A Few Questions...

- 1) In a metal :
 - a) $1/T_1$ is constant
 - b) $1/T_1T$ is constant
 - c) $1/T_1T$ is diverging at low T
 - d) $1/T_1T$ is constant if the e⁻ are weakly correlated
 - e) $1/T_1T$ is constant if the e⁻ are strongly correlated
- 2) The decay of the echo amplitude $E(2\tau)$ is observed to be gaussian. One concludes that the decay rate $1/T_2$:
 - a) is proportional to $\chi(q=0,\omega=0)$
 - b) is proportional to $\chi'(Q,\omega=0)$, where Q is a critical wave-vector
 - c) is proportional to $\Sigma_q \chi'(q,\omega=0)$
 - d) is related to the second moment of the hyperfine field distribution
- 3) In an S=1/2 antiferromagnet on a square-lattice one observes that above 100 K 1/T₁ of ²⁹Si is constant and equal to 1000 s⁻¹. Knowing that ²⁹Si hyperfine coupling is a scalar and equal to 10 kOe, estimate the exchange coupling among S=1/2 spins (²⁹Si gyromagnetic ratio is 8.459 MHz/Tesla).
- 4) A peak in the T dependence of $1/T_1$ indicates :
 - a) a phase transition
 - b) that the system is an insulator
 - c) that the system is a strongly correlated metal
 - d) a slowing down of the fluctuations to the MHz range and/or an increase in their amplitude
 - e) a slowing down of the fluctuations and/or an increase in their amplitude
- 5) At a second order phase transition one always observe a peak in $1/T_1$
 - a) Yes (why ?)
 - b) No (why?)
- 6) $1/T_1$ is sensitive only to spin fluctuations at frequencies in the radiofrequency range.
 - a) Yes (why ?)
 - b) No (why?)
- 7) Consider a crystal of a frustrated magnet. In general the paramagnetic shift ΔK of I nuclei is proportional to:
 - a) The magnetic field
 - b) The static uniform spin susceptibility
 - c) The macroscopic magnetization
 - d) The average magnetic moment of the spins coupled to the I nuclei

- 8) A compound upon chemical doping shows a crossover from an AF insulator to a Fermi gas regime. Assuming that the hyperfine coupling is only slightly affected by doping, say if $1/T_1$ at RT (>> J_{AF}) should:
 - a) increase
 - b) decrease
- 9) A reduction of $1/T_1T$ upon decreasing T is not compatible with:
 - a) A spin gap
 - b) A long-range magnetic order
 - c) Extreme slowing down of the fluctuations
 - d) A one-dimensional S=1/2 AF
- 10) A peak in the T dependence of $1/T_2$, the echo decay rate, indicates :
 - a) a phase transition
 - b) that the system is an insulator
 - c) that the system is a strongly correlated metal
 - d) a slowing down of the fluctuations and/or an increase in their amplitude
 - e) a slowing down of the fluctuations to well below the MHz range and/or an increase in their amplitude