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1.1 SU(N) Heisenberg Models

The use of large N approximations to treat strongly interacting quantum
systems been very extensive in the last decade. The approach originated in
elementary particles theory, but has found many applications in condensed
matter physics. Initially, the large N expansion was developed for the Kondo
and Anderson models of magnetic impurities in metals. Soon thereafter it was
extended to the Kondo and Anderson lattice models for mixed valence and
heavy fermions phenomena in rare earth compounds [1, 2].

In these notes we shall formulate and apply the large N approach to the
quantum Heisenberg model [3–6]. This method provides an additional avenue
to the static and dynamical correlations of quantum magnets. The mean field
theories derived below can describe both ordered and disordered phases, at
zero and at finite temperatures, and they complement the semiclassical ap-
proaches.

Generally speaking, the parameter N labels an internal SU(N) symmetry
at each lattice site (i.e., the number of “flavors” a Schwinger boson or a
constrained fermion can have). In most cases, the large N approximation has
been applied to treat spin Hamiltonians, where the symmetry is SU(2), and
N is therefore not a truly large parameter. Nevertheless, the 1/N expansion
provides an easy method for obtaining simple mean field theories. These have
been found to be either surprisingly successful or completely wrong, depending
on the system. For example: we shall see in Section 1.3 that the Schwinger
boson mean field theory in one dimension works well for the ferromagnet and
for the antiferromagnet of integer spin but fails for the half-odd integer spin
antiferromagnet.

The large N approach handles strong local interactions in terms of con-
straints. It is not a perturbative expansion in the size of the interactions but
rather a saddle point expansion which usually preserves the spin symmetry
of the Hamiltonian. The hamiltonians are written as a sum of biquadratic
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forms −O†
ijOij on each bond on the lattice. This sets up a natural mean field

decoupling scheme using one complex Hubbard Stratonovich fields per bond.
At the mean field level, the constraints are enforced only on average. Their

effects are systematically reintroduced by the higher-order corrections in 1/N .
It turns out that different large N generalizations are suitable for different

Heisenberg models, depending on the sign of couplings, spin size, and lattice.
Below, we describe two large N generalizations of the Heisenberg antiferro-
magnet.

1.1.1 Bipartite Antiferromagnet

We consider the case of nearest neighbor antiferromagnetic interaction J > 0,
on a bipartite lattice with sublattices A,B. A bond 〈ij〉 is defined such that
i ∈ A and j ∈ B. The antiferromagnetic bond operator is defined as

Aij = aibj − biaj . (1.1)

The arrow → denotes the antisymmetry with respect to interchange of i → j.
We define a spin rotation by π about the y axis on sublattice B which sends

aj → −bj , bj → aj . (1.2)

This is a canonical transformation which preserves the constraint (??). The
antiferromagnetic bond operator transforms into a symmetric operator:

Aij → Aij = aiaj + bibj . (1.3)

The SU(2) Heisenberg model is written in the form

H = J
∑
〈ij〉

Si · Sj

= −J

2

∑
〈ij〉

(
A†

ijAij − 2S2
)

. (1.4)

H can be generalized to N > 2 models by adding Schwinger boson flavors.
The constraint is generalized to (??), and the bond operator is generalized to

Aij →
N∑

m=1

aimajm. (1.5)

The SU(N) antiferromagnetic bosons (AFM-B) Heisenberg model is

HAFM−B(N) = − J

N

∑
〈ij〉

(
A†

ijAij − NS2
)

= − J

N

∑
〈ij〉

(∑
mm′

Smm′
i S̃m′m

j − NS2

)
, (1.6)
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where
S̃mm′

j = a†
jm′ajm (1.7)

are the generators of the conjugate representation on sublattice B. One should
note that HAFM−B of (1.6) is not invariant under uniform SU(N) transforma-
tions U but only under staggered conjugate rotations U and U† on sublattices
A and B, respectively.

