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Abstract

A tutorial review of the major aspects of muon spin relaxation functions, with zero or longitudinal

external field, and dynamic fluctuations is given. The emphasis is on frustrated magnets.
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The muon spin spectroscopy technique operates in zero applied field. Therefore, standard

perturbation methods to analyze the data, where the external field is considered large and

the internal fields small, do not apply. Consequently, different methods are required to

account for the muon relaxation function in zero and small external fields. Here, we lead

the reader in three steps to a closed form equation which can be used to generate muon

relaxation function under a variety of situations including the zero external field case, which

is highly non-perturbative. In flight we explain the main feature of such functions. We then

use this information to examine muon relaxation function in frustrated magnets.

I. RELAXATION FUNCTION IN A STATIC FIELD DISTRIBUTION

The fully polarized muon, after entering the sample, comes to rest in a magnetic envi-

ronment. Since the mechanism which stops the muon is much stronger than any magnetic

interaction, the muon maintains its polarization while losing its kinetic energy. Once the

muon reaches its site, the muon spin starts to evolve in the local field B. The muon polar-

ization Pz along the ẑ direction is given by the double projection expression

Pz(B, t) = cos
2 θ + sin2 θ cos(γµ |B| t) (1)

where θ is the angle between the initial muon spin and the local field direction (see Fig. 1).

This angle is related to the field values by

cos2 θ = B2z
B2

sin2 θ =
B2x+B

2
y

B2

.

In a real sample, however, there will be a distribution of internal fields and the averaged

polarization is written as

P z(t) =

Z
ρ(B)

∙
B2
z

B2
+

B2
x +B2

y

B2
cos(γµ |B| t)

¸
d3B (2)

where P z(t) is the sample averaged polarization, and ρ(B) is the field distribution which

must obey Z
ρ(B)dB3 = 1.

If the distribution of internal fields is only a function of |B| then we can write

P z(t) =

Z
ρ(|B|)

£
cos2 θ + sin2 θ cos(γµ |B| t)

¤
B2dBdΩ.
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FIG. 1: Muon spin polarization rotating around a magnetic field in an arbitrary direction.

It is convenient to define

ρ0(|B|) = 4πρ(|B|)

so that Z
ρ0(|B|)B2dB = 1.

and the angular dependence can be integrated out giving

P z(t) =
1

3
+
2

3

Z
ρ0(|B|) cos(γµ |B| t)B2dB.

If, for example, the absolute value of the local field experienced by a muon is unique then

ρ0(|B|) =
µ
γµ
ω0

¶2
δ(|B|− ω0

γµ
).

This can happen in a powder of a ferromagnet or antiferromagnet (AFM) where there is

only one muon site. In this case

Pω0
z (t) =

1

3
+
2

3
cos(ω0t).

The time independent 1/3 component represent muon with their initial polarization pointing

effectively along the local field direction. These muons do not change their polarization.

In real systems, however, the local field experienced by different muons is rarely unique.

It can vary from site to site as a result of nuclear moments, impurities, defects, or non-

homogeneous freezing of the ionic moments. If, for example,

ρ0(|B|) = γµ√
2π∆B2

exp

∙
−γ2µ

µ
|B|− ω0

γ2µ

2
¶
/2∆2

¸
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FIG. 2: Muon spin polarization rotating around the vector sum of an external magnetic field in

the initial muon polarization direction, and an arbitrary internal field.

then

P
∆,ω0
z (t) =

1

3
+
2

3
exp

µ
−∆

2t2

2

¶
cos(ω0t).

When a longitudinal field (LF) is applied the situation becomes more complicated, and

there is no closed form expression. However, some simplifications could be made to reduce

the dimension of the integrals for the purpose of numerical calculations. For example, if the

local field is completely random with a Gaussian distribution, and a field H is applied in

the initial muon spin direction as in Fig. 2, then

ρLF(B) =
γ3µ

(2π)3/2∆3
exp

µ
−
γ2µ[B−HLẑ]

2

2∆2

¶
. (3)

In this case Eq. 2 could be simplified to [1]

P
∆

z (ωL, t) = 1−
2∆2

(ωL)2

∙
1− exp(−1

2
∆2t2) cos(ωLt)

¸
+
2∆4

(ωL)3

Z t

0

exp(−1
2
∆2τ 2) sin(ωLτ)dτ

(4)

where

ωL = γµH.

This is known as the static-Gaussian-longitudinal-field Kubo-Toyabe (KT) function. Figure

3 shows P
∆

z (ωL, t) for a variety of ωL. Interestingly, despite the fact that the external field is

in the muon spin direction, wiggles are seen in the polarization, and their frequency is given

by ωL. When ωL À ∆ the muon does not relax any more. This is because the field at the

muon site is nearly parallel to the initial muon spin direction. Finally, in the zero field case

(HL = 0) Eq. 4 reduces to [1]

P
LF
z (0, t) =

1

3
+
2

3
(1−∆2t2) exp(−1

2
∆2t2). (5)
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FIG. 3: Muon polarization function in a Gaussian internal field distribution and external field

pointing in the initial muon spin direction. Different values of the external field H are shown.

