ESTIMATING THE STATE OF SPATIOTEMPORAL CHAOS: WEATHER FORECASTING ETC. **Edward Ott University of Maryland References:** E. OTT, B. HUNT, I. SZUNYOGH, A.V.ZIMIN, E.KOSTELICH, M.CORAZZA, E. KALNAY, D.J. PATIL, & J. YORKE, **TELLUS A (2004).**

http://www.weatherchaos.umd.edu/

OUTLINE

- Review of some basic aspects of weather forecasting.
- Our method in brief.
- Tests of our method.

THE THREE COMPONENTS OF STATE ESTIMATION & FORECASTING

'Components' of this process:
Data Assimilation
Model Evolution

NMC/NCEP operational S1 scores over North America (500 hPa)

FACTORS INFLUENCING WEATHER

Changes in solar input Ocean-air interaction Air-ice coupling Precipitation Evaporation Clouds **Forests Mountains** Deserts Subgrid scale modeling Etc.

DATA ASSIMILATION

- Obs. are scattered in location and have errors.
- Forecasts (as we all know) have uncertainties.

A MORE REFINED SCENARIO observations analysiş analys forecast forecast

<u>Note</u>: Analysis pdf at t_1 is dynamically evolved to obtain the forecast pdf at t_2 .

GOALS OF DATA ASSIMILATION

- Determine the most likely current system state & pdf given:

 (a) a model for the system dynamics,
 (b) observations.
- Use this info (the "analysis") to forecast the most likely system state and its uncertainty (i.e., obtain the forecast pdf).

KALMAN FILTER

 For the case of linear dynamics, all pdfs are Gaussian, and there is a known rigorous solution to the state estimation problem: the Kalman filter.

(pdf of obs.) + (pdf of forecast) → (pdf of state)

- In the nonlinear case one can often still approximate the pdfs as Gaussian, and, in principle, the Kalman filter could then be applied.
- A key input is the forecast pdf.

DETERMINING THE ANALYSIS PDF $F_a(x)$

- $f_f(\mathbf{x})$ = forecasted state PDF
- $f_{obs} (x_) = PDF of expected obs.$ given true system state <u>x</u>
- Bayes' theorem: $F_a (x_) = \frac{F_f (x_b) F_f (x_b)$
- Assume Gaussian_statistics:
- $= f (\underline{x}_{p}) \exp \{-\frac{1}{2} (\underline{x}_{f} \underline{x}_{f})^{T} R_{f} \}$

 $= \frac{1}{2} \frac{$

CURRENT NCEP OPERATIONAL APPROACH (3DVAR)

- A constant, time-independent forecast error covariance,' , is assumed.
 forecast pdf ~:xp { 1/2(-x_-x_f)(P_f) (x_-x_f)}
- The Kalman filter equations for the system state pdf are then applied treating the assumed as if it were correct.
 - **ECMWF : 4DVAR**

These approaches ignore the time variability of f_{\pm} .

PROBLEM

- Currently data assimilation is already a very computationally costly part of operational numerical weather prediction.
- Implementation of a full Kalman filter would be many many times more costly, and is impractical for the foreseeable future.

REDUCED KALMAN FILTERS

- We seek a practical method that accounts for dynamical evolution of atmospheric forecast uncertainties at relatively low computational cost.
- Ensemble Kalman filters:

Evansen, 1994 Bishop et. al., 2001 Whitaker and Hamill, 2002 Houtekamer & Mitchell 1998, 2001 Hamill et. al., 2001 Anderson, 2002

 It was found that in each local region the ensemble members approximately tend to lie in a surprisingly low dimensional subspace.

Take the estimated state in the local region to lie in this subspace.

PROPERTIES OF OUR METHOD

- Only operations on relatively small matrices are needed in the analyses. (We work in the local low dimensional subspaces.)
- The analyses in each local region are independent.
 - Fast parallel computations are possible.

