J.E. Greedan

Tutorial Questions:

1. Give the "crystal field" electronic configurations and spin quantum number, S, for the following:
a.) The trivalent ions of the 3 d series for both high spin and low spin cases where relevant.
b.) The following 4 d and 5 d series ions:

$$
\mathrm{Ru}^{4+}, \mathrm{Ru}^{5+}, \mathrm{Ir}^{4+}, \mathrm{Rh}^{3+}, \mathrm{Mo}^{4+}, \mathrm{Pt}^{4+}
$$

2. From your answers in part 1 a.) calculate the O.S.P.E. for the trivalent 3d ions for both high spin and low spin configurations.
3. Which of the following spinels will be normal, inverted or mixed?
```
NiFe}2\mp@subsup{\textrm{O}}{4}{},\mp@subsup{\textrm{MnCr}}{2}{}\mp@subsup{\textrm{O}}{4}{},\mp@subsup{\textrm{MgMn}}{2}{}\mp@subsup{\textrm{O}}{4}{},\mp@subsup{\textrm{AlV}}{2}{}\mp@subsup{\textrm{O}}{4}{},\mp@subsup{\textrm{MgTi}}{2}{}\mp@subsup{\textrm{O}}{4}{},\mp@subsup{\textrm{MnRh}}{2}{}\mp@subsup{\textrm{O}}{4}{},\mp@subsup{\textrm{NiRh}}{2}{}\mp@subsup{\textrm{O}}{4}{
```

4. Calculate $\mathrm{pO} @ 1000 \mathrm{~K}$ for the two phase mixture of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and $\mathrm{Fe}_{3} \mathrm{O}_{4}$, Given:

$$
\begin{gathered}
\Delta \mathrm{G}^{\mathrm{o}}{ }_{1000}\left(\mathrm{Fe}_{3} \mathrm{O}_{4}\right)=-184.4 \mathrm{kcal} / \mathrm{mole} \\
\Delta \mathrm{G}^{\mathrm{o}}{ }_{1000}\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)=-131.4 \mathrm{kcal} / \mathrm{mole}
\end{gathered}
$$

Note: $\Delta \mathrm{G}^{\mathrm{o}}{ }_{1000}$ values are per mole of oxide. The equilibrium between $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and $\mathrm{Fe}_{3} \mathrm{O}_{4}$ should be written in terms of one mole of $\mathrm{O}_{2(\mathrm{~g})}$. Use $\mathrm{R}=1.987 \mathrm{cal} / \mathrm{deg} / \mathrm{mole}$.

