The goal of this problem is to derive an effective model for a frustrated ladder in a magnetic field. The starting point is the Heisenberg model defined by the Hamiltonian:

$$
\begin{equation*}
H=\sum_{n} J_{\perp} \vec{S}_{1 n} \cdot \vec{S}_{2 n}-B \sum_{n}\left(S_{1 n}^{z}+S_{2 n}^{z}\right)+\sum_{\langle n m\rangle} \sum_{i, j=1,2} J_{i j} \vec{S}_{i n} \cdot \vec{S}_{j m} \tag{1}
\end{equation*}
$$

In the spin operators $\vec{S}_{i n}$, the index i refers to the leg, while the index n refers to the rung. The summation over $\langle n m\rangle$ means over nearest neighboring rungs. We want to derive an effective Hamiltonian in the limit $J_{\perp} \gg J_{i j}$.

Part I - One-rung problem

In this part, we consider a single rung described by the Hamiltonian

$$
\begin{equation*}
H_{n}=J_{\perp} \vec{S}_{1 n} \cdot \vec{S}_{2 n}-B\left(S_{1 n}^{z}+S_{2 n}^{z}\right) \tag{2}
\end{equation*}
$$

1) Using symmetry arguments, show that the states $|S\rangle_{n}=\frac{1}{\sqrt{2}}\left(\left|\uparrow_{1 n} \downarrow_{2 n}\right\rangle-\left|\downarrow_{1 n} \uparrow_{2 n}\right\rangle\right.$, $\left|T_{1}\right\rangle_{n}=\left|\uparrow_{1 n} \uparrow_{2 n}\right\rangle,\left|T_{0}\right\rangle_{n}=\frac{1}{\sqrt{2}}\left(\left|\uparrow_{1 n} \downarrow_{2 n}\right\rangle+\left|\downarrow_{1 n} \uparrow_{2 n}\right\rangle\right.$ and $\left|T_{-1}\right\rangle_{n}=\left|\downarrow_{1 n} \downarrow_{2 n}\right\rangle$ are eigenstates of H.
2) Determine their energies, and plot them as a function of B. Determine the critical value of the magnetic field B_{c} at which $|S\rangle_{n}$ and $\left|T_{1}\right\rangle_{n}$ are degenerate ground states.

Part II - Two-rung problem

We now consider two neighboring rungs n and m, and we partition the Hamiltonian as $H_{n m}=H_{0}+V$ with:

$$
\begin{equation*}
H_{0}=J_{\perp}\left(\vec{S}_{1 n} \cdot \vec{S}_{2 n}+\vec{S}_{1 m} \cdot \vec{S}_{2 m}\right)-B_{c}\left(S_{1 n}^{z}+S_{2 n}^{z}+S_{1 m}^{z}+S_{2 m}^{z}\right) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
V=\sum_{i, j=1,2} J_{i j} \vec{S}_{i n} \cdot \vec{S}_{j m}-\left(B-B_{c}\right)\left(S_{1 n}^{z}+S_{2 n}^{z}+S_{1 m}^{z}+S_{2 m}^{z}\right) \tag{4}
\end{equation*}
$$

It will prove convenient to use two basis of the Hilbert space:

$$
\begin{equation*}
\left\{\left|\sigma_{1 n} \sigma_{2 n} \sigma_{1 m} \sigma_{2 m}\right\rangle, \sigma_{1 n}, \sigma_{2 n}, \sigma_{1 m}, \sigma_{2 m}=\uparrow \text { or } \downarrow\right\}, \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\{|A B\rangle \equiv|A\rangle_{n} \otimes|B\rangle_{m}, A, B=S, T_{1}, T_{0} \text { or } T_{-1}\right\} \tag{6}
\end{equation*}
$$

From the properties of individual rungs, it should be clear that $|S S\rangle,\left|S T_{1}\right\rangle,\left|T_{1} S\right\rangle$ and $\left|T_{1} T_{1}\right\rangle$ are degenerate ground states of H_{0}. We consider the limit $J_{\perp} \gg J_{i j}, B-B_{c}$, and we treat V with first-order degenerate perturbation theory.

