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OUTLINE

•  Review of some basic aspects 
   of weather forecasting.

•  Our method in brief.

•  Tests of our method.



THE THREE COMPONENTS OF
 STATE ESTIMATION & FORECASTING

•  Observing
•  Data Assimilation
•  Model Evolution

‘Components’ of 
       this process:

Observations

Estimate of
system state

Model
Forecast







     FACTORS INFLUENCING WEATHER

Changes in solar input
Ocean-air interaction
Air-ice coupling
Precipitation
Evaporation
Clouds
Forests
Mountains
Deserts
Subgrid scale modeling
Etc.





DATA ASSIMILATION

•  Obs. are scattered in location and have errors.
•  Forecasts (as we all know) have uncertainties.

t
(time)  t1                    t2                     t3

Estimate of 
the atmospheric
state

Atmospheric
model evolution Observations

Forecast New state estimate
(“analysis”)



A MORE REFINED SCENARIO

Note:  Analysis pdf at t1 is dynamically
evolved to obtain the forecast pdf at t2.
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GOALS OF DATA ASSIMILATION

•  Determine the most likely current 
    system state & pdf given:

(a) a model for the system dynamics,
(b) observations.

•  Use this info (the “analysis”) to forecast 
    the most likely system state and its
    uncertainty (i.e., obtain the forecast pdf).



KALMAN FILTER
For the case of linear dynamics, all pdfs are
Gaussian, and there is a known rigorous 
solution to the state estimation problem: 
the Kalman filter.

(pdf of obs.) + (pdf of forecast)    (pdf of state)

In the nonlinear case one can often still
approximate the pdfs as Gaussian, and, in
principle, the Kalman filter could then be applied.

A key input is the forecast pdf.



DETERMINING THE ANALYSIS PDF ( )xFa
= forecasted state PDF( )xF f

( )xyFobs | = PDF of expected obs.
   given true system state x

Bayes’ theorem:

Assume Gaussian statistics:
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Analysis PDF:
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CURRENT NCEP OPERATIONAL 
APPROACH  (3DVAR)

A constant, time-independent forecast error 
covariance,      , is assumed.

forecast pdf ~ 
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The Kalman filter equations for the system state
pdf are then applied treating the assumed       as
if it were correct.

ECMWF : 4DVAR

These approaches
ignore the time variability of      . 
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PROBLEM

Currently data assimilation is already 
a very computationally costly part of
operational numerical weather 
prediction.

Implementation of a full Kalman filter
would be many many times more 
costly, and is impractical for the 
foreseeable future.



REDUCED KALMAN FILTERS
We seek a practical method that accounts
for dynamical evolution of atmospheric forecast
uncertainties at relatively low computational cost.

Ensemble Kalman filters:

forecastanalysis

t1
t2

Evansen, 1994                       Houtekamer & Mitchell 1998, 2001
Bishop et. al., 2001                Hamill et. al., 2001
Whitaker and Hamill, 2002    Anderson, 2002



MOTIVATION FOR OUR METHOD
Patil et al. (Phys. Rev. Lett. 2001) 

‘Local Region’ labeled by its central grid point

It was found that in each local region the
ensemble members approximately tend to
lie in a surprisingly low dimensional subspace.

Take the estimated state in the local 
region to lie in this subspace.

21
layers{

5x5 grid pts.

~ 103 km x ~ 103 km 

longitude
latitude

vertical



SUMMARY OF STEPS IN OUR METHOD

Do analysis
in local low
dim. subspace

Obtain global
ensemble
analysis
fields

Evolve model
from t-Δ to t

Form local
vectors

a
ix Ä)t,r( !

a
ix t),r(

f
ix t),r(

f
mni,x

a

mn
P
)

)(t 
a

mnx ˆ )(t , )(t 



PROPERTIES OF OUR METHOD

Only operations on relatively small
matrices are needed in the analyses.
(We work in the local low dimensional
subspaces.)

The analyses in each local region
are independent.

Fast parallel computations
are possible.



TESTING OUR METHOD ON A ‘TOY’ MODEL

“Truth run”: Run the model obtaining the
 true time series:

Simulate obs.:

for some set of observing locations, p.

Run our ‘local ensemble Kalman filter’ (LEKF)
using the same model (perfect model scenario)
and these observations to estimate the most
probable state and pdf at each analysis time.

(p = grid point)

Compare the estimated most probable
system state with the true state.
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NUMERICAL EXPS. WITH A TOY MODEL

Lorenz (1996) : 8x)xx(x
dt

dx
i1i2i1i

i +!!= !!+

We compare results from our method with:

“Latitude Circle”
For N=40
13 positive Lyap. Exponents
Fractal dim. = 27.1

Global Kalman filter.
A method mimicking current data assimilation
methods (i.e. a fixed forecast error covariance).

A naïve method called ‘direct insertion’.

i=2
i=1
i=N
i=N-1







MAIN RESULTS OF TOY MODEL TESTS

Both the full KF and our LEKF give about the 
same accuracy which is substantially better
than the ‘conventional method’ and direct
insertion.

Using our method the number of ensemble
members needed to obtain good results is 
independent of the system size, N, while the 
full Kalman filter requires a number of
ensemble members that scales as ~N.



TESTS ON REAL WEATHER MODELS

Our group* * Ref.  Szunyogh et al. Tellus A (2004)
NCEP model:
 192 (E-W) x 94 (N-S) x 28 (vertical) x 4 (variables) = 2 x 106

 Variables: surface pressure, horizontal wind, temperature, humidity
NASA model:
  In the “perfect model scenario” our scheme can yield an over 50%
  improvement on the current NASA data assimilation system.

NOAA Colorado: (Whittaker and Hamill) NCEP model

Japan: (T. Miyoshi) High resolution code

Results so far:

Local ensemble Kalman filter does better than
           current NCEP and NASA assimilation systems

Fast



OTHER APPLICATIONS
This work is potentially applicable to estimating
the state of a large class of spatio-temporally
chaotic systems (e.g., lab experiments).

M. Cornick, E. Ott, and B. Hunt
in collaboration with the
experimental group of Mike
Schatz at Georgia Tech.

Example:
Rayleigh-Benard 
convection g

cool plate

warm plate
fluid

Top
View:



Rayleigh-Benard Data Assimilation Tests
Both perfect model numerical experiments and tests
using data from the lab experiments were performed.

Shadowgraph observation model: 
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Dynamical model:  Boussinesq equations

NOTE:                     not measured.

   “mean flow” 
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Some preliminary results:

Works well in perfect model and with lab experiment data.

Forecasts indicate that                   is reasonably accurate.y)(x ,u
Parameter estimation of Ra, Pr, C.



PROPERTIES OF THE METHOD

Only low dimensional matrix 
operations are used in the analysis.
Local analyses are independent and
hence parallelizable.

Potentially fast and accurate.

http://www.weatherchaos.umd.edu/
  publications.php





OUTLINE OF OUR METHOD

Consider the global atmospheric state restricted to many
local regions covering the surface of the Earth.

Project the local states to their local low dim. subspace
determined by the forecast ensemble.

Do data assimilations for each local region in that
region’s low dim. subspace.

Put together the local analyses to form a new ensemble
of global states.

Use the system model to advance each new ensemble
member to the next analysis time.


