

James D. Meiss
Dept. of Applied Mathematics
University of Colorado
Boulder, CO 80309-0526

email: jdm@boulder.colorado.edu phone: (303)492-3731 sec: -4668 fax: -4066

# Dynamics of 3D Volumepreserving Maps

J.D. Meiss
University of Colorado
at Boulder

with H. Lomelí, A. Gomez, P. Mullowney, K. Julien, & H. Dullin

### Why Maps?

# A dynamical system is a rule for evolution on a space of states

Dynamical systems can have continuous time (flow) or discrete time (map)

# Maps that preserve volume are common in applications

Poincaré sections of Hamiltonian flows

Magnetic field line maps  $\frac{d\mathbf{x}}{dt} = \mathbf{B}(\mathbf{x},t), \quad \nabla \cdot \mathbf{B} = 0$ 

Structure of field lines in a Plasma confinement device or the magnetosphere

Lagrangian particle motion in an incompressible, time dependent flow

Geostrophic dynamics

Turbulent mixing problems  $\frac{d\mathbf{x}}{dt} = \mathbf{u}(\mathbf{x},t), \ \nabla \cdot \mathbf{u} = 0$ 

#### Volume Preserving Maps

Specialize to the 3D case

$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
,  $\det(Df) = 1$   
 $(x', y', z') = f(x, y, z)$ 

where *Df* is the Jacobian matrix, and ' means the new point

A canonical example is the abc map

$$x' = x + a\sin(2\pi z) + c\cos(2\pi y)$$
$$y' = y + b\sin(2\pi x') + a\cos(2\pi z)$$

$$z' = z + c\sin(2\pi y') + b\cos(2\pi x')$$

#### Trace Maps

$$(x', y', z') = (y, z, -x + 2yz)$$



#### Maps with an Invariant

(Suris, (1989). "Integrable Mappings of the Standard Type." Func. Anal. & Appl. 23: 74-76.)



A. Gómez and J. D. Meiss (2002). "Volume Preserving Maps with ar Invariant." Chaos 12: 289-299

## Fluid Mixing Models

#### Mixing vs Diffusion



A passive scalar (blob of die) mixes in a fluid when

it stretches and folds due to fluid motion

it diffuses due to Brownian motion

Here we ignore the diffusive time scale and only consider advective mixing

### Advective Mixing

A passive scalar follows the fluid:

$$\dot{\mathbf{x}} = \mathbf{u}(\mathbf{x}, t), \quad \mathbf{x}(0) = \mathbf{x}_o$$
 Stokes PDEs

Neglect diffusion if time scale is short enough

We assume that the flow is laminar, so turbulent mixing is not active.

Laminar flows are common for small-scale mixers (MEMs devices, Microbiology devices)

#### Experimental Advection

Leong (1989): periodically modulated cavity flow



#### Experimental Advection

Off-axis stirring





Fountain, et al. (2000). "Chaotic Mixing in a Bounded Three-Dimensional Flow." . Fluid Mech. 417(265–301





#### Fountain, Khakhar, Mezic, and Ottino



## Aref's Blinking Vortex

Aref defined the blinking vortex flow by periodically stirring an incompressible, viscous fluid



$$\frac{dx}{dt} = u(x,t) = \nabla \psi(x,t) \times \hat{z}$$

Modeled as point vortices applied for times  $T_1$  and  $T_2$ 

Explicit map can be obtained.



## Roll Switching



#### Binary Convection

Ethanol-Water mixture in thin layer, heated from below



FIG. 10. Flow patterns in  $\Gamma = 24$  square cell at T = 25 °C, 40 wt. % of ethanol: (a) induced "perfect" square grid at r = 1.07; (b) roll pattern at  $r \approx 2.6$ , (c), (d), (e) sequential pictures of the oscillating structure at r = 1.19. The time difference between pictures is  $12.5\tau_{u,T}$ .



