left(\left(s_{s_{i}}\left(t+\tau_{1}\right), s_{j_{2}}\left(t+\tau_{2}\right), \ldots, s_{j_{d}}\left(t+\tau_{d}\right)\right)\right) \\
\left(s_{j_{i}}\left(t+\tau_{1}\right), s_{j_{2}}\left(t+\tau_{2}\right), \ldots, s_{j_{d+1}}\left(t+\tau_{d+1}\right)\right)=\Psi^{\prime-1} \circ \Psi\left(s_{j_{i}}\left(t+\tau_{1}\right), s_{j_{2}}\left(t+\tau_{2}\right), \ldots, s_{j_{d}}\left(t+\tau_{d}\right)\right)
\end{gathered}
$$

If we have enough reconstruction components $(=d)$

$$
\begin{gathered}
\mathbf{x}\left(t_{n}\right)=\Psi^{\prime}\left(\left(s_{j_{1}}\left(t+\tau_{1}\right), s_{j_{2}}\left(t+\tau_{2}\right), \ldots, s_{j_{d}}\left(t+\tau_{d}\right), s_{j_{d+1}}\left(t+\tau_{d+1}\right)\right)\right) \\
=\Psi\left(\left(s_{j_{1}}\left(t+\tau_{1}\right), s_{j_{2}}\left(t+\tau_{2}\right), \ldots, s_{j_{d}}\left(t+\tau_{d}\right)\right)\right) \\
\left(s_{j_{1}}\left(t+\tau_{1}\right), s_{j_{2}}\left(t+\tau_{2}\right), \ldots, s_{j_{d+1}}\left(t+\tau_{d+1}\right)\right)=\Psi^{\prime-1} \circ \Psi\left(s_{j_{1}}\left(t+\tau_{1}\right), s_{j_{2}}\left(t+\tau_{2}\right), \ldots, s_{j_{d}}\left(t+\tau_{d}\right)\right)
\end{gathered}
$$

If we have enough reconstruction components $(=d)$

$$
\begin{gathered}
\mathbf{x}\left(t_{n}\right)=\Psi^{\prime}\left(\left(s_{j_{1}}\left(t+\tau_{1}\right), s_{j_{2}}\left(t+\tau_{2}\right), \ldots, s_{j_{d}}\left(t+\tau_{d}\right), s_{j_{d_{d+1}}}\left(t+\tau_{d+1}\right)\right)\right) \\
=\Psi\left(\left(s_{j_{1}}\left(t+\tau_{1}\right), s_{j_{2}}\left(t+\tau_{2}\right), \ldots, s_{j_{d}}\left(t+\tau_{d}\right)\right)\right) \\
\left(s_{j_{1}}\left(t+\tau_{1}\right), s_{j_{2}}\left(t+\tau_{2}\right), \ldots, s_{j_{d+1}}\left(t+\tau_{d+1}\right)\right)=\Psi^{\prime-1} \circ \Psi\left(s_{j_{1}}\left(t+\tau_{1}\right), s_{j_{2}}\left(t+\tau_{2}\right), \ldots, s_{j_{d}}\left(t+\tau_{d}\right)\right) \\
\Rightarrow s_{j_{d+1}}\left(t+\tau_{d+1}\right)=f\left(s_{j_{1}}\left(t+\tau_{1}\right), s_{j_{2}}\left(t+\tau_{2}\right), \ldots, s_{j_{d}}\left(t+\tau_{d}\right)\right)
\end{gathered}
$$

