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OUTLINE

* Review of some basic aspects
of weather forecasting.

* Our method in brief.

* Tests of our method.



THE THREE COMPONENTS OF
STATE ESTIMATION & FORECASTING

Estimate of

system state
Observations /

foo
Forecas{ Model

‘Components’ of ° Observing
this process: * Data Assimilation

* Model Evolution



NMC/NCEP operational S1 scores
over North America (500 hPa)
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FACTORS INFLUENCING WEATHER

Changes in solar input
Ocean-air interaction
Air-ice coupling
Precipitation
Evaporation

Clouds

Forests

Mountains

Deserts

Subgrid scale modeling
Etc.
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DATA ASSIMILATION

Atmospheric _
model evolution _ Observations

Estimate of .ﬁ
the atmospheric
>

state (’J/ /

(time)

2 t3
Forecast New state estimate
(“analysis”)

* Obs. are scattered in location and have errors.
* Forecasts (as we all know) have uncertainties.



A MORE REFINED SCENARIO

bservations
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Note: Analysis pdf at t, is dynamically
evolved to obtain the forecast pdf at t..



GOALS OF DATA ASSIMILATION

® Determine the most likely current
system state & pdf given:
(a) a model for the system dynamics,
(b) observations.

® Use this info (the “analysis”) to forecast
the most likely system state and its
uncertainty (i.e., obtain the forecast pdf).



KALMAN FILTER

e For the case of linear dynamics, all pdfs are
Gaussian, and there is a known rigorous
solution to the state estimation problem:
the Kalman filter.

(pdf of obs.) + (pdf of forecast) » (pdf of state)
e |[n the nonlinear case one can often still
approximate the pdfs as Gaussian, and, in

principle, the Kalman filter could then be applied.

e A key input is the forecast pdf.



DETERMINING THE ANALYSIS PDFF, (x)
"¢ X_) = forecasted state PDF

‘obs X_X_)= PDF of expected obs.
given true system state x

F |
e Bayes’ theorem: "; X_)= fﬁ;iz)(x)
T ffobs

e Assume Gaussian statistics:
] |
XY ep (X X )R ) X xp))

obs X X Jexp -y Hx R,y Hx)




e Analysis PDF:
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CURRENT NCEP OPERATIONAL
APPROACH (3DVAR)

e A constant, time-independent forecast error

covariance,’:}_c , IS assumed.

forecast pdf ~:xp { —;éx_a(_ff( sz) 1( X_X¢)f

e The Kalman filter equations for the system state
pdf are then applied treating the assumed’ ¢ as
if it were correct.

ECMWF : 4DVAR

These approaches
ignore the time variability of’_, .
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PROBLEM

e Currently data assimilation is already
a very computationally costly part of
operational numerical weather
prediction.

e Implementation of a full Kalman filter
would be many many times more
costly, and is impractical for the
foreseeable future.



REDUCED KALMAN FILTERS

e We seek a practical method that accounts
for dynamical evolution of atmospheric forecast
uncertainties at relatively low computational cost.

® Ensemble Kalman filters:

analysis forecast
t
t, 2
Evansen, 1994 Houtekamer & Mitchell 1998, 2001
Bishop et. al., 2001 Hamill et. al., 2001

Whitaker and Hamill, 2002 Anderson, 2002



MOTIVATION FOR OUR METHOD
e Patil et al. (Phys. Rev. Lett. 2001)

‘Local Region’ labeled by its central grid point
5x5 grid pts.

/ vertical

21 £/

lavers longitude
y / / latitude

~103km x ~ 103 km

e It was found that in each local region the
ensemble members approximately tend to
lie in a surprisingly low dimensional subspace.

Take the estimated state in the local
region to lie in this subspace.



SUMMARY OF STEPS IN OUR METHOD

d .
(jrt A) Evolve model

Obtain globa (_ai r,t) \f‘rom t-Ato t

ensemble
analysis (_jrit)

. Form local
fields lvectors

)(mn:

f
Do analysi
In local low

dim. subspace



PROPERTIES OF OUR METHOD

e Only operations on relatively small
matrices are needed in the analyses.
(We work in the local low dimensional
subspaces.)

e The analyses in each local region
are independent.

—»> Fast parallel computations
are possible.



TESTING OUR METHOD ON A ‘TOY’ MODEL

® “Truth run”: Run the model obtaining the
true time series:

™%, t,) (p = grid point)
® Simulate obs.: (p, t,) X gy t, ) (ho se)

for some set of observing locations, p.

e Run our ‘local ensemble Kalman filter’ (LEKF)
using the same model (perfect model scenario)
and these observations to estimate the most
probable state and pdf at each analysis time.