FIG. 11. The light intensity of the shadowgraph at a chosen location in the large square cell with 40 wt. % of ethanol for five different values of r. The numbers given on the figure are averaged values of r.

### 3D Stirring Model

Incompressible fluid written as a sum of stream functions:

$$\frac{d\mathbf{x}}{dt} = \mathbf{u}(\mathbf{x}, t) = \nabla \psi_1 \times \hat{x} + \nabla \psi_2 \times \hat{y} + \nabla \psi_3 \times \hat{z}$$

#### Roll form:

$$\psi_1 = A(t)g(y)h(z)$$

$$\psi_2 = B(t)f(x)h(z)$$

$$\psi_3 = C(t)f(x)g(y)$$



Mullowney, Julien, & Meiss (2005). "Blinking rolls: chaotic advection in a 3D flow with an Invariant." SIAM J. Appl. Dyn. Sys. 4: 159-186.

### Surprise!

There is an Invariant!

$$J=f(x)g(y)h(z)$$

for any functions A(t), B(t), C(t) and f,g,h!

$$0 = \frac{dJ}{dt} = v \cdot \nabla J \quad \Rightarrow \quad v = \nabla J \times E$$

$$0 = \nabla \cdot v = -\nabla J \cdot (\nabla \times E)$$

$$E = \left(\frac{A}{f}, \frac{B}{g}, \frac{C}{h}\right)$$

### Blinking Rolls

Periodic rolls 
$$\psi_1 = A(t)\cos(y)\cos(z)$$
  
 $\psi_3 = C(t)\cos(x)\cos(y)$ 

with on/off stirring protocol



#### Blinking Roll Map

For a single roll, the flow can be obtained analytically. For  $\psi_1 = \cos(y)\cos(z)$  the time T flow is:

$$\Phi^{(1)}_{T}(x,y,z) = \begin{cases} \sin^{-1}\left(\frac{\sin(y)\cos(T)\sin(T)-\sin(z)\cos^{2}(y)\sin(T)}{1-\sin^{2}(y)\sin(T)}\right) \\ \sin^{-1}\left(\frac{\sin(z)\cos(T)\sin(T)+\sin(y)\cos^{2}(z)\sin(T)}{1-\sin^{2}(z)\sin(T)}\right) \end{cases}$$

Here sn,cn and dn are Jacobi Elliptic functions with modulus

$$k = \sqrt{1 - \cos^2 y \cos^2 z}$$

# Blinking Roll Map: Two Orthogonal Rolls

Composition of flows for  $\Psi_1$  and  $\Psi_3$  give the two roll map:

$$f = \Phi_{T_1}^{(1)} \circ \Phi_{T_3}^{(3)} = \Phi_{T_1}^{(1)} \circ R^{-1} \circ \Phi_{T_3}^{(1)} \circ R$$

where R is rotation by  $\pi/2$  about y

#### Küppers-Lortz Instability

Convection in a rotating fluid layer

Assume that rotation is small (centripetal acceleration << gravity).

Onset of instability: rolls grow, then loose stability to new rolls at an angle  $\theta \approx 120^{\circ}$ 







### Küppers-Lortz Instability

Model using Boussinesq equations Instability gives tilted rolls

 $\mathbf{u}_{\eta} = -(\tan \eta \sin y \sin z, -\sin y \sin z, -\cos y \cos z)$ where  $\tan \eta$  is proportional to the rotation rate



