Nonlinear dynamics for signal identification *T. L. Carroll Naval Research Lab*

Multiple radars: how many transmitters are there?

Specific Emitter Identification

Older transmitters

Transients on leading and trailing edges: use linear signal processing to get signature

Modern transmitters

No transients: linear signal processing can't find signature

Good test problem for NLD approach:

• Radar reflection goes as 1/R⁴, so S/N large at target

Radar amplifier runs at high power- very nonlinear

All amplifiers based on nonlinear devices

• consider problem as driven nonlinear system

Specific Emitter ID: Data Driven

Amplifier is driven nonlinear system

Digitize output signal

Create vectors:

$$p_1 = \begin{bmatrix} s(1) \\ s(1+\tau) \\ s(1+2\tau) \end{bmatrix}, \quad p_2 = \begin{bmatrix} s(2) \\ s(2+\tau) \\ s(2+2\tau) \end{bmatrix}, \quad \dots$$

Has same geometrical properties as original attractor

Specific Emitter ID: Data Driven

• If 2 dynamical systems identical, same point in phase space should have same derivatives

Identical systems

Quantify this difference: average over signal

Average = $<\Delta>$

Simple numerical example

Amplifier model:

Set different parameters for A, B Embed x_A , x_B in 2-d phase space Derivative difference $\delta = |[x_A(i+1)-x_A(i)] - [x_B(i+1)-x_B(i)]|$ Take average for many points

Simulation results:

Different time constant, linear or nonlinear

$$\gamma_A = 1$$

$$\rho_A = \rho_B = 0 \text{ (linear)}$$

$$\rho_A = \rho_B = 0.1 \text{ (nonlinear)}$$

Same time constant, different nonlinearity

$$\gamma_A = \gamma_B = 1$$
 $\rho_A = 0.1$

Specific Emitter ID: Data Driven

Experiment

3 nominally identical op amps driven with same signal

- Save a signal from each amp as a reference
- Take an unknown signal compare to each reference
- Which reference gives smallest phase space difference?

Experiment

Embed reference Embed unknown Pick index point \mathbf{u}_j on unknown Nearest reference point is \mathbf{v}_k

reference

unknown

Derivatives \mathbf{u}_{j+1} - \mathbf{u}_{j} , \mathbf{v}_{k+1} - \mathbf{v}_{k}

Real Data: complications

Frequency modulation: reference may have 2 very different derivatives

• search for pairs of points (v_i, v_{i+1})

Real Data: complications

Unknown signal sampled at different phase than reference

- Draw line between v's
- z_i is closest approach of line to u_i
- z_i is estimate for reference point v_i
- difference in derivatives proportional to distance between u and z: normalize by this distance

Phase space statistic: *k* is vector component

Reference derivative
$$\Delta = \frac{\sum_{k=1}^{d} \left(z_{j+1}^{k} - z_{j}^{k} \right) - \left(u_{j+1}^{k} - u_{j}^{k} \right)}{\sum_{k=1}^{d} \left(z_{j+1}^{k} - u_{j+1}^{k} \right)^{2} + \left(z_{j}^{k} - u_{j}^{k} \right)^{2}} \quad \text{distance}$$

Average Δ over signal: $\langle \Delta \rangle$

Summary of algorithm

- 1. Record reference signals from several amplifiers
- 2. Record unknown signal
- 3. Embed unknown and reference signals
- 4. For each reference:
 - A. Pick index pair on unknown: search for nearest reference pair.
 - B. Interpolate reference point to correct for phase error
 - C. Compute unknown and reference derivatives: take difference
 - D. Normalize difference by distance between unknown and reference pairs
 - E. Average over trajectory.

Experiment:

Drive 3 op amps with 25 kHz sine, amplitude 1V

Divide signal into many segments Measure $<\Delta>$ for each Compute histogram

Experiment
Histogram of phase space difference

(unknown came from amplifier A)

Experiment: frequency modulated (FM) signals Randomly shift signal between 22.5 kHz and 27.5 kHz

What about signals with different amplitudes?

Need information from all parts of phase space Step up amplitude of driving signal: sine wave

input signal

output signal

At each point in phase space, find output derivative as function of input derivative

$$\frac{d\vec{y}(\vec{x})}{dt} = a_1(\vec{x}) + a_2(\vec{x}) \frac{d\vec{x}}{dt} + a_3(\vec{x}) \frac{d\vec{x}}{dt} + \dots$$
(sine wave driving)
$$\frac{\vec{y}(\vec{x})}{\vec{y}(\vec{x})} = a_1(\vec{x}) + a_2(\vec{x}) \frac{d\vec{x}}{dt} + a_3(\vec{x}) \frac{d\vec{x}}{dt} + \dots$$

Store coefficients as function of x locations This is the phase space model

Using phase space model

Record unknown signal output signal *u*<u>Assume</u> unknown input signal was sine

Fit sine to *u*: fitted sine is assumed input signal *v*

Amplitude of real driving signal not known

Rescale assumed drive signal $v_s = \alpha v$ Use phase space model: estimate unknown du/dt based on v_s

Find value of α to minimize $\alpha du/dt - du_{E}/dt = \Delta$

Unknown amplitudes: results- sinusoidal driving Use phase space model from A, B, or C

Amplifier ID based on phase space methods is possible

• larger nonlinearity- easier to ID

Phase space modeling:

- need better models- should reflect physics of problem
- need adjustable parameters for different amplifiers of same class.