® Compare the estimated most probable
system state with the true state.



NUMERICAL EXPS. WITH A TOY MODEL

QLorenz(1996):z;—"@( ir Xi2)X j1r X; 8

“Latitude Circle”
For N=40

13 positive Lyap. Exponents
Fractal dim. = 27.1

¢ We compare results from our method with:
e Global Kalman filter.

e A method mimicking current data assimilation
methods (i.e. a fixed forecast error covariance).

e A naive method called ‘direct insertion’.



RMS ANALYSIS ERROR

RMS ANALYSIS ERROR

FULL KF RMS ANALYSIS ERROR
FOR DIFFERENT MODEL AND ENSEMBLE SIZES
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RMS ANALYSIS ERROR

SCALING OF RMS ANALYSIS ERROR
WITH NUMBER OF OBSERVATIONS
FOR DIFFERENT DATA ASSIMILATION TECHNIQUES
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MAIN RESULTS OF TOY MODEL TESTS

e Both the full KF and our LEKF give about the
same accuracy which is substantially better
than the ‘conventional method’ and direct
insertion.

e Using our method the number of ensemble
members needed to obtain good results is
independent of the system size, N, while the
full Kalman filter requires a number of
ensemble members that scales as ~N.



TESTS ON REAL WEATHER MODELS

Our group* * Ref. Szunyogh et al. Tellus A (2004)

NCEP model:
192 (E-W) x 94 (N-S) x 28 (vertical) x 4 (variables) = 2 x 10¢
Variables: surface pressure, horizontal wind, temperature, humidity
NASA model:
In the “perfect model scenario” our scheme can yield an over 50%
improvement on the current NASA data assimilation system.

NOAA Colorado: (whittaker and Hamill) NCEP model

Japan: (T. Miyoshi) High resolution code

Results so far:

® Local ensemble Kalman filter does better than
current NCEP and NASA assimilation systems

® Fast



OTHER APPLICATIONS

This work is potentially applicable to estimating
the state of a large class of spatio-temporally
chaotic systems (e.g., lab experiments).

Example: | cool plate

Rayleigh-Benard ¥ 3535363030 _ fluid
convection warm plate
>

in collaboration with the
experimental group of Mike
Schatz at Georgia Tech.



Rayleigh-Benard Data Assimilation Tests

Both perfect model numerical experiments and tests
using data from the lab experiments were performed.

® Shadowgraph observation model: I = 0 —
1 € VF(Xx,y)

@ Dynamical model: Boussinesq equations
NOTE:Q(, y,Z) not measured.

“mean flow” %— U, v,z0z X, y)

Some preliminary results:

® Works well in perfect model and with lab experiment data.
® Forecasts indicate that@( y y) is reasonably accurate.
® Parameter estimation of Ra, Pr, C.




PROPERTIES OF THE METHOD

* Only low dimensional matrix
operations are used in the analysis.

° Local analyses are independent and
hence parallelizable.

e Potentially fast and accurate.

http://www.weatherchaos.umd.edu/
publications.php



Tornado Hits University of Maryland

ot
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u.: adly tornac

~ 4p.m. Rolating winds spotted on radar
in Stafford. va

4:09 pan. Nalional Weather Service
issuses tormado warning for northern
Stafford County and eastern Prince
Wiliam County.

£53 p.m. Weather service issues
warning for eastern Falrfax County,
D.C. metro area and Alexandria.

5:08 pam, StOTN PAsSEs Over the
Pentagon.

5:10 pam. Weather service issues
waming for Prince George's County
and eastern Montgomery County.
5:20 p.m. Storm strengthens, strikes

College Park, moves on to Beltsville
and Laurel

| 5:31 pm. Weather service issues
tornade warning for Howard County.

5:45 pum. Tornado warning in Prince
~ George’s County expires.

. 6:00 p.m. Howard tornado waming
| expires.

&

BOURCE: National Weather Sarvice DENISE MURRAY © SUN STAFP



OUTLINE OF OUR METHOD

® Consider the global atmospheric state restricted to many
local regions covering the surface of the Earth.

Project the local states to their local low dim. subspace
determined by the forecast ensemble.

® Do data assimilations for each local region in that
region’s low dim. subspace.

Put together the local analyses to form a new ensemble
of global states.

® Use the system model to advance each new ensemble
member to the next analysis time.



