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Monte Carlo for Classical Systems



Monte Carlo for classical systems

 In classical statistical mechanics the canonical partition function reads:

 where       is the energy of the state i

 The weight of an individual state is given as:

 How can we calculate efficiently expectation values ?

pi =
e
−Ei/T

Z(T )

Z(T ) =
∑

i

e
−Ei/T

Ei

〈O〉 =
∑

i

piOi



Monte Carlo for classical systems

Problem: direct sampling of the distribution       is difficult for two
  reasons:

 the number of states is exponentially large with system size

 the partition function     is therefore not known !

  A breakthrough came with the invention of the Metropolis algorithm
  more than 50 years ago (in the really early days of scientific computing!)

  no need to know     anymore.

pi

Z

W (i → j) = min{1, exp(−(Ej − Ei)/T )}

Z



Metropolis Algorithm I

 Main idea: Random walk in the space of configurations (Markov chain)

 Given a configuration i , propose a new configuration j and accept the
new configuration with probability: (otherwise keep the old as current)

 Observables are calculated as a simple arithmetic mean over the visited states:

 One has to care about THERMALIZATION and ERROR ANALYSIS !!
You might use the MC observables of the ALPS project if you write 
 your own MC code. Binning / Jackknife / Timeseries etc available.

c1 → c2 → . . . → cN

〈O〉 ≈
1

N

∑

n

Ocn

W (i → j) = min{1, exp(−(Ej − Ei)/T )}



Metropolis Algorithm II

 This is therefore a very general algorithm which works in principle for
 all classical statistical physics problems.

 However there are a few challenges in an application to a specific model

 The algorithm does not yet specify which state j to propose given state i.
But this is a crucial point. First, the proposed moves need to be ergodic,
 and they commonly satisfy detailed balance.

 For classical spin models on a lattice a simple algorithm is given by
 choosing a site, choosing a new orientation for that spin and accepting
 or discarding the new state according to the Metropolis formula.

 While this prescription gives a working algorithm, these local updates
 generically have problems being efficient at low temperature or close 
 to phase transitions (critical slowing down). Local updates can not cope
 with the diverging correlation length at the transitions. 



Monte Carlo for classical frustrated systems

 In the context of unfrustrated classical spin models very powerful cluster
 updates have been found (Swendsen-Wang, Wolff) which were again break-
 throughs and enabled the detailed study of critical phenomena (Ising, Potts, 
 XY, Heisenberg models).

 While these algorithms can formally also be applied to frustrated systems,
 their performance is seldom better than the simple single spin updates.

 There is a generic lack of efficient updates for classical frustrated systems.
 In individual cases a good physical intuition can be helpful for devising efficient
 updates, but these are rather the exception than the rule.

 New “extended ensemble” techniques, such as “(optimized) parallel tempering” 
 can help to better equilibrate the system and to yield shorter autocorrelation
 times.



W (βi → βj) = min{1, exp[+(βi − βj)(Ei − Ej)]}

Monte Carlo: Parallel Tempering
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 Heisenberg model with competing nearest and next-nearest AF couplings
 and J2/J1 > 1/2

 At finite but low T two collinear structures are locally selected (order by disorder),
 but without long-range order in the spin variables (Mermin-Wagner forbidden). 

 Large scale Monte Carlo simulations 
 reveal Ising transition to ordered state
 of emerging    degrees of freedom,
 while the individual spins remain disordered!

Applications of Classical Monte Carlo
I) Order by disorder in the J1-J2 Square Lattice 

C. Weber et al, Phys. Rev. Lett. 91, 177202 (2003).

Paramagnetic

Ordered stripes,
disordered spins

σ = (S1 − S3) · (S2 − S4) +_

Ĥ = J1

∑

n.n.

Ŝi · Ŝj + J2

∑

n.n.n.

Ŝi · Ŝj ,

σ

+



 Classical closed packed dimers on a 3D simple cubic lattice

 Interaction prefers
 parallel dimers.

