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Oxygen affinity of metals.

• to assess the relative stability of the oxides

  of metals or the ability of metals to bind oxygen.

• recall, (from undergraduate physical chemistry)

 “ formation reaction ”

                  M(s) + O2(g) = MO2(s)

                 MO2(s)  =  M(s)  + O2(g)

     “dissociation”

(s)   = solid

      (g)  = gas
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• equilibrium constant at T:

              (for dissociation)

                    KT = pO2

G0 = -RTlnKT

G0 - Gibbs energy, G0 = H0 - T S0

define: pO = - log pO2

and pO =  - G0/2.303RT

a useful T = 1000K,

  pO = - G0/(2.303R)1000

note: pO is similar to pH in solution chemistry

which measures affinity for protons,

   pH = - log[H+]
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Oxygen affinity of metals

oxide pO

Au2O3 -5.5

Ag2O3 -3.3

  PtO                                -1.3

  air                                   0.7

 IrO2 0.9

RhO2                   4.2

Cu2O                                 9.6

PbO                                 12.7

H2/H2O=103                     13.6

CO/CO2=103 14.6

CoO                                 16.2

NiO                                  16.2

SnO2     19.7

H2/H2O=100 20.1

MoO2                                 20.1

FeO                             20.6
CO/CO2=100  20.6

WO2                                 21.2

ZnO                                 25.8

oxide                          pO
H2/H2O=10-3                     26.0

CO/CO2=10-3 26.8

Na2O                                28.9

Cr2O3                               30.1

MnO                                 32.6

Ta2O5                               33.2

SiO2                                 36.3

TiO                                   44.2

Al2O3                                47.2

ZrO2                                 47.2

BaO                                  48.6

MgO                                  52.0

Y2O3 (RE2O3)                     52.0

CaO                                  55.5
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 uses of pO tables:

• oxides with  pO < 0 are unstable

  ex: pO2 for Au2O3 = 3.16 x 105atm

• oxides with pO >> 0 are very stable

  ex: pO2 for CaO = 3.16 x 10-56 atm

• a metal will reduce any oxide with a

   pO smaller than its own.

 ex: Mo (pO = 20.1) will reduce NiO(pO = 16.2) 

      (i.e.  MoO2 more stable than NiO)

 ex: elements such as Pt, Ir, Rh will not reduce most

       metal oxides
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“buffer” gases

• 2H2(g) + O2(g) = 2H2O(g)

• 2CO(g)  + O2(g)  =  2CO2(g)

  at a given T and pH2O/pH2 or pCO2/pCO

             pO2 (or pO) will be fixed.

    pO2(pO) can be controlled using

       fixed gas ratios
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Fe + “FeO”

note: no single phase 

for O/Fe = 1.00 

existence

range “FeO”

existence

range Fe3O4

composition

range “FeO”

Fe3O4 and

Fe2O3 “line

compounds”
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Examples:

pyrochlores  Ln2
3+V2

4+O7, Ln2
3+Mo4+O7

 2 LnVO4                       Ln2V2O7

CO/CO2

pO = 6.1 - 6.9

1400oC

Ln2Mo2O7

Ln2O3  + MoO2 Ln2Mo2O7

1350oC

CO/CO2 = 1

Mat. Res. Bull. 14 (1979) 13

Solid State Communications, 59, (1986) 895-897
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B. Crystal growth methods.

     1. Bridgeman

     2. Czochralski

     3. Floating zone

     4. Flux

     5. Hydrothermal

Crucible methods

     1. Bridgeman

     2. Czochralski

     4. Flux

     5. Hydrothermal

Crucible-free methods

    3. Floating zone
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Crucible methods - materials

•   crucible - melt compatibility

Metal            m.p.(Co)

Pt                1772

   Rh               1966

   Ir                 2410

Mo               2617

   W                 3410

   Re               3180

   Nb               2468

   Ta               2996

Metal oxide      m.p.(Co)

