1- Magnetic moments of U ions

Many Uranium compounds are mixed valence systems: the valence state of \mathbf{U} ions can be $\mathbf{U}^{3+}, \mathbf{U}^{4+}$ or a mixture of both valence states. The atomic configurations are respectively $5 f^{3}$ and $5 f^{2}$.
-What are the values of L, S and J for each ion
-If one measures a Curie-like susceptibility, what are the effctive moments in both cases?
-Conclusion: is it easy to deduce the valence state of \mathbf{U} from the effective moment?

$$
\begin{gathered}
L_{z}=-3,-2,-1,0,1,2,3 \\
g_{J}=1+\frac{J(J+1)+S(S+1)-L(L+1)}{2 J(J+1)}
\end{gathered}
$$

$$
\begin{aligned}
& S=1, L=5, J=L-S=4, g_{J}=4 / 5 \quad(\lambda<0) \\
& \mu_{\text {eff }}=g_{J} \sqrt{J(J+1)} \mu_{B}=3.58 \mu_{B}
\end{aligned}
$$

$S=3 / 2, L=6, J=L-S=9 / 2, g_{J}=8 / 11$
$\mu_{\text {eff }}=g_{J} \sqrt{J(J+1)} \mu_{B}=3.62 \mu_{B}$

Conclusion: difficult to distinguish!

2- One-dimensional crystal field

Let 2 identical charges q be located at $\mathrm{z}= \pm$ aon the z -axis. Write the potential $V(r)$ created by these 2 charges at a point M near the origin. Expand $V(r)$ for $r / a \ll 1$ and show that it takes the form:

$$
V(z, y, z)=D z^{2}
$$

$$
\begin{aligned}
V(r) & =\frac{q}{|A M|}+\frac{q}{|B M|} \\
A M= & \sqrt{x^{2}+y^{2}+(z-a)^{2}}, B M=\sqrt{x^{2}+y^{2}+(z+a)^{2}} \\
& z=r \cos \theta
\end{aligned}
$$

small x, y and $z: \frac{1}{A M}=\frac{1}{a}\left(1+\frac{r}{a} \cos \theta+\frac{r^{2}}{2 a^{2}}\left(3 \cos ^{2} \theta-1\right)\right)$
$V(r)=\frac{2 q}{a}+\frac{q r^{2}}{a^{2}}\left(3 \cos ^{2} \theta-1\right)$

If $\mathrm{q}<0$: potential is repulsive if the electron is on \mathbf{z}-axis attractive if the electron is in the $x-y$ plane
\Longrightarrow Planar orbitals are favored

3 - The ground state of a Pr^{3+} ion ($4 \mathrm{f}^{2}$) is characterized by $\mathrm{S}=1$, $\mathrm{L}=5, \mathrm{~J}=4$
A uniaxial crystal field will partially remove the degeneracy of the ground state. The crystal field potential writes: $\mathrm{V}_{\mathrm{c}}=\mathrm{V}_{0} \mathrm{~J}_{\mathrm{z}}{ }^{2}$
-How the energy levels are modified by the crystal field? What is the ground state if $\mathrm{V}_{0}>0$? If $\mathrm{V}_{0}<0$?
-When applying a magnetic field along z-axis, how these levels are modified in both cases?
-If $\mathrm{V}_{0}>0$ show that the magnetic field can induce a transition from a non-magnetic $G S\left(J_{z}=0\right)$ to a magnetic state $\left(J_{z} \neq 0\right)$. What is the value of the critical field?

