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General Problem
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We can go from time series to attractor geometry.
"Geometry from time series,"  N.H. Packard, J.P. Crutchfield, J.D. Farmer et al., Physical 
Review Letters 45, 712 (1980).

x(t1), x(t2 ), x(t3), x(t4 ),..., x(tN )

v(t1) = (x(t1), x(t2 ), x(t3))
v(t2 ) = (x(t2 ), x(t3), x(t4 ))

.

.

.v(tn ) = (x(tn ), x(tn + ! ), x(tn + 2! ))
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F. Takens, in Dynamical Systems and Turbulence, Warwick 1980, 
edited by D. Rand and L.-S. Young (Springer, Berlin, 1981), pp. p. 366.

s(t) = h x(t)[ ]x(t)!Rn

v(tn ) = (h x(tn )[ ],h !" x(tn )[ ]#$ %&,h !2" x(tn )[ ]#$ %&) = ' x(tn )( )
x(t + ! ) = "! x(t)[ ]

!
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We can go from time series to attractor geometry.
"Geometry from time series,"  N.H. Packard, J.P. Crutchfield, J.D. Farmer et al., Physical 
Review Letters 45, 712 (1980).

x(t1), x(t2 ), x(t3), x(t4 ),..., x(tN )
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τ ?
Embedding dim ?
Multivariate
     data?
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Current Approaches





Delay time τ ? - autocorrelation or mutual info. 
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Delay time τ ? - autocorrelation or mutual info. 

 - 2D, τ =const., multiple time scales?

Embedding dimension? - FNN 
 - pick scale (1 std?), chaotic systems=> FNN at large τ 

Multivariate time series? - extend univariate methods? 
 - not rigorous or optimal - heuristic
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Theory - The Reconstruction Criterion



 
s jk+1 (t + ! k+1) " f s j1 (t + !1), s j2 (t + ! 2 ),..., s jk (t + ! k )( )

v = s j1 (t + !1), s j2 (t + ! 2 ),..., s jk (t + ! k )( )

!

What Takens theorem tells us: Make Independent Coordinates

s1(t), s2 (t),..., sm (t)

To add a component to v, pick time series and τ so 
new component is independent of previous ones.

new 
component

v = s j1 (t + !1), s j2 (t + ! 2 ),..., s jd (t + ! d ), s jk+1 (t + ! k+1)( )

Unified approach (τ, d, si):

m time series.



 
s jk+1 (t + ! k+1) " f s j1 (t + !1), s j2 (t + ! 2 ),..., s jk (t + ! k )( )

v = s j1 (t + !1), s j2 (t + ! 2 ),..., s jk (t + ! k )( )

!

What Takens theorem tells us: Make Independent Coordinates

s1(t), s2 (t),..., sm (t)

To add a component to v, pick time series and τ so 
new component is independent of previous ones.

new 
component

v = s j1 (t + !1), s j2 (t + ! 2 ),..., s jd (t + ! d ), s jk+1 (t + ! k+1)( )

Unified approach (τ, d, si):

a statistic to check

m time series.
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Statistics for Functional Dependence
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Some examples.



• Periodic Systems
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• Quasiperiodic 
Systems

s(t) = 5 + cos(2!t)( )cos(0.8t)
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Multiple Time Scales
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• Chaotic Systems and large delays
All statistics (FNN, Redundancy, Continuity) will show minimum functional 
relationships for large τ in chaotic systems.
Components of reconstruction vectors become "unrelated" for large τ .   Finite data 
puts an upper bound on the size of τ we can use.
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Logistic map, 8 iterations, a=3.77
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• "Scalar observations from a class of high-
dimensional chaotic systems: Limitations of the time 
delay embedding,”  H. Kantz and E. Olbrich, Chaos 7 
(3), 423 (1997).
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• "Scalar observations from a class of high-
dimensional chaotic systems: Limitations of the time 
delay embedding,”  H. Kantz and E. Olbrich, Chaos 7 
(3), 423 (1997).
• ”Inferring chaotic dynamics from time-series: On 
which length scale determinism becomes visible.,” E. 
Olbrich and H. Kantz, Physics Letters A 232, 63 
(1997).