#### **Busse-Heikes Model**

$$\mathbf{u}(\mathbf{x},t) = A_1(t)\mathbf{u}_{\eta}(\mathbf{x}) + A_2(t)R\mathbf{u}_{\eta}(R^T\mathbf{x}) + A_3(t)R^T\mathbf{u}_{\eta}(R\mathbf{x})$$

$$\dot{A}_{1} = A_{1} \left( 1 - \left| A_{1} \right|^{2} - \alpha \left| A_{2} \right|^{2} - \beta \left| A_{3} \right|^{2} \right)$$

$$\dot{A}_{2} = A_{2} \left( 1 - \left| A_{2} \right|^{2} - \alpha \left| A_{3} \right|^{2} - \beta \left| A_{1} \right|^{2} \right)$$

$$\dot{A}_3 = A_3 \left( 1 - |A_3|^2 - \alpha |A_1|^2 - \beta |A_2|^2 \right)$$





#### T = 0.2

$$T = rac{ au_{switch}}{ au_{roll}}$$



#### T = 0.5

$$T = rac{ au_{switch}}{ au_{roll}}$$



#### T = 1.0

$$T = rac{ au_{switch}}{ au_{roll}}$$



#### Elliptic Invariant Circles



#### Circle Bifurcations



#### Circle Bifurcations



## Confined & Regular



## Confined Mixing



#### Exit Time Distribution



 $p \sim t^{\gamma}$ 

#### Mean-Square Displacement



# Volume Preserving Normal Forms

#### **Bifurcations**

Characteristic polynomial has two parameters

$$p(\lambda) = \lambda^3 - \tau \lambda^2 + \sigma \lambda - 1$$

$$\tau = Tr(Df), \quad \sigma = \frac{1}{2} \left( \tau^2 - Tr(Df^2) \right)$$

$$\sigma = \tau$$
:  $\lambda = 1$ 

$$\sigma + \tau = -1$$
:  $\lambda = -1$ 

$$\sigma = \tau = 2 : \lambda = (1,1,1)$$

$$\sigma = \tau = -1$$
:  $\lambda = (-1, -1, 1)$ 



#### **Bifurcations**

(1,1,1) Normal Form

$$f(x,y,z) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z + p(x,y) \end{pmatrix}$$

$$p = -\varepsilon + \mu y + ax^2 + bxy + cy^2$$



#### Quadratic Volume Preserving Maps

Lomelí & Meiss, Nonlinearity 11 557(98).

Every quadratic volume preserving diffeomorphism with a quadratic inverse is conjugate to the a normal form

$$x' = \alpha + \tau x + z + Q(x, y)$$
$$y' = x$$
$$z' = y$$

Where Q(x,y) is a quadratic form.

This map also arises in homoclinic bifurcations of 3D flows near a quadratic homoclinic tangency.

#### (III) Normal Form

$$(x, y, z) \rightarrow (x + y, y + z + p, z + p)$$
  
 $p = -\varepsilon + \mu y + x^2 + \frac{1}{2}xy + \frac{1}{2}y^2$ 

Two fixed points  $(\pm \sqrt{\varepsilon}, 0, 0)$ 

Saddle-node-Hopf bifurcation along  $\epsilon = 0$  and  $-4 < \mu < 0$ .

Period doubling at  $\epsilon = 0$ ,  $\mu = -4$ .





Lomelí, H. E. and J. D. Meiss (2000). "Codimension One Melnikov Method" Chaos 10(1): 109-121.

#### **Bounded Orbits**

Fraction of orbits in a cube of size  $\sqrt{\epsilon}$  that remain bounded for 100 iterations.



#### Saddle-node-Hopf

Normal form near  $(e^{2\pi i\omega}, e^{-2\pi i\omega}, 1)$ ,  $\omega$  irrational

$$r' = r(1 - 2\gamma z)$$

$$\theta' = \theta + \omega + \tau z + O(3)$$

$$z' = -\delta + z + \beta r + \gamma z^{2}$$









#### Many more Questions

- Can experimentalists see the invariant tori in convection experiments?
- How to better quantify and control transport for 3D Systems
- How are invariant tori created/destroyed?
- Are there remnants of invariant tori in the chaotic seas? Cantori?

- What parameters optimize the mixing?
- Can one develop robust algorithms for finding tori and their invariant manifolds?
- Generalizations of KAM theory exist, but critical tori not studied.