 Highly efficient non-
 local worm updates !
N=L3 with L ~ 100

 Unconventional transition
 between dimer crystal
 and Coulomb phase.

Applications of Classical Monte Carlo
II) interacting classical dimer models 
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Monte Carlo for classical systems: Literature

 A very pedagogical introduction to Monte Carlo methods in statistical physics
 by Werner Krauth: 

 There are also lecture notes available on his website
http://www.lps.ens.fr/~krauth/

 Fabien Alet (http://www.lpt.ups-tlse.fr/alet) has detailed lecture notes on 
 MC and QMC methods available on his webpage. 
 The first lecture discusses classical Monte Carlo for unfrustrated 
 spin models in depth http://www-spht.cea.fr/articles/T05/022/lecture1.pdf.

 Introduction to parallel tempering and optimized ensembles can be found
 in: David J. Earl and Michael W. Deem,
 “Parallel tempering: Theory, applications, and new perspectives”,
Phys. Chem. Chem. Phys., 7 3910 (2005).



Quantum Monte Carlo



Quantum Monte Carlo

 In quantum statistical mechanics the canonical partition function now reads:

 Expectation values: 

 We need to find a mapping onto a “classical” problem in order to perform MC

 World-line methods (Suzuki-Trotter, Worm algorithm, ...)

 Stochastic Series Expansions (discussed in this lecture)

 Potential Problem: The mapping can give “probabilities” which are negative

⇒ infamous sign problem. Common cause is frustration or fermionic statistics.

Z(T ) = Tr e
−H/T

〈O〉 =
1

Z(T )
Tr[Oe

−H/T ] ≡ Tr[Oρ(T )]



 Quantum to Classical mapping is done based on a Taylor series expansion
 of the partition function (Sandvik 1991, 1999, 2003)

 Split the Hamiltonian into (off-)diagonal bond pieces:

 One gets the following form

 In this form one can come up with a random walk in the space of the
 discrete indices

Stochastic Series Expansion (SSE)

Z(β) = Tr e
−βH =

∑

α

∑

n

(−β)n

n!
〈α|Hn|α〉
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∑

b

hb

Z(β) =
∑

n

β
n

n!

∑

α

∑

(b1,...,bn)

〈α|
n∏

i=1

(−hbi
)|α〉

n, α, (b1, . . . , bn)

∝ P [n, α, (b1, . . . , bn)] ≥ 0



 A configuration looks like this:

 Updates: 
                  Insertion or Removal of diagonal bonds (changes n)

Loop or Worm updates change diagonal into offdiagonal
                  and vice-versa (n unchanged) and modify

 Measurements:

|α〉 = |01011〉
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Antiferromagnetic Ising Model on the triangular lattice
 augmented by a ferromagnetic transverse exchange
 SSE QMC is possible without a sign problem !

 AF Ising model has a macroscopic degeneracy at T=0 (Wannier, Houtappel).

 In a whole region of magnetizations 
 the system becomes supersolid upon switching on the ferromagnetic
 transverse exchange

Applications of Quantum Monte Carlo
Supersolids on the triangular lattice

G. Murthy et al, Phys. Rev. B 55, 3104 (1997).
S. Wessel & M. Troyer, Phys. Rev. Lett. 95 127205 (2005).
D. Heidarian & K. Damle, Rev. Lett. 95 127206 (2005).
R. Melko et al, Phys. Rev. Lett. 95 127207 (2005).
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Quantum Monte Carlo: Literature

 Sandvik’s original papers:
 A. Sandvik, Phys. Rev. B 59, 14157 (1999).
 O.F. Syljuåsen and A.W. Sandvik, Phys. Rev. E 66, 046701 (2002).