If we have enough reconstruction components $(=d)$

$$
\begin{gathered}
\mathbf{x}\left(t_{n}\right)=\Psi^{\prime}\left(\left(s_{j_{1}}\left(t+\tau_{1}\right), s_{j_{2}}\left(t+\tau_{2}\right), \ldots, s_{j_{d}}\left(t+\tau_{d}\right), s_{j_{j_{d+1}}}\left(t+\tau_{d+1}\right)\right)\right) \\
=\Psi\left(\left(s_{j_{1}}\left(t+\tau_{1}\right), s_{j_{2}}\left(t+\tau_{2}\right), \ldots, s_{j_{d}}\left(t+\tau_{d}\right)\right)\right) \\
\left(s_{j_{1}}\left(t+\tau_{1}\right), s_{j_{2}}\left(t+\tau_{2}\right), \ldots, s_{j_{d+1}}\left(t+\tau_{d+1}\right)\right)=\Psi^{\prime-1} \circ \Psi\left(s_{j_{1}}\left(t+\tau_{1}\right), s_{j_{2}}\left(t+\tau_{2}\right), \ldots, s_{j_{d}}\left(t+\tau_{d}\right)\right) \\
\Rightarrow s_{j_{d+1}}\left(t+\tau_{d+1}\right)=f\left(s_{j_{1}}\left(t+\tau_{1}\right), s_{j_{2}}\left(t+\tau_{2}\right), \ldots, s_{j_{d}}\left(t+\tau_{d}\right)\right)
\end{gathered}
$$

The mathematical idea behind FNN

Issues in Reconstruction and current approaches

- Multivariate time series

$$
\begin{aligned}
& s_{1}\left(t_{1}\right), s_{1}\left(t_{2}\right), s_{1}\left(t_{3}\right), \ldots, s_{1}\left(t_{N}\right) \\
& s_{2}\left(t_{1}\right), s_{2}\left(t_{2}\right), s_{2}\left(t_{3}\right), \ldots, s_{2}\left(t_{N}\right)
\end{aligned}
$$

Typical Approaches.

Find a T_{i} for each series and have some recipe for mixing time-delayed components tqgether. $\left.\left.(t)=\xi_{1}(t), \tau_{1}\right), s_{2}(t), s_{1}\left(t+2 \tau_{1}\right), s_{2}\left(t+\tau_{2}\right), \ldots,\right)$

Weaknesses.
Not rigorous.
Not optimal - which time series and \mathbf{T} for next component are best?
What do we mean by 'best' choices of time series?

Issues in Reconstruction and current approaches

- Multivariate time series

$$
\begin{aligned}
& s_{1}\left(t_{1}\right), s_{1}\left(t_{2}\right), s_{1}\left(t_{3}\right), \ldots, s_{1}\left(t_{N}\right) \\
& s_{2}\left(t_{1}\right), s_{2}\left(t_{2}\right), s_{2}\left(t_{3}\right), \ldots, s_{2}\left(t_{N}\right)
\end{aligned}
$$

Typical Approaches.

Find a T_{i} for each series and have some recipe for mixing time-delayed components together. $\left.(t)=\left(\xi_{1}(t), s_{1}\right), s_{2}(t), s_{1}\left(t+2 \tau_{1}\right), s_{2}\left(t+\tau_{2}\right), \ldots,\right)$
"Unifying framework for synchronization of coupled dynamical systems,"
S. Boccaletti, L.M. Pecora, and A. Pelaez, Physical Review E 63 (6), 066219/1 (2001). "Dynamics from a multivariate time series,"
L. Cao, A. Mees, and JK. Judd, Physicsa D 121, 75 (1998).

Weaknesses.

Not rigorous.
Not optimal - which time series and T for next component are best?
What do we mean by 'best' choices of time series?

$$
S_{j_{n+1}}\left(t+\tau_{j_{n+1}}\right)=f\left(S_{j_{1}}\left(t+\tau_{j_{1}}\right), S_{j_{2}}\left(t+\tau_{j_{2}}\right), \ldots, S_{j_{n}}\left(t+\tau_{j_{n}}\right), \ldots,\right)
$$

$s_{j_{3}}\left(t+\tau_{j_{3}}\right)$

$$
s_{j_{2}}\left(t+\tau_{j_{2}}\right)
$$

$$
s_{j_{1}}\left(t+\tau_{j_{1}}\right)
$$

$$
f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{1}
$$

$$
s_{j_{i+1}}\left(t+\tau_{j_{j+1}}\right) \stackrel{?}{=} f\left(s_{j_{1}}\left(t+\tau_{j_{1}}\right), s_{j_{i}}\left(t+\tau_{i_{2}}\right), \ldots, s_{j_{i j}}\left(t+\tau_{j_{j}, \ldots}\right) \ldots\right)
$$