ρ(xi)

• Chaotic Systems and large delays

xi

Null Hypothesis:  One component of 
the reconstruction vector is 
statistically independent of all others.

Maximum τ Statistic:  Test 
components of differences between 
nearest neighbors ξ against the 
distribution of differences between 
randomly chosen points in the time 
series distribution  

Δx= NN vector

!xi

! ( "xi )



Lorenz x time series reconstruction

0 100 200 300 400
0.0

0.5

1.0

τ

Continuity Stats     x–Lortest64K_1
τ1=0
τ1=0, τ2=56
τ1=0, τ2=56, τ3=14

ε∗

0 100 200 300 400
0.90
0.92
0.94
0.96
0.98
1.00

Maximum Tau statistic

τ

R1→R1

R2→R1

R3→R1

R4→R1

τ1=0,  16% WG noise



Lorenz x time series reconstruction

0 100 200 300 400
0.0

0.5

1.0

τ

Continuity Stats     x–Lortest64K_1
τ1=0
τ1=0, τ2=56
τ1=0, τ2=56, τ3=14

ε∗
τ1=0, τ2=56, τ3=14, 

   τ4=350

0 100 200 300 400
0.90
0.92
0.94
0.96
0.98
1.00

Maximum Tau statistic

τ

R1→R1

R2→R1

R3→R1

R4→R1

τ1=0,  16% WG noise



Lorenz x time series reconstruction

0 100 200 300 400
0.0

0.5

1.0

τ

Continuity Stats     x–Lortest64K_1
τ1=0
τ1=0, τ2=56
τ1=0, τ2=56, τ3=14

ε∗
τ1=0, τ2=56, τ3=14, 

   τ4=350

0 100 200 300 400
0.90
0.92
0.94
0.96
0.98
1.00

Maximum Tau statistic

τ

R1→R1

R2→R1

R3→R1

R4→R1

τ1=0,  16% WG noise





0 20 40 60 80 100
0.0

0.4

0.8

1.2

epsNH - x(0)
x(0) vs. x(tau)
x(0) vs. y(tau)
x(0) vs. z(tau)

20 40 60 80 100
0.0

0.4

0.8

1.2

y(0) vs. x(tau)
y(0) vs. y(tau)
y(0) vs. z(tau)

0 20 40 60 80 100
0.0

0.4

0.8

1.2

z(0) vs. x(tau)
z(0) vs. y(tau)
z(0) vs. z(tau)

• Multivariate Time Series
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x(t), y(t), z(t)Lorenz: x(t)! x(t + " ), y(t), z(t)
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τ

x(t), x(t + ! ), z(t)
preferred reconstruction: <ε*>

<ε*>



Neuronal time series.  Lobster stomatogastric ganglia.  CPG for swallowing.  

R.C. Elson, A.I. Selverston, R. Huerta et al., Physical Review Letters 81 (25), 5692 
(1998). 

J.L. Hindmarsh and R.M. Rose, Proceedings of the Royal Socienty of London B221, 87 
(1984). 

Martin Falcke, Ramón Huerta, Mikhail I. Rabinovich et al., Biological Cybernetics 82, 
517 (2000). 

INLS - UCSD  



Neuronal time 
series.  

Continuity 
statistic.  

Under-
embedding
statistic.  



Neuronal attractor
(projected into 3D)



Conclusions & Remarks
A unified approach <ε*> that offers solutions of 
  delay or advances - multiple time scales
  embedding dimension - able to give 'minimal' dimension   
  multivariate time series - choice of which to use 

The Maximum τ statistic offers a reasonable stopping point 
for delay times.

A geometric view of the effect of large delays: an 
undersampling of a highly folded manifold.