 F. Alet, S. Wessel, and M. Troyer, Phys. Rev. E 71, 036706 (2005).

 Many reviews: Evertz, Troyer et al, Kawashima & Harada

 Fabien Alet (http://www.lpt.ups-tlse.fr/alet) has lecture notes on 
 MC and QMC methods available on his webpage. 
 The second and third lecture are devoted to Quantum Monte Carlo
http://www-spht.cea.fr/articles/T05/022/QMC.Lecture2.pdf

http://www-spht.cea.fr/articles/T05/022/QMC.Lecture3.pdf
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Series Expansions

 High-Temperature Expansions for quantum lattice models

 Taylor Expansion of the partition function around               :

 In the discussion of SSE before, we were performing a stochastic evaluation
 of Z. Here in contrast we aim at an exact expression for each order    .
 Lowest order terms are often very easy to obtain.

 Higher orders require a computer assisted enumeration and identification of 
 lattice animals, and the calculation of the trace for those graphs. Typical orders
 are up to n ~ 20 for quantum lattice models, but this depends a lot on the problem.

β = 0

Z(β) = Tr e
−βH =

∑

n

Tr
(−βH)n

n!
=

∑

n

Tr
(−β

∑
k
hk)n

n!

β



Perturbative Expansions for Quantum Lattice Models

Taylor Expansion of the Energy around a non-degenerate starting state

Series Expansions

E(λ) = E0 + λE1 + λ
2
E2 + λ

3
E3 + . . . + λ

n
En + O(λn+1)

EGS

L
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⊥
[
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4
+

3

8

(
J

J
⊥

)2

+
3

16

(
J

J
⊥

)3

+ . . .]λ =
 Multivariable expansions are also possible

 The lowest orders are simple to obtain, but high orders in complex geometries
 require a fully developed graph manipulation machinery. Typical orders: 10 - 20



Series Expansions for frustrated systems

 Series expansion have no intrinsic difficulty with frustrated systems.

 Symbolic expressions for thermodynamic quantities allow a rapid fit of
 model parameters to experimental data.

 High-temperature series tend to not to converge at low temperatures.
 Series extrapolations, biased series extrapolations, numerical linked cluster
 techniques, combination with exact diagonalization etc, can help to get 
 somewhat lower in temperature than the bare series.

 Perturbative series expansions are also very useful in deriving dispersion
 relations for elementary excitations. Collapse of excitation energies can indicate
 a quantum phase transition.

 Useful also to derive effective Hamiltonians in degenerate perturbation theory,
 which is a common theme in frustrated systems ! talk of F. Mila this morning



Applications of Series Expansions:
High Temperature Series for the S=1/2 Kagome 

 Heisenberg S=1/2 model on the kagome lattice

 Series for the specific heat:

Misguich et al. arXiv 07Elstner & Young PRB 94



Applications of Series Expansions:
Dimerized Groundstate of the S=1/2 Kagome ?

 Expansion in the interdimer coupling,
 extrapolation to equal couplings on 
 all bonds

 large unit cell of the unperturbed state
 (36 spins / 18 dimers)

 this specific dimer pattern is selected
 among others, according to their analysis

 obtained also series for triplet excitations,
 however less conclusive
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Series Expansions: Literature

 J. Oitmaa , C. Hamer and W. Zheng
 “Series expansion method for strongly interacting lattice models”
 Cambridge University Press, 2006.

 M.P. Gelfand & R.R.P. Singh,
 “High-order convergent expansions for quantum many-particle systems”
 Advances in Physics 49, 93 (2000).

 C. Domb & M.S. Green
 “Phase Transitions and Critical Phenomena: 

  Series Expansion for Lattice Models”,
 Elsevier, 1974.

 Talk by S. Trebst on “Cluster Expansions”
http://www.kitp.ucsb.edu/~trebst/Talks/ClusterExpansions.pdf



Density Matrix Renormalization Group



Density Matrix Renormalization Group

 K. Wilson introduced the numerical renormalization group as a powerful
 numerical tool to solve the Kondo problem (Wilson RMP 75).