$s_{j_{3}}\left(t+\tau_{j_{3}}\right)$

$s_{j_{1}}\left(t+\tau_{j_{1}}\right)$

$$
f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{1}
$$

- FNN

Necessary to pick a scale (threshold)

- Redundancy (marginal) $\quad f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{1}$

$$
\begin{aligned}
& -\sum_{j_{1} j_{2} \ldots j_{n+1}} p_{j_{1} j_{2} \ldots j_{n+1}}\left(x_{1}, \ldots, x_{n}, x_{n+1}\right) \log _{2} p_{j_{1} j_{2} \ldots j_{n+1}}\left(x_{1}, \ldots, x_{n}, x_{n+1}\right) \\
= & \sum_{j_{1} j_{2} \ldots j_{n+1}} p_{j_{1} j_{2} \ldots j_{n+1}}\left(x_{1}, \ldots, x_{n}, x_{n+1}\right) \log _{2} p_{j_{1} j_{2} \ldots j_{n}}\left(x_{1}, \ldots, x_{n}\right) p_{j_{n+1}}\left(x_{n+1}\right)
\end{aligned}
$$

- Redundancy (marginal) $\quad f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{1}$

Multidimensional version of Mutual Information

$$
\begin{aligned}
R\left(x_{1}, \ldots, x_{n} ; x_{n+1}\right)= & -\sum_{j_{1} j_{2} \ldots j_{n+1}} p_{j_{1} j_{2} \ldots j_{n+1}}\left(x_{1}, \ldots, x_{n}, x_{n+1}\right) \log _{2} p_{j_{1} j_{2} \ldots j_{n+1}}\left(x_{1}, \ldots, x_{n}, x_{n+1}\right) \\
& +\sum_{j_{1} j_{2} \ldots j_{n+1}} p_{j_{1} j_{2} \ldots j_{n+1}}\left(x_{1}, \ldots, x_{n}, x_{n+1}\right) \log _{2} p_{j_{1} j_{2} \ldots j_{n}}\left(x_{1}, \ldots, x_{n}\right) p_{j_{n+1}}\left(x_{n+1}\right)
\end{aligned}
$$

- Redundancy (marginal) $\quad f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{1}$

Multidimensional version of Mutual Information

$$
\begin{aligned}
& -\sum_{j_{1} j_{2} \ldots j_{n+1}} p_{j_{1} j_{2} \ldots j_{n+1}}\left(x_{1}, \ldots, x_{n}, x_{n+1}\right) \log _{2} p_{j_{j_{1} j_{2} \ldots j_{n+1}}}\left(x_{1}, \ldots, x_{n}, x_{n+1}\right) \\
R\left(x_{1}, \ldots, x_{n} ; x_{n+1}\right)= & +\sum_{j_{1} j_{2} \ldots j_{n+1}} p_{j_{1} j_{2} \ldots j_{n+1}}\left(x_{1}, \ldots, x_{n}, x_{n+1}\right) \log _{2} p_{j_{1} j_{2} \ldots j_{n}}\left(x_{1}, \ldots, x_{n}\right) p_{j_{n+1}}\left(x_{n+1}\right)
\end{aligned}
$$

- Redundancy (marginal)
$f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{1}$

Multidimensional version of Mutual Information

$$
\begin{aligned}
& -\sum_{j_{1} j_{2} \ldots j_{n+1}} p_{j_{1} j_{2} \ldots j_{n+1}}\left(x_{1}, \ldots, x_{n}, x_{n+1}\right) \log _{2} p_{j_{j_{1}, \ldots} \ldots j_{n+1}}\left(x_{1}, \ldots, x_{n}, x_{n+1}\right) \\
& +\sum_{j_{j}, \ldots, j_{n+1}} p_{j_{1} j_{2} \ldots j_{n+1}}\left(x_{1}, \ldots, x_{n}, x_{n+1}\right) \log _{2} \underline{p_{j_{i, 2}, \ldots j_{n}}\left(x_{1}, \ldots, x_{n}\right)} \text { p } p_{j_{n+1}}\left(x_{n+1}\right) \\
& x_{n+1}=f\left(x_{1}, \ldots, x_{n}\right) \Rightarrow p_{j_{i, j}, \ldots j_{n+1}}\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)=p_{j_{i j}, \ldots j_{n+1}}\left(x_{1}, \ldots, x_{n}\right) \delta\left(x_{n+1}-f\left(x_{1}, \ldots, x_{n}\right)\right)
\end{aligned}
$$