1) Write the ground states in the basis $\left\{\left|\sigma_{1 n} \sigma_{2 n} \sigma_{1 m} \sigma_{2 m}\right\rangle\right\}$.
2) In this question, we consider the case $J_{11} \neq 0, J_{12}=J_{21}=J_{22}=0$.
a) Calculate $\vec{S}_{1 n} \cdot \vec{S}_{1 m}|S S\rangle, \vec{S}_{1 n} \cdot \vec{S}_{1 m}\left|S T_{1}\right\rangle, \vec{S}_{1 n} \cdot \vec{S}_{1 m}\left|T_{1} S\right\rangle$ and $\vec{S}_{1 n} \cdot \vec{S}_{1 m}\left|T_{1} T_{1}\right\rangle$.
b) Using symmetry considerations, show that V only couples $|S S\rangle$ and $\left|T_{1} T_{1}\right\rangle$ with themselves.
c) Calculate the matrix elements $\langle S S| \vec{S}_{1 n} \cdot \vec{S}_{1 m}|S S\rangle$ and $\left\langle T_{1} T_{1}\right| \vec{S}_{1 n} \cdot \vec{S}_{1 m}\left|T_{1} T_{1}\right\rangle$.
d) Determine the remaining matrix elements $\left\langle S T_{1}\right| \vec{S}_{1 n} \cdot \vec{S}_{1 m}\left|S T_{1}\right\rangle,\left\langle T_{1} S\right| \vec{S}_{1 n} \cdot \vec{S}_{1 m}\left|T_{1} S\right\rangle$, $\left\langle S T_{1}\right| \vec{S}_{1 n} \cdot \vec{S}_{1 m}\left|T_{1} S\right\rangle$ and $\left\langle T_{1} S\right| \vec{S}_{1 n} \cdot \vec{S}_{1 m}\left|S T_{1}\right\rangle$.
e) In the subspace $\left\{|S\rangle,\left|T_{1}\right\rangle\right\}$ of a rung n, one defines the operator $\vec{\sigma}_{n}$ by:
$\sigma_{n}^{z}|S\rangle=-\frac{1}{2}|S\rangle, \sigma_{n}^{z}\left|T_{1}\right\rangle=\frac{1}{2}\left|T_{1}\right\rangle, \sigma_{n}^{+}|S\rangle=\left|T_{1}\right\rangle, \sigma_{n}^{+}\left|T_{1}\right\rangle=0, \sigma_{n}^{-}|S\rangle=0, \sigma_{n}^{-}\left|T_{1}\right\rangle=|S\rangle$.
Show that the matrix elements of V are the same as those of an effective Hamiltonian of the form:

$$
\begin{equation*}
H_{\mathrm{eff}}=J^{x y}\left(\sigma_{n}^{x} \sigma_{m}^{x}+\sigma_{n}^{y} \sigma_{m}^{y}\right)+J^{z} \sigma_{n}^{z} \sigma_{m}^{z}+B_{\mathrm{eff}}\left(\sigma_{n}^{z}+\sigma_{m}^{z}\right)+C \tag{8}
\end{equation*}
$$

where $J^{x y}, J^{z}, B_{\text {eff }}$ and C are functions of J_{11}, B and B_{c} to be determined.
3) One now considers the general case where all couplings $J_{i j}$ can be non-zero.
a) Using symmetry considerations, express the matrix elements of $\vec{S}_{1 n} \cdot \vec{S}_{2 m}, \vec{S}_{2 n} \cdot \vec{S}_{1 m}$ and $\vec{S}_{2 n} \cdot \vec{S}_{2 m}$ in terms of those of $\vec{S}_{1 n} \cdot \vec{S}_{1 m}$.
b) Write down the effective Hamiltonian of two rungs.

Part III - Ladders

1) Show that, to first order, the effective Hamiltonian is the sum of two-rung Hamiltonians. Write down the full effective Hamiltonian to first order.
2) Determine the condition under which the effective model is a one-dimensional Heisenberg model in a field. Discuss the physics depending on where the system lies with respect to this condition.