 Many people tried to apply this idea in a straightforward way to quantum
 many body problems and failed. The reason for this failure was understood in
 a study of the tight-binding problem on a chain (White & Noack PRL 92):

ψ1 ψ2 ψ2 ψ3
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x
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φ
(x

)

ψ[2L] != ψ[L] ⊗ ψ[L]

The groundstate of the large system is not at all
well approximated by the tensor product of the
groundstates of the smaller systems

m m m md d



Density Matrix Renormalization Group

 The next crucial step was to realize how one has to choose the states
 to be kept in a partition of the universe:

 System description with m states:

 How to choose the m states in order to approximate       best ?

System
Environment

|ψ̃〉 =
m∑

n

∑

α

ψ̃n,α|φn〉S ⊗ |α〉E

H = HS + HE + HSE

|ψ〉

groundstate |ψ〉



∣∣∣|ψ̃〉 − |ψ〉
∣∣∣
2

≈ 1 −
m∑

n

wn = Pm

Density Matrix Renormalization Group

 The answer is given by the subsystem density matrix

 With the help of the Schmidt decomposition one can show that the
m eigenfunctions of    associated with the largest eigenvalues wn give

 the best approximation of       . (and not the lowest eigenstates of HS)

 The error can be estimated to be

ρi,j = TrE |ψ〉〈ψ|

ρ

|ψ〉



Density Matrix Renormalization Group

 Based on these condsiderations, S.R. White came up with the DMRG
S.R. White, PRL 69, 2863 (1992); PRB 48,10345 (1993).

 Infinite System Algorithm

 Finite System Algorithm

1
mm2
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mm4
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DMRG for frustrated systems

 Very efficient groundstate simulations for many 1D systems.
 Frustration or fermions pose no particular problem.

 Typical system sizes and number of states:
    unfrustrated spin systems: 100-1000 sites, lower hundred states
    frustrated spin systems:  hundred sites, larger hundred to thousand states
    fermionic systems, wide systems, many low energy states, they all increase m

 Variational, quasi-exact method.

 Wavefunction method, therefore many observables are easily available.

 Drawbacks: it is not yet possible to simulate large 2D systems,
 open boundaries might not always be what we desire, especially
 because of the lack of spatial quantum numbers.



DMRG Applications
The S=1/2 Kagome Strips

AML, unpublished

M. Indergand, AML, S. Capponi, M.Sigrist, PRB (2006)

doped <n>=2/3 ! 3 site singlets

undoped, Heisenberg model

2nd Kagome Strip (Waldtmann, Everts et al, 2000)

1st Kagome Strip (Azaria et al, 1998)

S.R. White & R.R.P. Singh PRL (2000)



DMRG Further Developments

TMRG
 Finite temperature properties based on the transfer matrix

DDMRG
 Calculation of dynamical response functions 

t-DMRG
 Real-time evolution of quantum many body systems
 Imaginary-time evolution for finite temperature properties

PEPS / MERA
new ideas coming from the Quantum Information community might
 strengthen our understanding on how to simulate D>1 quantum many
 body systems efficiently.



DMRG Literature

 Original papers:
S.R. White, “Density matrix formulation for quantum renormalization groups”, Phys. Rev. Lett. 69, 2863 (1992).

S.R. White, “Density-matrix algorithms for quantum renormalization groups”, Phys. Rev. B 48, 10345 (1993).

 U. Schollwöck, “The density-matrix renormalization group”,
Rev. Mod. Phys. 77, 259 (2005).

 K. Hallberg, “New Trends in Density Matrix Renormalization”
Adv. Phys. 55, 477 (2006).

R.M. Noack & S. Manmana, “Diagonalization- and Numerical Renormalization-

 Group-Based Methods for Interacting Quantum Systems”,
AIP Conf. Proc. 789, 93 (2005).

 Talk by E. Jeckelmann at http://heraeus2006.physik.uni-greifswald.de/invited.html



Exact Diagonalization

H|ψ〉 = E|ψ〉
The Quantum Mechanics Toolbox



Exact Diagonalization

Solve the time-independent Schrödinger equation for a many body Hamiltonian
on a finite (lattice) system ⇒ (Sparse) Matrix Eigenvalue problem:

Within this approach we can basically simulate any model.

