

SMR/1855-3

School and Workshop on Highly Frustrated Magnets and Strongly Correlated Systems: From Non-Perturbative Approaches to Experiments

30 July - 17 August, 2007

Highly Frustrated Magnets: Materials and Materials Preparation

John E. Greedan McMaster University Hamilton, Canada

Highly Frustrated Magnets: Materials and Materials Preparation

John E. Greedan M^cMaster University Hamilton, Canada

Abdus Salam ICTP August 30, 2007

Outline:

I. Families of geometrically frustrated materials.

A. Triangles, tetrahedra and magnetic frustration.

(Subversion of the 3rd Law by suppression of long range magnetic order)

- **1.** The frustration index $f \sim |\theta|/T_{ord}$
- **2.** Role of the spin quantum number.

B. Common frustrated lattices in 2 and 3 dimensions.

- **1. Triangular planar**
- 2. Kagomé
- **3. Face-centred cubic**
- 4. Pyrochlore

C. Real materials: transition metal compounds

Triangular planar

 a. "ordered rock salt"
 NaNiO₂, LiNiO₂
 b. anhydrous alums
 AM(SO₄)₂: ex A = Rb⁺, M = Fe³⁺

 Kagomé

 a. Jarosites
 AM₃(SO₄)₂(OH)₆: ex A = K⁺, M = Fe³⁺
 b. Herbertsmithites
 ZnCu₃(OH)₆Cl₂

3. F.c.c.

A. B-site ordered "double perovskites" $A_2BB'O_6 : ex A = Ba, B = Y, B' = Ru$ 4. Pyrochlore

a. pyrochlore oxides: $A_2M_2O_7$, ex $Y_2MO_2O_7$

b. Spinel oxides: AB_2O_4 . ex $ZnCr_2O_4$

5. Other frustrated 3D lattices.

a. "SCGO" $SrCr_{12-x}Ga_xO_{19}$ b. Garnet: $A_3M_5O_{12}$. ex $Gd_3Ga_5O_{12}$ c. "ordered rock salt" ex $Li_3Mg_2RuO_6$ d. $BaM_{10}O_{15}$: M = V³⁺, Cr³⁺ II. Materials preparation and crystal growth.

- A. Control of transition metal oxidation state and oxygen stoichiometry.
 1. oxygen affinity, pO, buffer gases
- **B. Crystal growth methods.**
 - 1. Bridgeman
 - 2. Czochralski
 - **3. Floating zone**
 - 4. Flux
 - 5. Hydrothermal

C. "Soft chemical" routes to metastable phases

A. Triangles, tetrahedra and magnetic frustration.

3^{rd} Law: $S \rightarrow 0$ as $T \rightarrow 0$

triangular topology frustrates LRO

Subversion of the 3rd Law ?

Realization of frustrated topology in real(common)lattices, 2D and 3D

a. triangular

b, Kagome

c. face centered cubic

d. pyrochlore

The frustration index: $f \sim |\theta| / T_{ord}$

P. Schiffer, A.P. Ramirez, Comm. Cond. Matter Phys. 10 (1996) 21.

from mean field theory:

$$\theta = \frac{2S(S+1)}{3k} \sum_{m=1}^{N'} z_m J_m$$

algebraic, weighted, sum of all pairwise exchange interactions

$$H_{ex} = -2JS_n \cdot S_m$$

sets energy (temperature) scale for the magnetic exchange.

$$T_{ord} = T_c, T_N, T_g$$

if f >> 5, evidence for frustration

MFT phase diagram for f.c.c. lattice

J.S. Smart, "Effective field theories of magnetism" W.B. Saunders 1966

Spin quantum number and quantum fluctuations: As $S \downarrow$, system becomes more quantum mechanical.

Spin state fluctuations have major effect on attempt to establish long range order.

C. Real materials: transition metal compounds

1. Triangular planar

a. "ordered rock salt" NaNiO₂, LiNiO₂, LiCrO₂

NaCl

octahedra sharing all edges

$$M^{2+}O^{2-} = M_2O_2 = M^{1+}M^{3+}O_2$$

M⁺ and M³⁺ order into layers normal to the body diagonal <111> of the NaCl cubic cell (Fm3m → R-3m)

M³⁺ layer

<u>Compound</u>	<u> </u>	<u>T_c(K)</u>	<u>θ/T</u>	<u>J_{intra}</u>	<u>J_{inter}</u>	<u>Grd.State</u>
NaNiO ₂	+100	23	4.4	F	AF	AF LRO
LiNiO ₂	+ 20	9*	2.2	F?	AF?	spin glass
LiCrO ₂	- 600	62	9.7	AF	AF	AF LRO

*spin freezing

b. anhydrous alums : $AM(SO_4)_2$

A⁺¹ = **K**,**Rb**,**Cs M**³⁺ = **Fe**,**Ti**

Compound	S	$\theta_{\rm c}/{\rm K}$	$T_{\rm c}/{ m K}$	$ \theta_{\mathbf{c}} /T_{\mathbf{c}}$
$CsFe(SO_4)_2$ RbFe(SO_4)_2	5/2 5/2	-34.17	4.4	7.8
$KFe(SO_4)_2$ $KFe(SO_4)_2$	5/2	-55.5	4.2 8.3	6.7