Multidimensional version of Mutual Information

$$
\begin{aligned}
&-\sum_{j_{1} j_{2} \ldots j_{n+1}} p_{j_{1} j_{2} \ldots j_{n+1}}\left(x_{1}, \ldots, x_{n}, x_{n+1}\right) \log _{2} \underline{p_{j_{1} j_{2} \ldots j_{n+1}}\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)} \\
& R\left(x_{1}, \ldots, x_{n} ; x_{n+1}\right)=\left.\sum_{j_{1} j_{2} \ldots j_{n+1}} p_{j_{1} j_{2} \ldots j_{n+1}}\left(x_{1}, \ldots, x_{n}, x_{n+1}\right) \log _{2} p_{j_{j_{1} j_{2} \ldots j_{n}}\left(x_{1}, \ldots, x_{n}\right)}\right) p_{j_{n+1}}\left(x_{n+1}\right) \\
& x_{n+1}=f\left(x_{1}, \ldots, x_{n}\right) \Rightarrow p_{j_{1} j_{2} \ldots j_{n+1}}\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)=p_{j_{1} j_{2} \ldots j_{n+1}}\left(x_{1}, \ldots, x_{n}\right) \delta\left(x_{n+1}-f\left(x_{1}, \ldots, x_{n}\right)\right) \\
& R\left(x_{1} ; x_{2}\right)=\text { Mutual Information }
\end{aligned}
$$

Multidimensional version of Mutual Information

$$
\begin{aligned}
&-\sum_{j_{1} j_{2} \ldots j_{n+1}} p_{j_{1} j_{2} \ldots j_{n+1}}\left(x_{1}, \ldots, x_{n}, x_{n+1}\right) \log _{2} \underline{p_{j_{1} j_{2} \ldots j_{n+1}}}\left(x_{1}, \ldots, x_{n}, x_{n+1}\right) \\
& R\left(x_{1}, \ldots, x_{n} ; x_{n+1}\right)= \sum_{j_{1} j_{2} \ldots j_{n+1}} p_{j_{1} j_{2} \ldots j_{n+1}}\left(x_{1}, \ldots, x_{n}, x_{n+1}\right) \log _{2} \underline{p_{j_{1} j_{2} \ldots j_{n}}\left(x_{1}, \ldots, x_{n}\right) p_{j_{n+1}}\left(x_{n+1}\right)} \\
& x_{n+1}=f\left(x_{1}, \ldots, x_{n}\right) \Rightarrow p_{j_{1} j_{2} \ldots j_{n+1}}\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)=p_{j_{1} j_{2} \ldots j_{n+1}}\left(x_{1}, \ldots, x_{n}\right) \delta\left(x_{n+1}-f\left(x_{1}, \ldots, x_{n}\right)\right) \\
& R\left(x_{1} ; x_{2}\right)=\text { Mutual Information }
\end{aligned}
$$

$\&$ Necessary to pick a bin size
Remedy (?) fixed bin "mass"

Multidimensional version of Mutual Information

$$
\begin{aligned}
& -\sum_{j_{1} j_{2} \ldots j_{n+1}} p_{j_{i} j_{2} \ldots j_{n+1}}\left(x_{1}, \ldots, x_{n}, x_{n+1}\right) \log _{2} \underline{p_{j_{1} j_{2} \ldots j_{n+1}}\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)} \\
& +\sum_{j_{j}, \ldots, j_{n+1}} p_{j_{1} j_{2} \ldots j_{n+1}}\left(x_{1}, \ldots, x_{n}, x_{n+1}\right) \log _{2} \underline{p_{j_{1}, \ldots, j_{n}}}\left(x_{1}, \ldots, x_{n}\right) p_{j_{n+1}}\left(x_{n+1}\right) \\
& x_{n+1}=f\left(x_{1}, \ldots, x_{n}\right) \Rightarrow p_{j_{i, 2}, \ldots j_{n+1}}\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)=p_{j_{i j}, \ldots j_{n+1}}\left(x_{1}, \ldots, x_{n}\right) \delta\left(x_{n+1}-f\left(x_{1}, \ldots, x_{n}\right)\right) \\
& R\left(x_{1} ; x_{2}\right)=\text { Mutual Information }
\end{aligned}
$$