However due to the exponentially growth of the computational cost
the method is most useful where more powerful methods fail:

Fermionic Models in 1D and 2D (no sign problem)

Frustrated Quantum Magnets in 1D/2D/(3D)
Well suited for detection of (exotic) ordered phases, 
somewhat less useful for critical points in d>1
Quantum number resolved quantities

Calculation of basically any observable possible, also time dynamics
Benchmark for all other methods

H|ψ〉 = E|ψ〉



Exact Diagonalization : Present Day Limits

Spin S=1/2 models: 
! 40 spins square lattice, 39 sites triangular, 42 sites star lattice
Dimension: up to 1.5 billion basis states

t-J models:
! 32 sites checkerboard with 2 holes
! 32 sites square lattice with 4 holes
Dimension: up to 2.8 billion basis states

Holstein models
! 14 sites on a chain + phonon pseudo-sites
Dimension: up to 30 billion basis states

Hubbard models
! 20 sites square lattice at half filling, 20 sites quantum dot structure
                22-25 sites in ultracold atoms setting
Dimension: up to 80 billion basis states (on the earth simulator @ TFlop speed !)



Exact Diagonalization : Not just “Lanczos”

Hilbert space

Symmetries

Site-Basis represention, Lookup techniques

Hamiltonian Matrix

Sparse Matrix representation (memory/disk)

Matrix recalculation on the fly (matrix-free)

Linear Algebra : Eigensolver / Time propagation

LAPACK full diagonalization

Lanczos type diagonalization (needs only                   operations) 

More exotic techniques, time propagation

Observables

Static quantities (multipoint correlation functions, correlation density matrices,...)

Dynamic observables (spectral functions, density of states,...)

Real-time evolution

|v〉 = H|u〉



Exact Diagonalization: Symmetries

 Symmetries in ED are useful for two reasons:
 1) They reduce the dimension of the linear algebra problem to be solved. 
 2) The symmetry classification of eigenstates is the foundation of further, more
     sophisticated analyses, such as the “Tower of States” technique (later in this talk).

 Consider a XXZ spin model on a lattice. 
 What are the symmetries of the problem ?

 The Hamiltonian conserves Sz, we can therefore work within a given Sz sector

 The Hamiltonian is invariant under the space group (SG=Translations x Pointgroup)
 Usually 1 dimensional irreducible representations are used only, but larger 
 irreps are possible too (somewhat more complicated). Bookkeeping of
 norms and phases of individual states.

 At the Heisenberg point, the total spin is conserved. It is however very difficult
 to combine the SU(2) symmetry with the lattice symmetries in a computationally
 useful way (non-sparse and computationally expensive matrices). At Sz=0 one
 can however use the spin-flip symmetry which seperates even and odd spin 
 sectors. 
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∑
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Exact Diagonalization: State representation

 States of the Hilbert space (Fock space) need to be represented in
 the computer.

 Choose a representation which makes it simple to act with the Hamiltonian
 or other operators on the states

 Simple example: ensemble of S=1/2 sites in binary coding

 detection of up or down spin can be done with bit-test.
 transverse exchange                            can be performed by an XOR operation:

 One of the key problems for a fast ED code is to find the index of the new
 configuration in the list of all configurations (index f in Hi,f). Lookup / Hashing / ...

| ↑ ↑ ↓ ↑〉 → [1 1 0 1]2 = 13

S
+
S
− + S

−

S
+

[1 1 0 1]2 XOR [0 1 1 0]2 = [1 0 1 1]2
bit 1 at the two sites coupled initial config final config



|φ′〉 = H|φn〉 − βn|φn−1〉 ,

αn = 〈φn|φ
′〉 ,

|φ′′〉 = |φ′〉 − αn|φn〉 ,

βn+1 = ||φ′′|| =
√

〈φ′′|φ′′〉 ,

|φn+1〉 = |φ′′〉/βn+1 ,

H̃N =





α0 β1 0 . . . . . . . . . . . . 0
β1 α1 β2 0 . . . . . 0
0 β2 α2 β3 0 0

. . .
. . .

