J.E. Greedan

Tutorial Questions:

- 1. Give the "crystal field" electronic configurations and spin quantum number, S, for the following:
 - a.) The trivalent ions of the 3d series for both high spin and low spin cases where relevant.
 - b.) The following 4d and 5d series ions:

 $Ru^{4+}, Ru^{5+}, Ir^{4+}, Rh^{3+}, Mo^{4+}, Pt^{4+}$

- 2. From your answers in part 1 a.) calculate the O.S.P.E. for the trivalent 3d ions for both high spin and low spin configurations.
- 3. Which of the following spinels will be normal, inverted or mixed?

NiFe2O4, MnCr2O4, MgMn2O4, AlV2O4, MgTi2O4, MnRh2O4, NiRh2O4

4. Calculate pO @ 1000K for the two phase mixture of Fe₂O₃ and Fe₃O₄, Given:

 $\Delta G^{o}_{1000} (Fe_{3}O_{4}) = -184.4 \text{ kcal/mole}$

 $\Delta G^{o}_{1000} (Fe_2O_3) = -131.4 \text{ kcal/mole}$

Note: ΔG^{o}_{1000} values are per mole of oxide. The equilibrium between Fe₂O₃ and Fe₃O₄ should be written in terms of one mole of O_{2(g)}. Use R = 1.987 cal/deg/mole.