
1- Magnetic moments of U ions

Many Uranium compounds are mixed valence systems: the
valence state of U ions can be U3+, U4+ or a mixture of both
valence states. The atomic configurations are respectively 5f3

and 5f2.

-What are the values of L, S and J for each ion

-If one measures a Curie-like susceptibility, what are the
effctive moments in both cases? 

-Conclusion: is it easy to deduce the valence state of U from
the effective moment?  
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Conclusion: difficult to distinguish!



2- One-dimensional crystal field

Let 2 identical charges q be located at z = ± aon the z-axis. Write
the potential V(r) created by these 2 charges at a point M near the
origin. Expand V(r) for r/a Ü 1 and show that it takes the form: 
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If q < 0 : potential is repulsive if the electron is on z-axis

attractive if the electron is in the x-y plane

î Planar orbitals are favored



3 - The ground state of a Pr3+ ion (4f2) is characterized by S=1, 
L=5, J=4
A uniaxial crystal field will partially remove the degeneracy of the
ground state. The crystal field potential writes: Vc=V0Jz
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-How the energy levels are modified by the crystal field? What is
the ground state if V0 >0?  If V0 < 0?

-When applying a magnetic field along z-axis, how these levels
are modified in both cases? 

-If V0 >0 show that the magnetic field can induce a transition from
a non-magnetic GS (Jz=0) to a magnetic state (Jz≠ 0). What is the
value of the critical field?
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« Non-magnetic » ground state « Ising-like »

In a magnetic field: Zeeman splitting

E(Jz) = V0 Jz
2 – gµBH Jz

Degeneracy is lifted completely



Case  V0 > 0

Critical field Hc at which

E(Jz = 0) = E (Jz = 1)

At Hc, the ground state 
becomes magnetic (Jz = 1)
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At higher field: other transitions
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4- Helimagnetism: a 1D example

Consider a chain of (classical) magnetic moments 
with 1st and 2nd neighbor exchange: 

I2

i-2 i-1          i            i+1         i+2         i+3

I1

2+i
i

i21+i
i

i1 SSI - SSI-=E
rrrr ∑∑Energy: 

-Ground state for I1 and I2 >0 ? For I1 <0 and I2>0 ?

-General case : iiqR
qi eS=S
rr



I1 and I2 both >0: ferromagnetic state

I1 <0 and I2 >0: antiferromagnetic state

No frustration, all interactions are satisfied

If I2 <0, frustration is present: helimagnetic state
In helimagnet, each moment makes an angle φ with its neighbor

-By minimizing the energy, calculate the angle φ as a function of I1
and I2.
-Phase diagram on the plane( I1, I2 )



Energy:  E = - I1 cos φ - I2 cos2φ

∂E/ ∂φ = 0 î sinφ (I1 + 4 I2 cosφ) = 0

Solutions:

-φ = 0 ô ferro EF = -I1 –I2
-φ = πô antiferro EAF =  I1 –I2
- cosφ = - I1/4I2 ô helicoidal EH = I2 + 8I12/8I2

valid only if |I1/4I2| £ 1

Phase diagram: comparison of the 3 energies



The phase diagram:

- The helimagnetic state is stabilized in the frustrated region (J2 < 0)

- It is in general incommensurate with the lattice periodicity



General case: - interactions Jij between 1st, 2nd, 3rd ….
- Any kind of Bravais lattice (1 magnetic site per

unit cell)
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We restrict to solutions with only 1 q-vector (in fact at least q 
and –q): Energy is minimum at q0 for which J(q) is maximum

For the 1D case : J(q) = - I1 cos qa – I2 cos2qa. Show that the
solution is similar to the one found previously



Generally, there is 1 q0 (+ the equivalent
vectors ): the stable magnetic structure 
is well defined

In frustrated systems (Kagome and
pyrochlore):  one « flat branch » + 
several dispersive branches

(when several atoms per unit cell: nb of
branches = nb of magnetic sites in unit 
cell)



5- Magnetovolume effects: a simple model with 3 magnetic moments

` or c Triangle with Ising spins
If J < 0, frustration: 6 equivalent states

c`

If the triangle can deformed, the 3 
exchange interactions are different:

J1 = J0 - αε , J2 = J0 + αε’
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Show that a deformation decrease the GS energy



-Relation between ε and ε’ in order to keep a constant « volume »

-Write the total energy: magnetic + elastic

-Show that the deformation partially supress the frustration

-Constant surface: ε’ = ε/2

-Energy: E = -J1 S1S2 - J2S1S3 – J2 S2S3   + K(ε2 + 2ε’2)
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-1st case: | J1 | > |J2 | , i.e. αε > 0

To minimize E: satisfy J1 first î S1 = -1 , S2 = +1
or

-2nd case: | J1 | < | J2 |, i.e. αε < 0
To minimize E: satisfy J2 first: S1S3 = S2S3 î S1 = S2
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Stable configuration

(Same conclusion if no relation between ε and ε’)



6 – biquadratic interactions

Consider a lattice of S = 1 spins which have both bilinear and
biquadratic nearest neighbor interactions  of the form:
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This hamiltonian can model a system with quadrupolar interactions. 
At high T the 3 states Sz = 0, +1, -1 are equally populated; thus <Sz> = 
0 and <(Sz)2> = 2/3, thus <(Sz)2 -2/3> = 0

Study this model in mean field approximation:

-What is the mean field hamiltonian acting on Sz and (Sz)2

-Write the partition function

-Magnetic order occurs at Tc and quadrupolar ordering at TQ. 
Calculate Tc if Tc > TQ; calculate TQ if Tq> Tc



-Susceptibilities above Tc and TQ:

- show that Q µ H2

-By an expansion in powers of H, M and Q, calculate χ1,  χ3 and
χQ defined as:  M = χ1H +  χ3H3 and Q = χQH2

-Discuss the results
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Partition function: Z = (exp(-βE0) + exp (-βE1)  + exp (-βE-1))N =  Z0
N



Magnetization:
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Quadrupolar moment: 

) )Eβ-exp(3
1

+ )Eβ-exp(3
1

+ )Eβ-exp(3
2

-(Z
1

 =  Q 1-10

Calculation of ordering temperatures: 

-If Tc > TQ : Q = 0 at Tc; it is enough to make an expansion in M and H

î Tc = 2/3 zJ

-If TQ > Tc: M=0 at TQ . Expansion in Q
î TQ = 2/27 zJq

-If 2/3 zJ > 2/27 zJq , then magnetic ordering occurs at Tc, and
eventually quadrupolar ordering at lower temperature
-If 2/3 zJ < 2/27 zJq , it is the contrary



1st case : J > Jq/9

Magnetic ordering at Tc: Mπ0, 
but then Q is also π 0

2nd case: J < Jq/9

Qπ0 at TQ, and Mπ0 at Tc<TQ
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1st order transitions are also
possible:



Susceptibility above the ordering temperatures:

M = χ1 H + χ3 H3 + … , Q = χQ H2

Expansion for small H: 
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If no biquadratic interactions: χ3 < 0 and diverges at TC. If 
Jq π 0, then χ3 may change sign

If TQ > Tc: quadrupolar ordering is signalle by a divergence 
of χ3 , not of χ1