1.1.2 Non Bipartite (Frustrated) Antiferromagnets

Read and Sachdev [7] have extended the Schwinger bosons representation
to an Sp(N) generalization. The resulting Hamiltonian be used to set up a
mean field theory for the case of the antiferromagnet on any frustrated, non
bipartite, lattice provided all the interactions are positive Jij > 0. The ”large
N” version is given by replicating both a and b bosons to N flavors each. The
physical model then corresponds to taking N → 1 limit. This representation
amounts to writing all interactions as negative biquadratic forms

HSp(N) = − J

N

∑
〈ij〉

(
A†

ijAij

)

Aij =
N∑

m=1

(aimbjm − bimajm) (1.8)

The Sp(N) mean field theory requires a separate complex Hubbard Stratonovich
field for every interaction range, plus a constraint field.

1.2 The Generating Functional

The generating Hamiltonian is defined by

H[j] = H−
∑

imm′
jimm′(τ) a†

imaim′ , (1.9)

where τ ∈ [0, β) is the imaginary time. The constraints (??) or (??) are
enforced by the projector PS , which commutes with H[j]. The imaginary
time generating functional (see (??)) is

Z[j] = Tr PSTτ

[
exp

(
−
∫ β

0

dτ H[j]

)]

= lim
ε→0

Tr Tτ

β∏
τn=ε

[PS(τ) exp (−εH[j(τn)])] . (1.10)

We use an integral representation of the constraint
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PS(τ) =
∫

Dλ exp

[
−iε
∑
im

λi(τ) (a†
imaim − S)

]
, (1.11)

where the measure of the constraint field is∫
Dλ = lim

ε→0

∏
iτ

ε

∫ π/ε

−π/ε

dλiτ . (1.12)

The exponential of (1.11) and H[j] can be combined in the exponent since
they commute.

We construct a coherent states path integral for the generating functional
which has unified notations for the Schwinger bosons and constrained fermion
Hamiltonians:

Z[j]=
∫ ∞

−∞
Dλ

∫
D2z exp

{
−
∫ β

0

dτ
[∑

im

z∗im∂τzim + H[j]

+ i
∑
im

λi(τ)(z∗imzim − S)
]}

,

(1.13)

where z are complex variables. The Hamiltonian function is

H[j] = − J

N

∑
〈ij〉

Z∗
ijZij −

∑
imm′

jimm′(τ)z∗imzim′ , (1.14)

where
Z =

∑
m

zimzjm (1.15)

where the AFM-B Hamiltonians were defined in (1.6).

1.3 Schwinger Bosons Mean Field Theory

Mean field theory is set up by decomposing the interaction terms in (1.15) on
each bond with a dynamical Hubbard Stratonovich fields Qij(τ), which yields
the functional integral representation of the generating functional (partition
function):

Z[j] =
∫

D2Q Dλ exp [−NS[λ, Q, j]]

S = − η

N
Trτim

(
ln Ĝ[j]

)
+
∫ β

0

dτ

⎛
⎝∑

〈ij〉

|Qij |2
J

− iS
∑

i

λi

⎞
⎠ .

(1.16)
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where Ĝ is the Green function of the quadratic Fermion action. This expression
is the starting point for a steepest descents expansion controlled by N as the
large parameter. In the following, N is held as an independent parameter.
We set N → 2 when evaluating spin correlations for the physical Heisenberg
model.

The SBMFT is given by replacing the auxiliary fields in the action of (1.16)
by static and uniform saddle point parameters:

NS [Qij(τ), λi(τ)] → NS0(Q,−iλ) = βFMF (Q,λ). (1.17)

FMF is the mean field free energy, which can be written as

FMF (Q,λ) = −β−1 ln Trim

[
exp
(−βHMF [Q,λ]

)]
, (1.18)

where HMF is the mean field Hamiltonian of N decoupled boson flavors.

1.4 The Case of the Antiferromagnet

The mean field Hamiltonian is given by

HMF =
∑
i,m

λa†
imaim + Q

∑
〈ij〉,m

(
a†

ima†
jm + aimajm

)

+ NN zQ2

2J
− NNSλ

=
∑
km

[
λa†

kmakm +
1
2
zQγk

(
a†
kma†

−km + akma−km

)]

+ NN zQ2

2J
− NNSλ. (1.19)

For N = 2, the SBMFT Hamiltonian resembles the Holstein–Primakoff spin
wave Hamiltonian, except that here two Schwinger boson flavors replace the
single Holstein–Primakoff boson. In close analogy to the spin wave problem,
HMF can be diagonalized by a canonical Bogoliubov transformation