This polarization function is known as the static-Gaussian-zero-field KT. At early time it

has a Gaussian like behavior. It reaches a minimum on a time scale set by ∆ after which it

recovers and saturates again at 1/3.

II. WHEN THE FIELD IS DYNAMIC

We start with the simplest solvable model for the muon polarization in an environment

where the field dynamically fluctuates. Our solvable model considers a field at the muon site

B exactly perpendicular to the ẑ direction, which flips with time between the up and down

directions but maintains its absolute value. The ẑ direction is taken to be the initial muon

spin direction and also the direction in which the polarization is measured. As a result the

muon spin rotates with frequency ±ω. The polarization resulting from three such field flips
is demonstrated in Fig. 4.

This can happen if a sample is an antiferromagnet (AFM) and the muon hops between

different sites of opposite fields. We assume that the field fluctuation could be described by

a flip rate probability per unit time ν. We further define νt as the total hop rate. If each
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FIG. 4: A demonstration of the muon polarization in the bz (initial) direction in the antiferromag-
netic model in which the field is perpendicular to bz but flips while maintaining its magnitude. In
this figure three field flips are taking place.

time the muon hops it has the same chance as not of experiencing a field change then

ν = νt/2. (6)

This assumption is called the strong collision approximation, and will only apply if the muon

hops over long distances compared to the unit cell. For a discussion of the relaxation rate in

this situation without the strong collision approximation (and arbitrary field distribution)

see Ref. [2]. In our situation the field correlation function after the short interval dτ is given

by

hB(dτ)B(0)i = B2(1− νt
2
dτ)−B2νt

2
dτ = B2(1− νtdτ)

where hi stands for average. As can be proven by induction, after time τ

hB(τ)B(0)i = B2 exp(−νtτ). (7)

Thus the field correlation function decays exponentially with a correlation time of 1/νt.

For n hops between sites of opposing fields, at times t1 < ... < tn < t, the polarization

function gn is given by

g(t1, ..., tn, t) = Re exp(i
n+1X
j=1

[−1]j+1ω[tj − tj−1]) (8)

6



where tn+1 = t. In this form it is clear that

g(t1, ..., tn, t) = Re
n+1Y
j=1

gj(tj − tj−1) (9)

where

gj(tj − tj−1) = exp([−1]j+1iω[tj − tj−1]).

Next we calculate the probability that a field flip will occur at a time ti+1, given that a

previous change occurred at time ti. For this we divide the time segment ti+1 − ti into m

steps each dt long and take m→∞. This gives the probability

lim
m→∞

∙
1− ν

ti+1 − ti
m

¸m
νdt = e−ν(ti+1−ti)νdt.

Therefore, the probability for n field flips in the time segments [t1, t1 + dt1], ..., [tn, tn + dtn]

is
nY
i=1

exp[−ν(ti − ti−1)]νdti = νn exp(−νt)
nY
i=1

dti.

The averaged polarization is obtained by taking the sum over all possible numbers of field

flips, weighted by their probability, and integrating over the times in which they can take

place [1]. This leads to

PAFM
z (t) = e−νtg(t) + νe−νt

Z t

0

dt1g(t1, t) + ν2e−νt
Z t

0

dt2

Z t2

0

dt1g(t1, t2, t) + ... (10)

where gn(t1, ..., tn, t) is given by 8. In the simple case presented here the series could be

summed [3] and it leads to

PAFM
z (t) = c+e

z+t + c−e
z−t, (11)

where

c± =
1

2
± ν(ν2 − ω2)−

1
2

2

and

z± = −ν ± (ν2 − ω2)
1
2 .

Note that this result is correct regardless of the strong collision approximation of Eq. 6.

The polarization PAFM
z , for selected values of ν/ω is shown in Fig. 5. Clearly, as the

field flip rate increases the oscillations at frequency ω disappear. When ν/ω → ∞ the

muon behaves as if it experiences zero field, which is the average field. This is the µSR
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FIG. 5: The expected muon spin polarization in the antiferromagnetic model for various ratios of

flip rates to oscillation frequency.

manifestation of motional narrowing. Another important aspect of this model is that when

ν À ω the polarization could be approximated by

PAFM
z (t) = exp

µ
−ω

2

νt
t

¶
. (12)

This is usually refered to as Lorenzian relaxation. In contrast, when ν . ω the relaxation

is Gaussian like at early time. The value of ω2 = γ2µB
2 could be estimated from the initial

relaxation rate, as in the completely static case.

III. ALL INGREDIENTS COMBINED

In the presence of a dynamic and longitudinal field, numerical methods must be applied.