« Non-magnetic » ground state

In a magnetic field: Zeeman splitting

$$
E\left(J_{z}\right)=V_{0} J_{z}^{2}-g \mu_{B} H J_{z}
$$

Degeneracy is lifted completely

Case $\mathrm{V}_{0}>0$

Critical field H_{c} at which $E\left(J_{z}=0\right)=E\left(J_{z}=1\right)$

At H_{c}, the ground state becomes magnetic ($\mathrm{J}_{\mathrm{z}}=1$)

$$
H_{c}=\frac{V_{0}}{g \mu_{B}}
$$

At higher field: other transitions

At $\mathrm{H}_{\mathrm{c}}{ }^{2}: \mathrm{J}_{\mathrm{z}}=2$ becomes the ground state

$$
\begin{aligned}
& H_{c}^{1}=\frac{V_{0}}{g \mu_{B}}, H_{c}^{2}=\frac{3 V_{0}}{g \mu_{B}}, \\
& H_{c}^{3}=\frac{5 V_{0}}{g \mu_{B}}, H_{c}^{4}=\frac{7 V_{0}}{g \mu_{B}}
\end{aligned}
$$

4-Helimagnetism: a 1D example

Consider a chain of (classical) magnetic moments with 1 st and $2^{\text {nd }}$ neighbor exchange:

-Ground state for I_{1} and $\mathrm{I}_{2}>0$? For $\mathrm{I}_{1}<0$ and $\mathrm{I}_{2}>0$?
-General case : $\vec{S}_{i}=\vec{S}_{q} e^{i q R_{i}}$
I_{1} and I_{2} both >0 : ferromagnetic state

$\mathrm{I}_{1}<0$ and $\mathrm{I}_{2}>0$: antiferromagnetic state

No frustration, all interactions are satisfied

If $\mathrm{I}_{2}<0$, frustration is present: helimagnetic state
In helimagnet, each moment makes an angle φ with its neighbor

-By minimizing the energy, calculate the angle φ as a function of l_{1} and I_{2}.
-Phase diagram on the plane $\left(I_{1}, I_{2}\right)$

Energy: $\mathrm{E}=-\mathrm{I}_{1} \cos \varphi-\mathrm{I}_{2} \cos 2 \varphi$ $\partial \mathrm{E} / \partial \varphi=0 \Longrightarrow \sin \varphi\left(\mathrm{I}_{1}+4 \mathrm{I}_{2} \cos \varphi\right)=0$

Solutions:
$-\varphi=0 \longrightarrow$ ferro $E_{F}=-I_{1}-I_{2}$
$-\varphi=\pi \longrightarrow$ antiferro $E_{A F}=I_{1}-I_{2}$
$-\cos \varphi=-\mathrm{I}_{1} / 4 \mathrm{I}_{2} \rightarrow$ helicoidal $\mathrm{E}_{\mathrm{H}}=\mathrm{I}_{2}+8 \mathrm{I}_{1}{ }^{2} / 8 \mathrm{I}_{2}$
valid only if $\left|l_{1} / 4\right|_{2} \mid \leq 1$

Phase diagram: comparison of the 3 energies

The phase diagram:

- The helimagnetic state is stabilized in the frustrated region $\left(\mathrm{J}_{2}<0\right)$
- It is in general incommensurate with the lattice periodicity

General case: - interactions J_{ij} between 1st, 2nd, 3rd

- Any kind of Bravais lattice (1 magnetic site per unit cell)

$$
\mathrm{H}=-\sum_{\mathrm{ij}} \mathrm{~J}_{\mathrm{ij}} \overrightarrow{\mathrm{~s}}_{\mathrm{i}} \cdot \overrightarrow{\mathrm{~s}}_{\mathrm{j}}
$$

