1- Magnetic moments of U ions

Many Uranium compounds are mixed valence systems: the valence state of U ions can be U^{3+} , U^{4+} or a mixture of both valence states. The atomic configurations are respectively $5f^3$ and $5f^2$.

-What are the values of L, S and J for each ion

-If one measures a Curie-like susceptibility, what are the effctive moments in both cases?

-Conclusion: is it easy to deduce the valence state of U from the effective moment?

S=1, L=5, J= L - S=4,
$$g_J=4/5$$
 ($\lambda < 0$)
 $\mu_{eff} = g_J \sqrt{J(J+1)}\mu_B = 3.58\mu_B$

$$U^{3+}$$
 \uparrow \uparrow \uparrow

$$\mu_{eff} = g_J \sqrt{J(J+1)}\mu_B = 3.62\mu_B$$

Conclusion: difficult to distinguish!

2- One-dimensional crystal field

Let 2 identical charges q be located at $z = \pm$ aon the z-axis. Write the potential V(r) created by these 2 charges at a point M near the origin. Expand V(r) for r/a \ll 1 and show that it takes the form:

 $V(z,y,z) = Dz^2$

$$V(r) = \frac{q}{|AM|} + \frac{q}{|BM|}$$

$$AM = \sqrt{x^2 + y^2 + (z - a)^2} , BM = \sqrt{x^2 + y^2 + (z + a)^2}$$

$$z = r\cos\theta$$
small x, y and z: $\frac{1}{AM} = \frac{1}{a} (1 + \frac{r}{a} \cos\theta + \frac{r^2}{2a^2} (3\cos^2\theta - 1))$

$$V(r) = \frac{2q}{a} + \frac{qr^2}{a^2} (3\cos^2\theta - 1)$$

If q < 0 : potential is repulsive if the electron is on z-axis attractive if the electron is in the x-y plane ⇒ Planar orbitals are favored **3** - The ground state of a Pr³⁺ ion (4f²) is characterized by S=1, L=5, J=4

A uniaxial crystal field will partially remove the degeneracy of the ground state. The crystal field potential writes: $V_c = V_0 J_z^2$

-How the energy levels are modified by the crystal field? What is the ground state if $V_0 > 0$? If $V_0 < 0$?

-When applying a magnetic field along z-axis, how these levels are modified in both cases?

-If $V_0 > 0$ show that the magnetic field can induce a transition from a non-magnetic GS ($J_z=0$) to a magnetic state ($J_z \neq 0$). What is the value of the critical field?

Jz

« Non-magnetic » ground state

In a magnetic field: Zeeman splitting

$$E(J_z) = V_0 J_z^2 - g\mu_B H J_z$$

Degeneracy is lifted completely

Case $V_0 > 0$

Critical field H_c at which E(J_z = 0) = E (J_z = 1)

At H_c , the ground state becomes magnetic ($J_z = 1$)

At higher field: other transitions

4-<u>Helimagnetism: a 1D example</u>

Consider a chain of (classical) magnetic moments with 1st and 2nd neighbor exchange:

-Ground state for I_1 and $I_2 > 0$? For $I_1 < 0$ and $I_2 > 0$?

-General case : $\vec{S}_i = \vec{S}_q e^{iqR_i}$

No frustration, all interactions are satisfied

If $I_2 < 0$, frustration is present: helimagnetic state In helimagnet, each moment makes an angle φ with its neighbor

-By minimizing the energy, calculate the angle φ as a function of I_1 and I_2 .

-Phase diagram on the plane(I_1 , I_2)

Energy: $\mathbf{E} = -\mathbf{I}_1 \cos \mathbf{\phi} - \mathbf{I}_2 \cos 2\mathbf{\phi}$

 $\partial E / \partial \phi = 0 \implies \sin \phi (I_1 + 4 I_2 \cos \phi) = 0$

Solutions:

$$-\phi = 0 \longrightarrow \text{ferro } \mathbf{E}_{F} = -\mathbf{I}_{1} - \mathbf{I}_{2}$$

$$-\phi = \pi \longrightarrow \text{ antiferro } \mathbf{E}_{AF} = \mathbf{I}_1 - \mathbf{I}_2$$

-
$$\cos \varphi = -I_1/4I_2 \rightarrow \text{helicoidal } E_H = I_2 + 8I_1^2/8I_2$$

valid only if $|I_1/4I_2| \le 1$

Phase diagram: comparison of the 3 energies

The phase diagram:

- The helimagnetic state is stabilized in the frustrated region ($J_2 < 0$)
- It is in general incommensurate with the lattice periodicity

<u>General case</u>: - interactions J_{ij} between 1st, 2nd, 3rd - Any kind of Bravais lattice (1 magnetic site per

unit cell)

$$H = -\sum_{ij} J_{ij} \vec{S}_i . \vec{S}_j$$

Fourier transform:
$$S_i = \frac{1}{\sqrt{N}} \sum_{q} S_q e^{iqR_i}$$
, $Sq = \frac{1}{\sqrt{N}} \sum_{i} S_i e^{iqR_i}$
$$J(q) = \frac{1}{N} \sum_{ij} J_{ij} e^{iq(R_i - R_j)}$$
$$H = -\sum_{q} J(q) S_q S_{-q} = -\sum_{q} J(q) |S_q|^2$$

We restrict to solutions with only 1 q-vector (in fact at least q and -q): Energy is minimum at q_0 for which J(q) is maximum

For the 1D case : $J(q) = -I_1 \cos qa - I_2 \cos 2qa$. Show that the solution is similar to the one found previously