αkm = cosh θkakm − sinh θka†
−km, (1.20)

or inversely,
akm = cosh θkαkm + sinh θkα†

−km. (1.21)

By inserting (1.21) in (1.19), one obtains a normal diagonal Hamiltonian in
terms of the α bosons,

HMF =
1
2

∑
km

[
(λ cosh 2θk + zQγk sinh 2θk)(α†

kmαkm + αkmα†
km)

+ (λ sinh 2θk + zQγk cosh 2θk)(α†
kmα†

−km + αkmα−km)
]

+ NN zQ2

2J
−NN

(
S +

1
2

)
λ. (1.22)
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Here, γk = 2
z

∑
η cos(k · η) is the lattice Fourier transform. Now, we choose

θk so that the anomalous terms α†α† and αα vanish. This amounts to the
following condition on θk:

tanh 2θk = −zQγk

λ
. (1.23)

Having solved for θk, we can substitute the hyperbolic functions in (1.22) by
rational functions of the right-hand side of (1.23). This yields a normal and
diagonal Hamiltonian:

HMF =
∑
km

ωk

(
α†

kmαkm +
1
2

)
+ NN zQ2

2J
− NN

(
S +

1
2

)
λ ,

ωk =
√

λ2 − (zQγk)2. (1.24)

The mean field free energy is given by

FMF = β−1
∑
km

ln
[
2 sinh

(
βωk

2

)]
−NN

(
S +

1
2

)
λ + NN zQ2

2J
. (1.25)

The mean field equations are given by differentiating (1.25) with respect to λ
and Q:

1
N
∑
k

λ√
λ2 − (zQγk)2

(
nk +

1
2

)
= S +

1
2

, (1.26)

1
N
∑
k

z2γk
2Q√

λ2 − (zQγk)2

(
nk +

1
2

)
=

zQ

J
. (1.27)

The mean field ground state ΨMF is the vacuum of all α’s,

αk,mΨMF
0 = 0, ∀k,m. (1.28)

Using (1.20), one can write ΨMF explicitly in terms of the original Schwinger
bosons as

ΨMF = C exp

⎡
⎣1

2

∑
ij

uij

(∑
m

a†
ima†

jm

)⎤⎦ |0〉 ,

uij =
1
N
∑
k

eikxij tanh θk. (1.29)

For N = 2, using the unrotated operators a†, b†, ΨMF is the Schwinger bosons
mean field state,

ΨMF
N=2 = |û〉 = exp

⎡
⎣ ∑

i∈A,j∈B

uij

(
a†

i b
†
j − b†ia

†
j

)⎤⎦ |0〉. (1.30)
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Fig. 1.1. Mean field dispersion ωk, in the domain −π < k < π, for the one-
dimensional antiferromagnet.

ΨMF contains many configurations with occupations different from 2S and is
therefore not a pure spin state. As shown in Chapter ??, under Gutzwiller
projection it reduces to a valence bond state. Since

tanh(θk+π) = − tanh(θk) , (1.31)

where π = (π, π, . . .), the bond parameters uij only connect sublattice A to
B. Furthermore, one can verify that for the nearest neighbor model above,
uij ≥ 0, and therefore the valence bond states obey Marshall’s sign.

Although ΨMF are manifestly rotationally invariant, they may or may not
have long-range antiferromagnetic order. This depends on the long-distance
decay of uij . As we shall see, the SBMFT ground state for the nearest neigh-
bor model is disordered in one dimension and has long-range order in two
dimensions.

For further calculations, it is convenient to introduce the parametrizations:

ωk ≡ c

√
(κ/2)2 +

z

2
(1 − γk

2),

c ≡ Q
√

2z,

κ ≡ 2
c

√
λ2 − (zQ)2,

t =
T

zQ
. (1.32)

c, κ, t describe the spin wave velocity, the inverse correlation length, and the
dimensionless temperature, respectively. In Fig. 1.2 the dispersion for the one-
dimensional antiferromagnet is drawn. By (1.25), we see that near the zone
center and zone corner the mean field dispersions are those of free massive
relativistic bosons,
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ωk
γ ≈ c

√
(κ/2)2 + |k − kγ |2 , kγ = 0,π. (1.33)

When the gap (or “mass” cκ/2) vanishes, ωk
α are Goldstone modes which

reduce to dispersions of antiferromagnetic spin waves.
The spin correlation function is given by inserting the α operators instead

of a’s in (??) using (1.21). This yields

SMF (q) =
1
N 〈S+

q S−
−q〉MF

=
1
N
∑
k

{
cosh [2 (θk + θk+q+π)]

×
(

nk +
1
2

)(
nk+q+π +

1
2

)
− 1

4

}
.

