

SMR/1855-4

School and Workshop on Highly Frustrated Magnets and Strongly Correlated Systems: From Non-Perturbative Approaches to Experiments

30 July - 17 August, 2007

II. Materials preparation and crystal growth

John E. Greedan

McMaster University Hamilton, Canada II. Materials preparation and crystal growth.

 A. Control of transition metal oxidation state and oxygen stoichiometry.
 1. Oxygen affinity, pO, buffer gases

B. Crystal growth methods.

- 1. Bridgeman
- 2. Czochralski
- **3. Floating zone**
- 4. Flux
- 5. Hydrothermal

C. "Soft chemical" routes to metastable phases

Oxygen affinity of metals.

- to assess the relative stability of the oxides of metals or the ability of metals to bind oxygen.
- recall, (from undergraduate physical chemistry)
- " formation reaction "

 $M_{(s)} + O_{2(g)} = MO_{2(s)}$

$$MO_{2(s)} = M_{(s)} + O_{2(g)}$$

"dissociation"

- (s) = solid
- (g) = gas

 equilibrium constant at T: (for dissociation) $\mathbf{K}_{\mathrm{T}} = \mathbf{pO}_{2}$ $\Delta G_0 = -RTInK_T$ ΔG_{0} - Gibbs energy, $\Delta G_{0} = \Delta H_{0} - T\Delta S_{0}$ define: $pO = -\log pO_2$ and pO = $-\Delta G_0/2.303$ RT a useful T = 1000K, $\therefore pO = -\Delta G_0/(2.303R)1000$ note: pO is similar to pH in solution chemistry

which measures affinity for protons, pH = - log[H⁺]

Oxygen affinity	<u>of metals</u>		
oxide	рO	oxide	pO
Au _o O _o	-5.5	H ₂ /H ₂ O=10 ⁻³	26.0
Aa ₂ O ₃	-3.3	CO/CO ₂ =10 ⁻³	26.8
PtO	-1.3	Na ₂ O	28.9
air	0.7	Cr ₂ O ₃	30.1
lrO.	0.9	MnO	32.6
RhO.	4.2	Ta ₂ O ₅	33.2
Cu ₂ O	9.6	SiO ₂	36.3
PbO	12.7	TiO	44.2
$H_{-}/H_{-}O=10^{3}$	13.6	Al ₂ O ₃	47.2
$CO/CO_{-}=10^{3}$	14-6	ZrO ₂	47.2
CoQ	16.2	BaO	48.6
NiO	16.2	MgO	52.0
SnO.	19_7	$Y_2O_3(RE_2O_3)$	52.0
$H_{2}/H_{2}O=10^{0}$	20-1	CaO	55.5
MoO	20.1		
	2011		
	20.0		
$CO/CO_2 = 10^{\circ}$	20.6		
	21.2		
ZnO	25-8		

uses of pO tables:

- oxides with pO < 0 are unstable ex: pO_2 for $Au_2O_3 = 3.16 \times 10^5$ atm
- oxides with pO >> 0 are very stable
 ex: pO₂ for CaO = 3.16 x 10⁻⁵⁶ atm
- a metal will reduce any oxide with a pO smaller than its own.

ex: Mo (pO = 20.1) will reduce NiO(pO = 16.2) (i.e. MoO₂ more stable than NiO)

ex: elements such as Pt, Ir, Rh will not reduce most metal oxides

"buffer" gases

- $2H_{2(g)} + O_{2(g)} = 2H_2O_{(g)}$
- $2CO_{(g)} + O_{2(g)} = 2CO_{2(g)}$

at a given T and pH₂O/pH₂ or pCO₂/pCO

 pO_2 (or pO) will be fixed.

 \therefore pO₂(pO) can be controlled using

fixed gas ratios

Examples:

pyrochlores Ln₂³⁺V₂⁴⁺O₇, Ln₂³⁺Mo⁴⁺O₇

$$2 \text{ LnVO}_{4} \xrightarrow{1400^{\circ}\text{C}} \text{ Ln}_{2}\text{V}_{2}\text{O}_{7}$$

$$co/co_{2}$$

$$pO = 6.1 - 6.9$$

Ln₂Mo₂O₇

 $Ln_2O_3 + MOO_2 \xrightarrow{1350°C} Ln_2MO_2O_7$ CO/CO₂ = 1

Mat. Res. Bull. 14 (1979) 13 Solid State Communications, <u>59</u>, (1986) 895-897

B. Crystal growth methods.

- **1. Bridgeman**
- 2. Czochralski
- 3. Floating zone
- 4. Flux
- 5. Hydrothermal

Crucible methods

Crucible-free methods

- 1. Bridgeman
- 2. Czochralski
- 4. Flux
- **5. Hydrothermal**

3. Floating zone

Crucible methods - materials

• crucible - melt compatibility

<u>Metal</u>	<u>m.p.(Cº)</u>	Metal oxide	m.p.(C ⁰)
Pt	1772	Al ₂ O ₂	2072
Rh	1966	TiO	1855
lr	2410	MaO	2852
Мо	2617	Fe ₂ O ₄	1594
W	3410	V ₂ O ₂	1967
Re	3180	Cr ₂ O ₂	2330
Nb	2468	SiQ.	1423
Та	2996	0.02	