Selected data for some anhydrous alums

relatively large f values

• Ti phase does not order to 1.2K

2. Kagomé

a. Jarosites $AM_3(SO_4)_2(OH)_6$: ex $A^+ = Na, K, Rb, NH_4, H_3O, Ag, TI \cdot \cdot \cdot$ $M^{3+} = Fe, Cr, V$

b. Herbertsmithite **ZnCu₃(OH)**₆Cl₂

$AFe_3(SO_4)_2(OH)_6$ [PRB 67 (2003) 064401] [NatureMater. 4 (2004) 323]

A^+	C ^a	$\Theta_{\rm CW}/K^a$	$T_N/{ m K}$	$T_D/\mathrm{K}^\mathrm{b}$	f^{c}	$\frac{c}{3}(=d)/\text{Å}$
Na ⁺	5.91	-825	61.7	~ 58	13.5	5.535
K^+	5.77	-828	65.4	\sim 53	12.7	5.728
Rb^+	5.82	-829	64.4	~ 53	12.9	5.856
NH_4^+	5.84	-812	61.8	~53	13.1	5.767 ^d

(H₃O)Fe₃(SO₄)₂(OH)₆

No LRO to 1.4K spin glassy ground state. disorder due to $H_3O^+ - OH^-$ proton exchange.

Herbertsmithite ZnCu₃(OH)₆Cl₂

Θ~-300 K but

- no LRO from neutrons to 1.4K !
- no LRO specific heat to 50 mK !
- spin liquid ground state?

Factors controlling B-site (**BB**) ordering

- **BB** radius difference
- BB formal charge difference

M.T. Anderson et al Prog. Sol. State Chem. 22 (1993) 197 21

 Ordered double perovskites - flexibility in crystal engineering.

• Control of crystal structure symmetry - cubic vs monoclinic

Goldschmidt tolerance factor, $t = (A - O) / 2^{1/2} (\langle B - O \rangle)$

t ~ 1 (Fm3m) t ~ 0.9 (P2₁/n)

Control of site symmetry of magnetic ion/orbital degrees of freedom

Fm3m (m3m or O_h) (t_{2g}ⁿ) retain orbital degeneracy P2₁/n (-1) (t_{2g}ⁿ) degeneracy lifted "orbital ordering"

d_{xy} d_{xz} d_{yz}

E

23

Control of spin state of magnetic ion within same crystal symmetry

 $Ba_{2}BBO_{6} (Fm3m)$ $B = Ca^{2+}$ $B^{6+} = Re^{6+} (S = 1/2)$ $= Os^{6+} (S = 1)$ $B = Y^{3+}, Lu^{3+}$ $B^{5+} = Mo^{5+} (S = 1/2)$ $= Re^{5+} (S = 1)$ $= Ru^{5+} (S = 3/2)$

 $La_2 BBO_6 (P2_1/n)$ $\mathbf{B} = \mathbf{L}\mathbf{i}^+$ $B^{5+} = Mo^{5+} (S = 1/2)$ $= \mathbf{Re}^{5+} (S = 1)$ $= Ru^{5+} (S = 3/2)$ Sr_2BBO_6 (P2₁/n) $\mathbf{B} = \mathbf{C}\mathbf{a}^{2+}$ $B^{6+} = Re^{6+} (S = 1/2)$ $B = Y^{3+}Lu^{3+}$ $B^{5+} = Ru^{5+} (S = 3/2)$

24

<u>Compound</u>	S	<u> </u>	<u>T_c(K)</u>	_ <u>f</u>	<u>Ground State</u>
Ba ₂ YRuO ₆	3/2	-571	36	16	AF LRO
La ₂ LiRuO ₆	3/2	-207	23.8	9	AF LRO
Ba ₂ YReO ₆	1	-480	40 [*]	12	?
La ₂ LiReO ₆	1	-204	33 *	6	?
Ba ₂ YMoO ₆	1/2	-91	< 2	> 45	?
Sr ₂ CaReO ₆	1/2	-443	14	32	spin glass_

* broad χ(max), ZFC/FC divergence

4. Pyrochlore a. pyrochlore oxides: A₂B₂O₇ or A₂B₂O₆O

$A^{3+} = Ln^{3+}(La-Lu, Y)$, TI, Bi $B^{4+} = 3d$, 4d, 5d transition metals, Sn, Pb

The Periodic Table

Pyrochlore "structure - field map"

Pyrochlore as an ordered defect CaF₂(fluorite)

 $M^{4+}O_2 = M_4O_8$

M⁴⁺ coordinated by 8 O²⁻, perfect cube

 M_4O_8 face projection pyrochlore face projection

B - site octahedra

6 equiv **B** - O ~ 2.0 Å

A - site hexagonal bipyramids

B-sites

A-sites

Both A and B sites pyrochlore lattices !!