. . .

0 . . 0 βN−2 αN−2 βN−1

0 . . . . . . . 0 βN−1 αN−1





Exact Diagonalization: Linear Algebra

 Lanczos Algorithm (C. Lanczos, 1950), but others are possible too (Davidson,...)

Three vector recursion

very rapid convergence !

spurious
eigenvalues

care is needed for excited states



Full Diagonalization: Thermodynamics

 Lapack / Householder complete diagonalization of the spectrum.

 Calculate partition function and all the thermodynamic quantities you want,
 often the only pedestrian method available for frustrated systems.

 Symmetries are also very important, because the computational requirements
 scale as O(D3), where D is the dimension of the block Hilbert space. Typical
 D’s for a workstation are a few 1’000, up to a few 100’000 on supercomputers.

 You are going to use this method in the tutorial

F. Heidrich-Meisner, A. Honecker, T. Vekua,
Phys. Rev. B 74, 020403(R) (2006).



Exact Diagonalization
“Tower of States” spectroscopy

 What are the finite size manifestations of a continuous symmetry breaking ?

 Low-energy dynamics of the order parameter
 Theory: P.W. Anderson 1952, Numerical tool: Bernu, Lhuillier and others, 1992 -
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Exact Diagonalization
“Tower of States” spectroscopy

 What are the finite size manifestations of a continuous symmetry breaking ?

 Low-energy dynamics of the order parameter
 Theory: P.W. Anderson 1952, Numerical tool: Bernu, Lhuillier and others, 1992 -
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Exact Diagonalization
Frequency Dynamics

  Generate Krylov space of
  Use continued fraction used to invert
  More information in talk by D. Poilblanc on monday!

  Example:
  Spin dynamics of a spin
  ladder in a uniform
  magnetic field:
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GA(ω + iη) = 〈ψ|A†
1

E0 + ω + iη − H
A|ψ〉

A|ψ〉
(E0 + ω + iη − H)

A = S
α(q), ck, . . .



Exact Diagonalization
Real-Time Dynamics

 It is expensive to obtain the full propagator

 Krylov methods exist to approximate the propagator for a given state
 One can get the time propagated state          with only                  operations.

 Example: time evolution of a strongly
 correlated quantum systems after an
 abrupt change in the parameters in the
 Hamiltonian. Revivals and Relaxation.

 Real-time evolution of spin excitations
 in frustrated quantum magnets ?

exp[−itH]

|ψ(0)〉
|ψ(t)〉 |v〉 = H|u〉

C. Kollath, AML, E. Altman, PRL 2007
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Exact Diagonalization Literature

 N. Laflorencie & D. Poilblanc,
Lecture Notes in Physics 645, 227 (2004).

 R.M. Noack & S. Manmana, 
 “Diagonalization- and Numerical Renormalization-Group-Based Methods for Interacting Quantum Systems”,
AIP Conf. Proc. 789, 93 (2005).

G. Misguich, P. Sindzingre
 “Detecting spontaneous symmetry breaking in finite-size spectra of frustrated quantum antiferromagnets”
J. Phys.: Condens. Matter 19, 145202 (2007).

 Talk by A. Weisse at http://heraeus2006.physik.uni-greifswald.de/invited.html



Miscellanea

 Dynamical Mean-Field Theory
Ohashi et al

 Classical Spin Dynamics Simulations
 (Spin Molecular Dynamics)
Shastry, Keren, D. Landau, Moessner & Chalker

 Green’s function / Diffusion Monte Carlo (T=0 methods) 
 rather popular these days for Quantum Dimer Models
Ralko et al, Syljuasen ...

 Variational Monte Carlo, Fixed node ...
talk on tuesday by S. Sorella

 Valence Bond basis Monte Carlo
Sandvik, talk on thursday by F. Alet

dSi

dt
= Si × Hi(t)
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Thank you !