Fourier transform : $\mathbf{S}_{\mathrm{i}}=\frac{1}{\sqrt{N}} \sum_{q} \mathbf{S}_{q} \mathrm{e}^{\mathrm{iqR}} \mathrm{R}_{\mathrm{i}}, \mathrm{Sq}=\frac{1}{\sqrt{N}} \sum_{\mathrm{i}} \mathrm{S}_{\mathrm{i}} \mathrm{e}^{\mathrm{iqR} R_{i}}$

$$
\mathrm{J}(\mathrm{q})=\frac{1}{\mathrm{~N}} \sum_{\mathrm{ij}} \mathrm{~J}_{\mathrm{ij}} \mathrm{e}^{\mathrm{iq}\left(\mathrm{R}_{\mathrm{i}}-\mathrm{R}_{\mathrm{j}}\right)}
$$

$$
H=-\sum_{q} J(q) S_{q} S_{-q}=-\sum_{q} J(q)\left|S_{q}\right|^{2}
$$

We restrict to solutions with only 1 q-vector (in fact at least q and $-q$): Energy is minimum at q_{0} for which $J(q)$ is maximum

For the 1D case: $J(q)=-I_{1} \cos q a-I_{2} \cos 2 q a$. Show that the solution is similar to the one found previously

Generally, there is $1 q_{0}$ (+ the equivalent vectors): the stable magnetic structure is well defined

In frustrated systems (Kagome and pyrochlore): one « flat branch » + several dispersive branches
(when several atoms per unit cell: nb of branches = nb of magnetic sites in unit
 cell)

5- Magnetovolume effects: a simple model with 3 magnetic moments

Triangle with Ising spins
If $\mathbf{J}<\mathbf{0}$, frustration: $\mathbf{6}$ equivalent states

If the triangle can deformed, the 3 exchange interactions are different:

$$
J_{1}=J_{0}-\alpha \varepsilon, J_{2}=J_{0}+\alpha \varepsilon^{\prime} \quad \alpha=\frac{\partial J(r)}{\partial r}
$$

Show that a deformation decrease the GS energy
-Relation between ε and ε^{\prime} in order to keep a constant « volume»
-Write the total energy: magnetic + elastic
-Show that the deformation partially supress the frustration
-Constant surface: $\varepsilon^{\prime}=\varepsilon / 2$
-Energy: $E=-J_{1} S_{1} S_{2}-J_{2} S_{1} S_{3}-J_{2} S_{2} S_{3}+K\left(\varepsilon^{2}+2 \varepsilon^{\prime 2}\right)$

Energy: exchange + elastic

$$
E=-\left(J_{0}-\alpha \varepsilon\right) S_{1} S_{2}-\left(J_{0}+\frac{\alpha \varepsilon}{2}\right)\left(S_{1} S_{3}+S_{2} S_{3}\right)+\frac{3 K}{2} \varepsilon^{2}
$$

-1 st case: $\left|J_{1}\right|>\left|J_{2}\right|$, i.e. $\alpha \varepsilon>0$
To minimize E: satisfy J_{1} first $\Longrightarrow S_{1}=-1, S_{2}=+1$ $E=\left(J_{0}-\alpha \varepsilon\right)+\frac{3 K}{2} \varepsilon^{2} \Rightarrow$ mimimum for $\varepsilon=\frac{\alpha}{3 K}$

$$
\Delta E=-\frac{a^{2}}{6 K}
$$

-2 ${ }^{\text {nd }}$ case: $\left|J_{1}\right|<\left|J_{2}\right|$, i.e. $\alpha \varepsilon<0$
To minimize E: satisfy J_{2} first: $\mathrm{S}_{1} \mathrm{~S}_{3}=\mathrm{S}_{2} \mathrm{~S}_{3} \Rightarrow \mathrm{~S}_{1}=\mathrm{S}_{2}$
$E=\left(J_{0}+2 \alpha \varepsilon\right)+\frac{3 K}{2} \varepsilon^{2} \Rightarrow$ mimimum for $\varepsilon=-\frac{2 \alpha}{3 K}$

$$
\Delta E=-\frac{2 \alpha^{2}}{3 K}
$$

Stable configuration

(Same conclusion if no relation between ε and ε^{\prime})