Another view: pyro lattice as alternating stacking of Kagomé and triangular planar layers

Possibilities:

• A-site only magnetic

A = Ln³⁺ (\neq La, Y,Lu), B = Ti⁴⁺, Sn⁴⁺, Zr⁴⁺...

• **B** - site only magnetic

 $A = Y, Lu, B = V^{4+}, Mn^{4+}, Mo^{4+}, Ir^{4+} \cdots$

both A and B sites magnetic

A = Ln³⁺ (\neq La, Y,Lu), B = V⁴⁺, Mn⁴⁺, Mo⁴⁺, Ir⁴⁺...

A-site only

- $Tb_2Ti_2O_7$ spin liquid
- $Dy_2Ti_2O_7$ spin ice
- $Gd_2Ti_2O_7$ two AF orderings

B-site only

- Y₂Mo₂O₇ spin glass, subtle disorder
- $Y_2Mn_2O_7$ F SRO, complex ground state
- Lu₂V₂O₇ F insulator

A and B site

- Ln₂Mo₂O₇ and Ln₂Ir₂O₇ metal insulator transitions (ferromagnetic metal to insulating spin glass)
- Nd₂Mo₂O₇ anomalous Hall effect

	Dis "ant	sord tisit	ler L e" /	.eve A ⇔	els i B a	in Py and	yroc <mark>0</mark> va		lore anc	es? cies				
		Pred	lictio	ns: F	Phil.	Mag.	82 (2	20	002) ⁻	123				
	% antisite						% O vacancies							
A	Ti	Ru	Мо	Sn	Zr	Pb	Т	i	Ru	Мо	Sn	Zr	Pb	
Lu	.71	.94	1.7	4.4			.2	4	.31	.57	1.5			
Yb	.66	.87	1.5	3.9			.2	2	.29	.51	1.3			
Er	.58	.74	1.2	3.0			.1	9	.25	.41	1.0			
Y	.54	.68	1.1	2.6			.1	8	.23	.36	.87	7		
Gd	.50	.58	.83	1.8	3.1	8.3	.1	7	.19	.28	.61	I 1.0	2.8	3
Sm	.52	.57	.76	1.6	2.7	6.4	.1	7	'.19	.25	5.5	3 .88	3 2. ′	1
Nd		.59		1.4	2.2	2 4.9			.20)	.4	7.7	51.	6
La				1.3	5 1.8	8 2.8					_4	13 .6	0.94	4

b. Spinel oxides: AB_2O_4 .

- The O²⁻ lattice is cubic close packed (f.c.c.)
- Typically, A²⁺ and B³⁺ but others are possible
 e.g. A¹⁺, B³⁺, B⁴⁺ or A³⁺, B²⁺, B³⁺
- A occupies a tetrahedral site (T_d) and B an octahedral site (O_h)
- In a close-packed lattice, there are per close-packed ion
 2 T_d sites and 1 O_h site
- Thus, the occupation rates are:

1/8 T_d by A²⁺ 1/2 O_h by B³⁺

Spinel MgAl₂O₄

Mg T_d

Edge-shared octahedra

Factors determining site occupation in spinels?

- Unlike perovskites and pyrochlores, A²⁺ and B³⁺ have similar ionic radii
- size differences not usually critical
- major factor is "O_h site preference energy"

O.S.P.E.

derived from simple crystal field theory

O_h xtal field

T_d xtal field

"Inorganic Chemistry" Shriver and Atkins (Freeman 3rd Ed.)

39

Classification of spinels:

- normal A²⁺(T_d), B³⁺(O_h) ex ZnCr₂O₄, LiMn₂O₄
- inverted $B^{3+}(T_d) A^{2+}, B^{3+}(O_h)$ ex $Fe_3O_4 - Fe^{3+}Fe^{2+}Fe^{3+}O_4$

mixed

Spinels of interest:

- ZnCr₂O₄ frustration driven cubic to tetragonal phase transition
- **LiMn₂O₄** co-existence AF SRO/LRO

5. Other frustrated 3D lattices.

a. "SCGO" SrCr_{12-x}Ga_xO₁₉
b. Garnet:
$$A_3M_5O_{12}$$
. ex Gd₃Ga₅O₁₂
c. BaM₁₀O₁₅: M = V³⁺, Cr³⁺
d. "ordered rock salt" ex Li₃Mg₂RuO₆

a. SCGO decoupled "pyrochlore slabs"

b. "GGG" Gd^{3+} lattice in $Gd_3Ga_5O_{12}$

corner sharing triangles

c. $BaM_{10}O_{15} - M = V,Cr$

M₁₀ clusters of edge-sharing tetrahedra

d. "ordered NaCl" Li₃Mg₂RuO₆

 ribbons of edge-sharing triangles linked by corners

Ru-Ru-Ru = 59.81° x2, 60.39^c

Ru-Ru distances and angles in $Li_3Mg_2RuO_6$