Al2O3 2072

    TiO2                 1855

MgO                 2852

    Fe3O4 1594

    V2O3                 1967

    Cr2O3                2330

SiO2 1423
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Bridgeman method

ZrO2 insulation

W plate

Mo block

C susceptor

 induction coil

mullite

metal plate

  ~  ~1800ºC1800ºC

Ref. Pellet

x  0.10, 0.04

10-

12g

Ex: Bridgeman  growth of Nd1-xTiO3 in a Mo crucible

cooling

  rate:

1 - 5oC/hr hot

cool

[PRB 74 (2006) 104419]
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5 mm

Bridgeman crystals  -  Nd1-xTiO3

x = 0.10

5 mm = 5 x 106 nm

X = 0.04
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Typical modern Czochralski (a.k.a. crystal pulling)

                         configuration

J. Cryst. Growth 197 (1999) 865

• melt contained

   in crucible.

• “seed crystal”

 lowered to 

 contact melt.

• seed crystal

  slowly raised,

  crystal grows

  on seed and

 “pulled” from 

  melt.
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Bi4Ge3O12

Grown from a Pt crucible @ 1300oC
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            Flux growth, 

i.e. precipitation from “high temperature”solution.

• In general oxides are insoluble in most simple solvents

 (H2O for example) but often can be “ dissolved” in

 complex mixtures called fluxes.

• flux compositions designed to be molten below ~ 1000oC

 and above ~ 600 OC.

• solubility not easy to predict but many recipes exist.

• Procedure:

     1. dissolve oxide in flux by heating to ~ 1000oC

     2.  “soak” for period of ~ hrs.

     3. Cool slowly,(~ oC/hr)

     4. crystals precipitate - often many nucleation sites
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Flux growth of some antimonates, ASb2O6,

A = Mn, Co, Ni,Cu [J.Cryst. Growth 154 334-338 (1995)]

V2O5 + B2O3 flux - m.p. (V2O5) ~ 700oC.

            quartz (SiO2) crucibles
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Problems with crucible-based methods

• melt - crucible reactivity

• cost of Pt, Ir, Rh crucibles

• flux inclusions

• Czochralski and Bridgeman difficult as

   oxide m.p. increases
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A recent panacea!  The lamp image floating zone method.

  Energy from IR sources focused using mirrors

  to a small volume, ~ mm, on a solid, dense rod, creating 

  a molten zone. Molten zone moved through length of rod

  often resulting in growth of a crystal without a crucible!

NEC SC-N35HD
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• 2 lamp and 4 lamp versions (CSI-FZ)

• Xenon lamps replace halogen lamps for

   higher temperatures ~ 2800oC

• operate under turbo-pump vacuum, 10-9 atm

• or pressures up to ~ 10 atm of variety of gases
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10-12cm

feed  ~ 13g

5-8 cm seed

~10g



24

Nd0.85TiO3

5mm



25

Hydrothermal techniques

• while oxides are not usually soluble

 in H2O under ambient conditions, this can

 change under modest pressure of  a few

 103 atms.

• H2O, the oxide and some “mineralizers”

   are sealed into a Au, Ag or Pt crucible

   and heated to ~ 200oC - 300oC

   in an autoclave. 

• Crystals (often small) result. 

• but giant quartz crystals (SiO2) are grown

  hydrothermally (simulating geothermal

  conditions in nature) 
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         AFe3(SO4)2(OH)6 - jarosite

               [PRB 67 (2003) 064401]

[NatureMater. 4 (2004) 323]

single crystals have been grown

hydrothermally up to 10 mm,

large enough for inelastic neutron scattering.
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“Soft” chemical routes to metastable phases

          ex: LixMn2O4,    x = 0      2.

LiMn2O4

 spinel
 - MnO2

Li2Mn2O4

- Li + Li

Li can be added or removed from LiMn2O4 @ room T

using either electrochemical or chemical means

leaving the frustrated Mn pyrochlore lattice intact.

 - MnO2 and Li2Mn2O4 cannot be prepared by other means.