For this purpose it is useful to write the infinite series of Eq. 10 in a compact form. We will

now show that this series obeys the equation

Pz(ν, t) = e−νtg(t) + ν

Z t

0

dt0Pz(ν, t− t0)e−νt
0
g(t0) (13)

known as the Volterra equation of the second kind. This equation could be solved numerically

[4]. To verify the equivalence between Eq. 13 and Eq. 10, we first note that the first term

on the right hand side (r.h.s) of Eq. 13 is the same as the first term of Eq. 10. Next we
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FIG. 6: Expected muon relaxation in a dynamic field with Gaussian instantaneous distribution

and no external field. Different values of fluctuation rates are shown.

generate a sister equation to Eq. 13 by substituting t0 → t00 followed by t → t − t0 in this

equation. Finally, we replace Pz(ν, t− t0) under the integral in Eq. 13 by the sister equation.

This leads to

Pz(ν, t) = e−νtg(t) + νe−νt
Z t

0

dt0g(t− t0)g(t0) + . . .

if g(t1, t) = g(t− t1)g(t1 − 0) (strong collisions), so that now both the first and the second
terms on the r.h.s of Eq. 13 and Eq. 10 agree. Repeating this operation on Eq. 13 will

regenerate Eq. 10.

The Volterra equation gives a good description of the dynamics only when the strong

collision approximation, manifested in Eq. 9, is valid. The input to the Volterra equation is

the static function g(t). Therefore, there are three ways of using Eq. 13 to obtain dynamic

information. The first one is in simple cases where g(t) is known analytically as was done by

Brewer et al. [5] for F-µ-F bond. The second one is when g(t) must be obtained numerically

as in the cases of Gaussian [1] or Lorenzian [6] field distribution with external longitudinal

field. The third way is to measure g(t) by cooling the system to low enough temperatures

that dynamic fluctuations are no longer present, and to use the measured g(t) in the Volterra

equation [7].

Now we are in position to take one of our polarizations generated by static field distrib-
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FIG. 7: Solid lines: Expected muon relaxation in a combination of internal field fluctuations with

Gaussian instantaneous distribution, and longitudinal external field H. Symboles: Relaxation data

from Ref. [9] in two different values of H. The disagreement between data and model indicates

unusual behavior.

ution, say Eq. 4, use it as an input in the Voltera equation, and see how it behaves if the

magnetic field fluctuates between different values. For example, if we take Eq. 5 as an input

to Eq. 13 we obtain the polarizations shown in Fig. 6.

Finally, in Fig. 7 we present the most complicated relaxation function combining

Gaussian field distribution, fluctuations, and longitudinal field. We have chosen a spe-

cial value of the parameters ∆, ν and H, for reasons that will become clear soon. It is

interesting to mention that for the case ν & ∆ there is an approximate expression for this

relaxation function, which is given by

P z(t) = exp(−Γ(t)t)

where

Γ(t)t =
2∆2

(ω2L + ν2)2
©
[ω2L + ν2]νt+ [ω2L − ν2][1− e−νt cos(ωLt)]− 2νωLe−νt sin(ωLt)

ª
.

It approximate the exact function, even at H = 0, much better than is expected [8].
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IV. MUON RELAXATION IN FRUSTRATED MAGNETS

At the very beginning of the research in the field of frustrated magnets it was noticed

that the muon relaxation function is unusual. The symbols in Fig. 7 show the polarization

at a temperature of 100 mK in the kagome system SCGO in zero field and a longitudinal

field of 2 kG [9]. First, no oscillations are found, so the internal field is random with either

static or dynamic nature. Second, the relaxation at early time is Gaussian, with a time

scale of 0.1 µsec, so ∆ must be on the order of 10 MHz. Third, there is no recovery so there

must be some dynamic as in Fig. 6. But it must be that ν ∼ ∆. If ν had been larger, the

initial relaxation would have been Lorenzian (See Eq. 12 and Fig. 6). If ν had been much

slower, the polarization would have recovered. Therefore, we conclude that ν ∼ ∆ ∼10 MHz.
In these circumstances a field of 2 kG which is equivalent to ωL = 170 MHz should have

“decoupled” the relaxation. This is not happening. The solid lines in Fig. 7 represent the

expected decoupling which is very different from the observed one. Until today only one

model has been proposed to explain this problem [9], which received the name sporadic

adynamic (SD) [10].

In this model, the system is not magnetic most of the time, and magnetic with dynamic

fluctuations only a fraction f of the time. In zero field it is clear that such a case will lead

to P
sd
z (0, t) = P

∆,ν

z (0, ft). However, even when the H is applied, the polarization changes

only when the internal field is on. Therefore even in this case P sdz (ωL, t) = P
∆,ν

z (ωL, ft).

Since ωL and t always enter the relaxation function as a product we must have P
sd
z (ωL, t) =

P
f∆,fν

z (fωL, t). What we actually estimated from the data to be 10 MHz is f∆, and fν.

When the field is on ∆ and ν are much higher than 10 MHz. In other words, the effect of

the longitudinal field is reduced by factor f . This is the reason we do not see decoupling.

This model is very successful in explaining µSR data.

The problem with this model is that the muon relaxation is temperature independent

when the Gaussian relaxation is observed. Therefore, the system is in its ground state. In

the ground state the system can not have time evolution, namely, the field cannot turn on
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and off. Also, NMR measurements when available tell a different story.
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