(1.34)

Using (1.26), we confirm the large N limit of the sum rule (??),

1
N
∑
q

SMF (q) = S(S + 1). (1.35)

For N=2, the mean field sum rule exceeds the exact result by a familiar factor
of 3

2 .
The spatial dependence of the spin correlations at xij = xi − xj is given

by

SMF (xij) = |f(xij)|2 − |g(xij)|2 − 1
4
δij , (1.36)

where at low temperatures and long distances,

f(xij)= N−1
∑
k

(
nk + 1

2

)
eikxij√

1 − γk
2[κ2/(2z) + 1]−1

≈ 2zt
(
1 + eiπxij

) ∫ ddk
(2π)d

eikxij

(κ/2)2 + |k|2
∝ (

1 + eiπxij
)
(xij |/ξ)−(d−1)/2 exp (−|xij |κ/2) , (1.37)

where we have used the long-distance asymptotic expansion at small κ and
low temperatures. Similarly,

g(xij)= N−1
∑
k

γk

(
nk + 1

2

)
eikxij√

1 − γk
2[κ2/(2z) + 1]−1

∝ (
1 − eiπxij

)
(|xij |/ξ)−(d−1)/2 exp (−|xij |κ/2) . (1.38)

Thus, for κ > 0,
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SMF (xij) ∝ eiπxij

(
ξ

|xij |
)d−1

exp (−|xij |/ξ) , (1.39)

where the correlation length is ξ = κ−1.
The uniform susceptibility is obtained directly from (1.34) using the iden-

tity

χMF
0 =

1
2T

SMF (q = 0) =
1
T

∑
k

nk(nk + 1). (1.40)

1.4.1 Long-Range Antiferromagnetic Order

In the absence of any magnetic fields, the ground state is a singlet. In two
dimensions and higher, it is expected, based on extensive numerical studies,
that nearest neighbor antiferromagnet has long-range order for all S ≥ 1

2 . To
investigate the possibility of spontaneously broken symmetry, we introduce an
infinitesimal ordering field h which couples to the staggered magnetization.
We restrict ourselves to N = 2 ; thus

HMF → HMF − h
∑

i

Sz
i

= HMF − h
∑

i,s=− 1
2 , 1

2

sa†
isais , (1.41)

where we recall that the Schwinger bosons are defined using sublattice ro-
tated spin directions in (1.2). Equation (1.41) can be diagonalized using spin
dependent transformation angles θk,s. Repeating the steps leading to (1.24),
we obtain

ωk,s =
√

(λ − sh)2 − (zQγk)2. (1.42)

The spontaneous staggered magnetization is given by the limit

m0 = lim
h→0+

m(h) ,

m(h)= lim
N→∞

1
N
∑
i,s

s 〈a†
isais〉h

= lim
N→∞

1
N
∑
ks

λ − sh√
(λ − sh)2 − (zQγk)2

[
n(ωk,s) +

1
2

]
.

(1.43)

The constraint equation (1.26) is

1
2N
∑
k,s

λ − sh√
(λ − sh)2 − (zQγk)2

[
n(ωk,s) +

1
2

]
= S +

1
2
. (1.44)

Again, we parametrize the dispersions in terms of c, κ, h̃,
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ωk,s ≡ c

√
κ2/4 −

(
s − 1

2

)
zh̃ +

z

2
(1 − γk

2) + O(h̃2),

c =
√

2zQ,

κ =
2
c

√
(λ − 1

2
h)2 − (zQ)2,

h̃ = h
λ

(zQ)2
. (1.45)