Here we used a "greedy algorithm".  
Optimal reconstruction:  a combinatorial problem.  Test all 
combinations of possible time series and delays. 

A Unified Approach to Attractor Reconstruction,
CHAOS 17 to appear March 2007



The 
End
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Multidimensional state space and  
attractors capture the geometry of a 
dynamical system  (x,y,z).

Measurements of physical systems come 
from sensors that rarely measure the 
dynamical variables directly and usually 
are smaller in number than the number of 
dynamical variables.
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Issues in Reconstruction and current approaches

• Finding the time delay - heuristic approaches to independence.
Auto correlation.

Mutual information.

Weaknesses.
2D only, good for s(t) vs. s(t+τ), but what about  (s(t), s(t+τ)) vs. s(t+2τ)?
Autocorrelation may not go to zero.
Mutual information is symmetric and requires choice of bin size.

time series autocorrelation phase plot

τ

s(t)

s(t+τ)

I(! ) = Pij ln Pij"# $%
ij
& ' 2 Pi ln Pi[ ]

i
&

s(t)

s(t+τ)

A.M. Fraser and H.L. Swinney, 
Physical Review A 33, 1134 (1986). first minimum

τ

τ

τ

I

How to handle multiple time scales?  Unsolved problem.



Issues in Reconstruction and current approaches

• Finding the embedding dimension.
False Nearest Neighbors (FNN).

Weaknesses.

M.B. Kennel, R. Brown, and H.D.I. Abarbanel, Physical Review A 45, 3403 (1992).
M.B. Kennel and H.D.I. Abarbanel, Physical Review E 47, 3057 (1993).
M.B. Kennel and H.D.I. Abarbanel, Physical Review E66, 026209 (2002).

s(t)

s(t+τ)

s(t+2τ)

% FNN

emb.dim
2 3 4 5 6

Note:  like  a (dis)continuity statistic

Necessary to pick a scale (threshold): ~ 1 std is recommended - why?

When to stop adding components? Chaotic signals always generate FNN for 
    large enough τ
Suggested implementation has same τ for each emb. dim
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Issues in Reconstruction and current approaches

• Multivariate time series

Typical Approaches.

Weaknesses.
Not rigorous.
Not optimal - which time series and τ for next component are best?
What do we mean by 'best' choices of time series?

s1(t1), s1(t2 ), s1(t3),..., s1(tN )

s2 (t1), s2 (t2 ), s2 (t3),..., s2 (tN )

Find a τi for each series and have some recipe for mixing time-delayed 

components together.v(t) = s1(t), s1(t + !1), s2 (t), s1(t + 2!1), s2 (t + ! 2 ),...,( )
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"Unifying framework for synchronization of coupled dynamical systems," 
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Large dimension=> large bin number?

Apparently not, just bins on 
attractor.



Consequence of the Null:

!(s1, s2 ) = !(s1)!(s2 )

Joint prob. distribution of two independently chosen points
Calculate the probability distribution of the time series.

Joint prob. distribution of one point and the difference  ξ= s1 – s2

! (s1,") = #(s1," $ s1)

Prob. distribution of the difference  ξ= s1 – s2

! (") = ! (s1,") ds1#
Prob. distribution of |ξ|= |s1 – s2|

! (" ) = ! (")+! (#")



Prob. that |ξ| <a
P(! < a) = " (! )d!

0

a

#
Possible candidates for "a" in the above.
  a= max {δ vector components and ε component used to get ε* }

  a=||v|| = magnitude of vector v made from δ vector components and ε component
                since ||v|| > max{vi}

Then while plotting ε* vs. delay also plot 1-P(|ξ|<a) vs. delay to see when the delay 
is too long.   E.g. (just suggestive, not done yet for real time series),



• Periodic Systems
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• Quasiperiodic 
Systems
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Multiple Time Scales
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Using function statistic Constant τ (old way)
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