\nleftarrow Necessary to pick a bin size $\quad \downarrow$ Inherits some problems from MI? Remedy (?) fixed bin "mass"

Multidimensional version of Mutual Information

$$
\begin{aligned}
& -\sum_{j_{1} j_{2} \ldots j_{n+1}} p_{j_{i} j_{2} \ldots j_{n+1}}\left(x_{1}, \ldots, x_{n}, x_{n+1}\right) \log _{2} \underline{p_{j_{1} j_{2} \ldots j_{n+1}}\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)} \\
& +\sum_{j_{j}, \ldots, j_{n+1}} p_{j_{1} j_{2} \ldots j_{n+1}}\left(x_{1}, \ldots, x_{n}, x_{n+1}\right) \log _{2} \underline{p_{j_{1}, \ldots, j_{n}}\left(x_{1}, \ldots, x_{n}\right) p_{j_{n+1}}\left(x_{n+1}\right)} \\
& x_{n+1}=f\left(x_{1}, \ldots, x_{n}\right) \Rightarrow p_{j_{i, j}, \ldots, j_{n+1}}\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)=p_{j_{i j}, \ldots j_{n+1}}\left(x_{1}, \ldots, x_{n}\right) \delta\left(x_{n+1}-f\left(x_{1}, \ldots, x_{n}\right)\right) \\
& R\left(x_{1} ; x_{2}\right)=\text { Mutual Information }
\end{aligned}
$$

\downarrow Necessary to pick a bin size
Remedy (?) fixed bin "mass"
\nleftarrow Inherits some problems from MI?
\nmid Large dimension=> large bin number?
Apparently not, just bins on attractor.

Consequence of the Null:
Calculate the probability distribution of the time series.
Joint prob. distribution of two independently chosen points

$$
\rho\left(s_{1}, s_{2}\right)=\rho\left(s_{1}\right) \rho\left(s_{2}\right)
$$

Joint prob. distribution of one point and the difference $\xi=s_{1}-s_{2}$

$$
\sigma\left(s_{1}, \xi\right)=\rho\left(s_{1}, \xi-s_{1}\right)
$$

Prob. distribution of the difference $\xi=s_{1}-s_{2}$

$$
\sigma(\xi)=\int \sigma\left(s_{1}, \xi\right) d s_{1}
$$

Prob. distribution of $|\xi|=\left|s_{1}-s_{2}\right|$

$$
\sigma(|\xi|)=\sigma(\xi)+\sigma(-\xi)
$$

Prob. that $|\xi|<a$

$$
P(|\xi|<a)=\int_{0}^{a} \sigma(|\xi|) d \xi
$$

Possible candidates for " a " in the above.
$a=\max \left\{\delta\right.$ vector components and ϵ component used to get $\left.\epsilon^{*}\right\}$
$a=\|\mathbf{v}\|=$ magnitude of vector \mathbf{v} made from δ vector components and ϵ component since $\|\mathbf{v}\|>\max \left\{v_{i}\right\}$

Then while plotting ϵ^{*} vs. delay also plot $1-P(|\xi|<a)$ vs. delay to see when the delay is too long. E.g. (just suggestive, not done yet for real time series),

- Periodic Systems

- Quasiperiodic Systerisg function statistic

Cont.Stat E*

Multiple Time Scales Constant T (old way)

\because	0
\square	0,8
\square	$0,8,67$
\square	$0,8,67,75$
\square	$0,8,67,75,112$

-0
,
$\because 0,8,16$
$\because 0,8,16,24$
$. \quad 0,8,16,24,32$
$\ldots 0,8,16,24,32,40$
$\because 0,8,16,24,32,40,48$. $0,8,16,24,32,40,48,56$