If
lim

N→∞
κ > 0, (1.46)

then both summands in (1.43), with s = ± 1
2 , are continuous at h = 0, and

therefore
lim

h→0+
m(h, κ) = 0 , (1.47)

i.e., no spontaneous symmetry breaking. On the other hand, if

κ = O(N )−1 (1.48)

the s = +1
2 summand at k = 0,π contributes a term of order N . This yields

a macroscopic contribution (i.e., order one) to the staggered magnetization
(1.43). Since it also represents a macroscopic contribution to the Schwinger
bosons density (1.44), we can say that there is Bose condensation [8] of the
s = + 1

2 bosons at k = 0,π (see discussion after (??)). The order parameter
for the condensate is thus

〈aks〉 = 〈a†
ks〉 =

√
Nm0

2
δs, 1

2
(δk,0 + δk,π) . (1.49)

To evaluate m0 = limh→0 m(h), we subtract (1.43) from (1.44), eliminate
the diverging s = 1

2 summand, and obtain

m0 = S +
1
2

− lim
h→0+

lim
N→∞

N−1
∑
k

2 + 2h̃ + κ2/4√
2h̃ + κ2/4 + 2(1 − γk

2)

[
n(ωk 1

2
) +

1
2

]
.

(1.50)

By keeping h > 0, we maintain a gap in the spectrum and in the denominator
of the summand. Thus, we are allowed to replace (1.50) by an integral in the
thermodynamic limit, and at T = 0 we can set n(ωk,+ 1

2
) = 0 and κ = 0. This

yields

m0 = S +
1
2
− 1

2

∫
ddk

(2π)d

1√
1 − γk

2
. (1.51)
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The integral yields for cubic lattices in d dimensions the numerical results

m0(d) =

{ 0 d = 1
S − 0.19660 d = 2
S − 0.078 d = 3

. (1.52)

Notice that, in contrast to the ferromagnetic case, the ordered moment is
always less than the classical value S. This is due to the quantum zero-point
motion, which has its origin in the noncommutability of the Hamiltonian and
the staggered magnetization. The SBMFT results for m0 agree with low-order
spin wave theory.

1.4.2 One Dimension

At zero temperature, we set nk =0 and expand (1.26) as

S +
1
2

=
1
2

∫ π

−π

dk

2π

1√
1 − 1

1+κ2/8 cos2(k)

=
1
π

K

(
1

1 + κ2/8

)

∼ 1
π

ln

(
8
√

2
κ

)
+ O(κ), (1.53)

which results in

κ ≈
√

32 exp
[
−π

(
S +

1
2

)]
. (1.54)

In (1.52), we found that there cannot be long-range order in the SBMFT
ground state of the one-dimensional antiferromagnet. Since κ decreases expo-
nentially with S, we can neglect κ as we neglect higher-order corrections in
S−1. By subtracting (1.27) from (1.26) one obtains

c = J

⎛
⎝S +

1
2
− 1

2

∫ π

−π

dk

2π

sin2 k√
κ2/8 + sin2 k

⎞
⎠

≈ J
√

2
[
S +

1
2
− 2

π
+ O(κ, S−1)

]
. (1.55)

While c does not differ drastically from its classical value c = JS, the ground
state correlations decay exponentially. The correlation length κ−1 as given by
(1.54) agrees with the correlation length given by the continuum approach.

The mean field excitations are not physical excitations of the Heisenberg
model (for example, they include constraint violating charge fluctuations).
Nevertheless, the gap in their spectrum cκ/2 is consistent with the existence
of Haldane’s gap for one-dimensional integer spin chains. The physical magnon
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spectrum can be deduced from the peaks in Im, S(q, ω). Since spin one ex-
citations involve at least two Schwinger bosons, the physical magnons have a
gap of

∆ = cκ. (1.56)

Thus, the SBMFT recovers Haldane’s continuum results in the absence of a
Θ term [5].

One must beware that the SBMFT fails for half-odd integer spin chains.
The effects of the Θ term, which destroys Haldane’s gap, are apparently absent
in the mean field theory. The SBMFT has a nondegenerate ground state in
violation of Lieb, Schultz, and Mattis’ theorem for half-odd integer spins.
Read and Sachdev overcame this problem by introducing the Θ term into the
large N theory [6]. They developed a continuum gauge theory for the Q,λ
fluctuations (see bibliography).