Ex: Bridgeman growth of Nd_{1-x}TiO₃ in a Mo crucible [PRB 74 (2006) 104419]

Bridgeman method

 $\textbf{x} \approx$ 0.10, 0.04

Bridgeman crystals - Nd_{1-x}TiO₃

x = 0.10

$5 \text{ mm} = 5 \times 10^6 \text{ nm}$

Typical modern Czochralski (a.k.a. crystal pulling) configuration

- melt contained in crucible.
- "seed crystal" lowered to contact melt.
- seed crystal slowly raised, crystal grows on seed and "pulled" from melt.

J. Cryst. Growth 197 (1999) 865

Grown from a Pt crucible @ 1300°C

Flux growth,

i.e. precipitation from "high temperature" solution.

- In general oxides are insoluble in most simple solvents (H₂O for example) but often can be " dissolved" in complex mixtures called fluxes.
- flux compositions designed to be molten below ~ 1000°C and above ~ 600 $^{\rm o}\text{C}$.
- solubility not easy to predict but many recipes exist.
- Procedure:
 - **1.** dissolve oxide in flux by heating to ~ 1000°C
 - 2. "soak" for period of ~ hrs.
 - 3. Cool slowly,(~ °C/hr)
 - 4. crystals precipitate often many nucleation sites

Flux growth of some antimonates, ASb₂O₆, A = Mn, Co, Ni,Cu [J.Cryst. Growth <u>154</u> 334-338 (1995)]

Starting composition (wt%)	Soak temperature (°C)	Soak time (h)	Cooling rate (°C/h)	Final temperature (°C)	Environ- ment	Product crystal sizes (mm)
$\begin{array}{c} \text{CuSb}_2\text{O}_6 + \text{V}_2\text{O}_5 + \text{B}_2\text{O}_3 \\ 20\% & 75\% & 5\% \end{array}$	1050	10	2	680	Vacuum 10^{-3} atm	Black $1 \times 0.75 \times 0.5$
$\begin{array}{c} \text{CoSb}_{2}\text{O}_{6} + \text{V}_{2}\text{O}_{5} + \text{B}_{2}\text{O}_{3} \\ 25\% & 70\% & 5\% \end{array}$	1050	10	4	650	Vacuum 10 ⁻³ atm	Black $1 \times 1 \times 0.5$
$\frac{\text{MnSb}_{2}\text{O}_{6} + \text{V}_{2}\text{O}_{5} + \text{B}_{2}\text{O}_{3}}{20\%} \frac{73\%}{7\%}$	1000	5	5	650	Argon 10^{-1} atm	Black $2 \times 2 \times 2.5$
$\frac{\text{NiSb}_{2}\text{O}_{6} + \text{V}_{2}\text{O}_{5} + \text{Na}_{2}\text{O}_{20\%}}{75\%} \frac{5\%}{5\%}$	1100	15	5	680	Air	Black $0.5 \times 0.5 \times 0.5$

 Table 1

 Selected examples of experiments of flux growth of transition metal antimonates

$V_2O_5 + B_2O_3$ flux - m.p. $(V_2O_5) \sim 700^{\circ}C$.

quartz (SiO₂) crucibles

Problems with crucible-based methods

- melt crucible reactivity
- cost of Pt, Ir, Rh crucibles
- flux inclusions
- Czochralski and Bridgeman difficult as oxide m.p. increases

A recent panacea! The lamp image floating zone method.

Energy from IR sources focused using mirrors to a small volume, ~ mm, on a solid, dense rod, creating a molten zone. Molten zone moved through length of rod often resulting in growth of a crystal without a crucible!

- 2 lamp and 4 lamp versions (CSI-FZ)
- Xenon lamps replace halogen lamps for higher temperatures ~ 2800°C
- operate under turbo-pump vacuum, 10⁻⁹ atm
- or pressures up to ~ 10 atm of variety of gases

Hydrothermal techniques

- while oxides are not usually soluble in H₂O under ambient conditions, this can change under modest pressure of a few 10³ atms.
- H₂O, the oxide and some "mineralizers" are sealed into a Au, Ag or Pt crucible and heated to ~ 200°C - 300°C in an autoclave.
- Crystals (often small) result.
- but giant quartz crystals (SiO₂) are grown hydrothermally (simulating geothermal conditions in nature)

 $AFe_3(SO_4)_2(OH)_6$ - jarosite

[PRB 67 (2003) 064401] [NatureMater. 4 (2004) 323]

single crystals have been grown hydrothermally up to 10 mm, large enough for inelastic neutron scattering.

Li can be added or removed from LiMn₂O₄@ room T using either electrochemical or chemical means leaving the frustrated Mn pyrochlore lattice intact.

 $\lambda - MnO_2$ and $Li_2Mn_2O_4$ cannot be prepared by other means.