TESTING OUR METHOD ON A 'TOY' MODEL

• "Truth run": Run the model obtaining the true time series:

 $(\underline{true}, \underline{t}_n)$ (p = grid point)

- Simulate obs.: $(\underline{p}, \underline{t}_n) \neq \underline{t}^{true}(\underline{p}, \underline{t}_n)$ (no ise) for some set of observing locations, p.
- Run our 'local ensemble Kalman filter' (LEKF) using the same model (perfect model scenario) and these observations to estimate the most probable state and pdf at each analysis time.
- Compare the estimated most probable system state with the true state.

We compare results from our method with:

- Global Kalman filter.
- A method mimicking current data assimilation methods (i.e. a fixed forecast error covariance).
- A naïve method called 'direct insertion'.

MAIN RESULTS OF TOY MODEL TESTS

- Both the full KF and our LEKF give about the same accuracy which is substantially better than the 'conventional method' and direct insertion.
- Using our method the number of ensemble members needed to obtain good results is independent of the system size, N, while the full Kalman filter requires a number of ensemble members that scales as ~N.

TESTS ON REAL WEATHER MODELS

Our group* * <u>Ref</u>. Szunyogh et al. Tellus A (2004)

NCEP model:

192 (E-W) x 94 (N-S) x 28 (vertical) x 4 (variables) = 2 x 10⁶

Variables: surface pressure, horizontal wind, temperature, humidity NASA model:

In the "perfect model scenario" our scheme can yield an over 50% improvement on the current NASA data assimilation system.

NOAA Colorado: (Whittaker and Hamill) NCEP model

Japan: (T. Miyoshi) High resolution code

Results so far:

 Local ensemble Kalman filter does better than current NCEP and NASA assimilation systems

Fast

OTHER APPLICATIONS

This work is potentially applicable to estimating the state of a large class of spatio-temporally chaotic systems (e.g., lab experiments).

Example: Rayleigh-Benard convection

ornick. Ott. Hunt

Top View:

M. Cornick, E. Ott, and B. Hunt in collaboration with the experimental group of Mike Schatz at Georgia Tech.

fluid

Rayleigh-Benard Data Assimilation Tests Both perfect model numerical experiments and tests using data from the lab experiments were performed.

- Shadowgraph observation model: $I = \frac{0}{1 + \sqrt{2}} \frac{1}{\sqrt{2}} \frac$
- Dynamical model: Boussinesq equations

NOTE:
$$(X, Y, Z)$$
 not measured.
"mean flow" $\equiv -\int u(X, Y, Z) dZ = u(\overline{X}, Y)$

Some preliminary results:

- Works well in perfect model and with lab experiment data.
- Forecasts indicate that (\overline{X}, Y) is reasonably accurate.
- Parameter estimation of Ra, Pr, C.

PROPERTIES OF THE METHOD

- Only low dimensional matrix operations are used in the analysis.
- Local analyses are independent and hence parallelizable.
- Potentially fast and accurate.

http://www.weatherchaos.umd.edu/ publications.php

Tornado Hits University of Maryland

Chronology of Monday's deadly tornado

4 p.m. Rotating winds spotted on radar in Stafford, Va.

4:09 p.m. National Weather Service issues tornado warning for northern Stafford County and eastern Prince William County.

4:53 p.m. Weather service issues warning for eastern Fairfax County, D.C. metro area and Alexandria.

5:03 p.m. Storm passes over the Pentagon.

5:10 p.m. Weather service issues warning for Prince George's County and eastern Montgomery County.

5:20 p.m. Storm strengthens, strikes College Park, moves on to Beltsville and Laurel.

5:31 p.m. Weather service issues tornado warning for Howard County.

5:45 p.m. Tornado warning in Prince George's County expires.

6:00 p.m. Howard tornado warning expires.

OUTLINE OF OUR METHOD

- Consider the global atmospheric state restricted to many local regions covering the surface of the Earth.
- Project the local states to their local low dim. subspace determined by the forecast ensemble.
- Do data assimilations for each local region in that region's low dim. subspace.
- Put together the local analyses to form a new ensemble of global states.
- Use the system model to advance each new ensemble member to the next analysis time.