1.4.3 Two Dimensions

In two dimensions, we expect no long-range order at finite temperatures due
to Mermin and Wagner’s theorem. Indeed, we shall find that, at low temper-
atures, the mean field equations yield a finite value for the inverse correlation
length κ(T, S).

The mean field equations can be solved to obtain κ(T, S), c(T, S). It is
convenient to use the fact that ωk = ω(γk) and replace

1
N
∑
k

F (ωk) → 2
∫ 1

0

dγ ρ(γ)F [ω(γ)] , (1.57)

where for the square lattice

ρ(γ) =
2
π2

K(1 − γ2). (1.58)

It turns out that at temperatures above Tmax >0.91J , the mean field equations
have no nontrivial (Q �= 0) solution [3] This reflects a failure of the SBMFT to
describe the disordered phase at high temperatures, where nearest neighbor
correlations are destroyed. At temperatures where the correlation length is
large, i.e.,

κ << t << 1, (1.59)

the constraint equation can be expanded following Takahashi:

S +
1
2

=
1
2

∫ 1

−1

dγ ρ(γ)
(
1 + κ2/8 − γ2

)− 1
2 coth

[
(1 + κ2/8 − γ2)

1
2 /2t
]

=
t

π

[
log
(

32
κ2

)
− log

(
2
t

)]

+
1
π2

∫ 1

−1

dγ(1 − γ2)−
1
2 K(1 − γ2) + O(t, κ). (1.60)



1 Large N approaches and Schwinger Bosons 13

Similarly, by subtracting (1.27) from (1.26) and expanding the integrals to
low order in κ, t, we obtain

S +
1
2
− 4Q

J

≥ 1
2

∫ 1

−1

d γρ(γ)
(
1 + κ2/8 − γ2

) 1
2 coth

[
(1 + κ2/8 − γ2)

1
2 /2t
]

≈ 1
π2

∫ 1

−1

dγ(1 − γ2)
1
2 K(1 − γ2) + O(t3, κ) . (1.61)

By (1.51) and (1.52) the ordered moment is given by

m0 = S +
1
2
− 1

π2

∫ 1

−1

dγ(1 − γ2)−
1
2 K(1 − γ2) = S − 0.19660. (1.62)

The spin wave velocity at zero temperature is

c =
√

8JSZc , (1.63)

where the spin wave velocity renormalization factor is given using (1.61),

Zc = 1 + S−1

[
1
2
− 1

π2

∫ 1

−1

dγ(1 − γ2)
1
2 K(1 − γ2)

]
= 1 + 0.078974/S . (1.64)

The asymptotic spin correlations are given by (1.39), where the correla-
tion length is ξ = κ−1. By inverting (1.60) and using (1.61), we obtain the
temperature dependent correlation length

ξ =

√
2JSZc

T
exp
[
−2πZcJSm0

T

] [
1 + O(t2)

]
. (1.65)

In comparing (1.65) to the continuum approximation value, we can deter-
mine the renormalized stiffness constant ρs(S) for the square lattice model as
follows:

ρs = lim
T→0

T

2π
log(ξ) = JSm0Zc, (1.66)

where m0 and Zc are given by (1.62) and (1.64), respectively. It properly
recovers the classical value ρs → JS2 in the limit of large S.

1.5 Staggered Magnetization in the Layered
Antiferromagnet

For layered a square lattice antiferromagnets with in-plane exchange J = 1
and very weak interlayer coupling α << 1. We expect long range magnetic
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order at a finite Néel temperature TN . Ordering M = 〈(−1)iSz
i 〉 �= 0 occurs

when the in plane correlation length ξ, which diverges exponentially at low
T , will produce an effective coupling between layers of order αξ2(TN ) ∼ 1.
This means in effect that the coarse grained spins start to interact as if in
an isotropic three dimensional cubic lattice which orders at that T ≤ 1. The
interlayer mean field theory, introduced by Scalapino, Imry and Pincus (SIP)
[9] in the 70’s, can be derived quantitatively using the SBMFT. Here we follow
Keimer et.al. [10], and Ofer et. al [11], to compute the temperature dependent
staggered magnetization, in the range T ∈ [0, TN ].