Generally, there is $1 q_0$ (+ the equivalent vectors): the stable magnetic structure is well defined

In frustrated systems (Kagome and pyrochlore): one « flat branch » + several dispersive branches

(when several atoms per unit cell: nb of branches = nb of magnetic sites in unit cell)

5- Magnetovolume effects: a simple model with 3 magnetic moments

Triangle with Ising spins If J < 0, frustration: 6 equivalent states

If the triangle can deformed, the 3 exchange interactions are different:

$$J_1 = J_0 - \alpha \epsilon$$
, $J_2 = J_0 + \alpha \epsilon'$ $\alpha = \frac{\partial J(r)}{\partial r}$

Show that a deformation decrease the GS energy

-Relation between ε and ε ' in order to keep a constant « volume »

-Write the total energy: magnetic + elastic

-Show that the deformation partially supress the frustration

-Constant surface: $\varepsilon' = \varepsilon/2$

-Energy: $E = -J_1 S_1 S_2 - J_2 S_1 S_3 - J_2 S_2 S_3 + K(\epsilon^2 + 2\epsilon'^2)$

Energy: exchange + elastic

$$E = -(J_0 - \alpha \epsilon)S_1S_2 - (J_0 + \frac{\alpha \epsilon}{2})(S_1S_3 + S_2S_3) + \frac{3K}{2}\epsilon^2$$

(Same conclusion if no relation between ε and ε)

6 – biquadratic interactions

Consider a lattice of S = 1 spins which have both bilinear and biquadratic nearest neighbor interactions of the form:

$$H = -J \sum_{ij} S_{i}^{z} S_{j}^{z} - J_{q} \sum_{ij} ((S_{i}^{z})^{2} - 2/3)((S_{j}^{z})^{2} - 2/3) - H \sum_{i} S_{i}^{z}$$

This hamiltonian can model a system with quadrupolar interactions. At high T the 3 states $S_z = 0$, +1, -1 are equally populated; thus $\langle S^z \rangle = 0$ and $\langle (S^z)^2 \rangle = 2/3$, thus $\langle (S^z)^2 - 2/3 \rangle = 0$

Study this model in mean field approximation:

-What is the mean field hamiltonian acting on S^z and (S^z)²

-Write the partition function

-Magnetic order occurs at T_c and quadrupolar ordering at T_Q . Calculate T_c if $T_c > T_Q$; calculate T_Q if $T_q > T_c$ -Susceptibilities above T_c and T_Q :

- show that $Q \propto H^2$

-By an expansion in powers of H, M and Q, calculate χ_1 , χ_3 and χ_Q defined as: M = χ_1 H + χ_3 H³ and Q = χ_Q H² -Discuss the results

Introduce
$$Q_i = (S_i^z)^2 - 2/3$$
, $Q = \langle Q_i \rangle$ and $M = \langle S_i^z \rangle$

Mean-field hamiltonian :

$$H_{MF} = -\sum_{i} (H + zJM) S_{i}^{z} - \sum_{i} zJ_{q}Q((S_{i}^{z})^{2} - 2/3)$$

For each site: 3 energy levels

$$\begin{split} S_i^z &= 0 \ \Rightarrow \ E_0 = 2/3 \ zJ_q \ Q \\ S_i^z &= +1 \ \Rightarrow \ E_1 = - (H+zJM) - 1/3 \ zJ_q \ Q \\ S_i^z &= -1 \ \Rightarrow \ E_{-1} = + (H+zJM) - 1/3 \ zJq \ Q \end{split}$$

Partition function: $Z = (exp(-\beta E_0) + exp(-\beta E_1) + exp(-\beta E_{-1}))^N = Z_0^N$

Magnetization:
$$\langle S_z \rangle = M = \frac{1}{Z} (\exp(-\beta E_1) - \exp(-\beta E_{-1}))$$

Quadrupolar moment:

$$\langle Q \rangle = \frac{1}{Z} (-\frac{2}{3} \exp(-\beta E_0) + \frac{1}{3} \exp(-\beta E_1) + \frac{1}{3} \exp(-\beta E_{-1}))$$

Calculation of ordering temperatures:

-If $T_c > T_Q$: Q = 0 at T_c ; it is enough to make an expansion in M and H

 \implies T_c = 2/3 zJ

-If $T_Q > T_c$: M=0 at T_Q . Expansion in Q $\Rightarrow T_Q = 2/27 z J_q$

-If 2/3 zJ > 2/27 zJ_q, then magnetic ordering occurs at T_c, and eventually quadrupolar ordering at lower temperature -If 2/3 zJ < 2/27 zJ_q, it is the contrary

1st case : $J > J_q/9$

Magnetic ordering at T_c : M≠0, but then Q is also $\neq 0$

2nd case: J < $J_q/9$ Q≠0 at T_Q , and M≠0 at $T_c < T_Q$ 1

1st order transitions are also possible:

Susceptibility above the ordering temperatures:

$$M = \chi_1 H + \chi_3 H^3 + ... , Q = \chi_Q H^2$$

Expansion for small H:

$$\chi_{1} = \frac{C}{T - T_{c}}, \ \chi_{3} = -\frac{C'T}{(T - T_{c})^{4}} (1 + \frac{T_{Q}}{T - T_{Q}})$$
$$\chi_{Q} = \frac{C''}{T - T_{Q}} (1 + \frac{a}{T - T_{c}})$$

If no biquadratic interactions: $\chi_3 < 0$ and diverges at T_C. If $J_{\alpha} \neq 0$, then χ_3 may change sign

If T_Q > T_c : quadrupolar ordering is signalle by a divergence of χ_3 , not of χ_1