The Hamiltonian is given by

H =

⎛
⎝∑

l,i,η

Sl
i · Sl

i+η‖ + α
∑

l,i,η⊥

Sl
i · Sl+η⊥

i

⎞
⎠ (1.67)

The interplane coupling is decomposed using Hartree-Fock staggered magne-
tization field:

αSz
liS

z
l′i � (−1)ih (Sz

li − Sz
l′i) −

h2

α
, (1.68)

Self consistency is achieved therefore when

h = 2αM(T, h) (1.69)

where M(T, h) is the staggered magnetization response to an ordering stag-
gered field h of a single layer.

To determine M(T, h), we write The mean field dispersion for spin half,
in a tetragonal lattice is given by is given by

ωk± = C

√
(1 + ∆ +

1
2
(h ± h))2 − γ2

‖ (1.70)

where γ‖ = (cos(kx) + cos(ky))/2. Since α << 1, the effects of the three
dimensional coupling on the mean field equation for Q is negligible and C
acquires its 2D value C = 2.32J . The staggered field h splits the two SB
dispersions of a and b bosons such that only the b bosons can condense when
the ωk,− = 0. Let us define the integrals

I± =
∑
k,±

(
n(ωk,±) +

1
2

)
C(1 + ∆ + (h ± h)/2)

ωk,±
(1.71)

Then ∆(h, T ) is solved by the constraint equation

2S + 1 = I+(∆, h, T ) + I−(∆, h, T ) (1.72)

∆ is the intrinsic gap parameter which in the absence of the ordering field
reduces to ∆0 = ξ−2

2D/16, where ξ2D is the 2D correlation length given in
(1.65). In the presence of the ordering field, i.e. h > 0, ∆(h, T ) can be solved
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Fig. 1.2. Numerical solution, from Ofer et.al. [11], of the scaled staggered magne-
tization M(T ) of the layered antiferomagnet for various values of α.

numerically using Eq. (1.72). Using this solution we can then solve for the self
consistent field h(T ),

h

2α
= S +

1
2
− I+(∆(h, T ), h, T ) (1.73)

Extracting TN is relatively easy, since as T → TN , h → 0, and I±(h) can
be expanded to linear order in h. In fact at TN , the self consistency equation
reads

h(TN ) = 2αχs(TN )h(TN )

2αχs
2D(TN ) = 1

(1.74)

where the 2D staggered susceptibility goes as ξ2
2D(TN ), which is agreement

with SIP theory. Our calculation yields

TN =
2M0π

log (4α/M0π2 log(4α/π))
(1.75)

The numerically determined temperature dependence M(T ) = h(T )/(2α)
are shown in Fig.1.2).

1.6 Exercises

1. Using the explicit solutions for Q and λ at zero tempearture, prove that
the ground state energy for the SBMFT is given by



16 Assa Auerbach

EMF = lim
T→0

FMF = −NN zQ2

2J
. (1.76)

2. Prove that a staggered magnetic field term (1.41) for the antiferromagnetic
SBMFT results in the dispersions ωks of (1.42). Hint: Find the zeros of
the determinant of the quadratic matrix

L =
∑

s

(z†ks, z̄−ks)
(

ω − λ + 1
2hs zγkQ

zγkQ −ω − λ + 1
2hs

)(
zks

z̄†−ks

)
,

(1.77)

where z and z̄ are coherent state variables of sublattices A and B, respec-
tively.

3. For the antiferromagnetic model, add a uniform magnetic field to HMF

of (1.19) as follows:

HMF → HMF − h
∑

is=± 1
2

seiπxia†
isais. (1.78)

Allow the constraint field to have uniform and staggered components:

λi = λ + exp(iπxi)λs. (1.79)

Show that the mean field ground state energy is minimized for λs = − 1
2h.

Discuss how λs can be interpreted as a uniform precession at angular
frequency ω = − 1

2h of all spins in the xy plane.
4. Using the results of the previous exercise, derive the uniform susceptibility

χMF
0 of (1.40) as a second derivative of the free energy with respect to h0.

Note that it is necessary to keep the temperature finite before taking the
thermodynamic limit. Why?
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