6 - biquadratic interactions
Consider a lattice of $\mathrm{S}=1$ spins which have both bilinear and biquadratic nearest neighbor interactions of the form:

$$
H=-J \sum_{i j} S_{i}^{z} S_{j}^{z}-J_{q} \sum_{i j}\left(\left(S_{i}^{z}\right)^{2}-2 / 3\right)\left(\left(S_{j}^{z}\right)^{2}-2 / 3\right)-H \sum_{i} S_{i}^{z}
$$

This hamiltonian can model a system with quadrupolar interactions. At high T the 3 states $S_{z}=0,+1,-1$ are equally populated; thus $\left\langle S^{z}\right\rangle=$ 0 and $\left\langle\left(S^{z}\right)^{2}\right\rangle=2 / 3$, thus $\left\langle\left(S^{2}\right)^{2}-2 / 3\right\rangle=0$

Study this model in mean field approximation:
-What is the mean field hamiltonian acting on S^{z} and $\left(S^{z}\right)^{2}$
-Write the partition function
-Magnetic order occurs at T_{c} and quadrupolar ordering at T_{Q}. Calculate T_{c} if $T_{c}>T_{Q}$; calculate T_{Q} if $T_{q}>T_{c}$

-Susceptibilities above T_{c} and T_{Q} :

- show that $\mathbf{Q} \propto \mathrm{H}^{2}$
-By an expansion in powers of H, M and Q, calculate X_{1}, X_{3} and X_{Q} defined as: $M=X_{1} H+X_{3} H^{3}$ and $Q=X_{Q} H^{2}$
-Discuss the results

Introduce $\quad \mathbf{Q}_{\mathbf{i}}=\left(S_{i}^{\mathbf{Z}}\right)^{\mathbf{2}}-\mathbf{2 / 3}, \mathbf{Q}=\left\langle\mathbf{Q}_{\mathbf{i}}\right\rangle$ and $\mathbf{M}=\left\langle\mathbf{S}_{\mathbf{i}}^{\mathbf{Z}}\right\rangle$
Mean-field hamiltonian :

$$
H_{M F}=-\sum_{i}(H+z J M) S_{i}^{z}-\sum_{i} z J_{q} Q\left(\left(S_{i}^{z}\right)^{2}-2 / 3\right)
$$

For each site: 3 energy levels

$$
\begin{aligned}
& S_{i}^{z}=0 \Rightarrow E_{0}=2 / 3 z J_{q} Q \\
& S_{i}^{z}=+1 \Rightarrow E_{1}=-(H+z J M)-1 / 3 z J_{q} Q \\
& S_{i}^{z}=-1 \Rightarrow E_{-1}=+(H+z J M)-1 / 3 z J_{q} Q
\end{aligned}
$$

Partition function: $Z=\left(\exp \left(-\beta E_{0}\right)+\exp \left(-\beta E_{1}\right)+\exp \left(-\beta E_{-1}\right)\right)^{N}=Z_{0}{ }^{N}$

Magnetization:

$$
\left\langle S_{z}\right\rangle=M=\frac{1}{Z}\left(\exp \left(-\beta E_{1}\right)-\exp \left(-\beta E_{-1}\right)\right)
$$

Quadrupolar moment:
$\langle Q\rangle=\frac{1}{Z}\left(-\frac{2}{3} \exp \left(-\beta E_{0}\right)+\frac{1}{3} \exp \left(-\beta E_{1}\right)+\frac{1}{3} \exp \left(-\beta E_{-1}\right)\right)$
Calculation of ordering temperatures:
-If $T_{c}>T_{Q}: Q=0$ at T_{c}; it is enough to make an expansion in M and H

$$
\Longrightarrow T_{c}=2 / 3 \mathrm{zJ}
$$

-If $T_{Q}>T_{c}: M=0$ at T_{Q}. Expansion in Q

$$
\Longrightarrow T_{Q}=2 / 27 \mathrm{zJ}_{\mathrm{q}}
$$

-If $2 / 3 \mathbf{z J}>2 / 27 \mathrm{zJ}_{q}$, then magnetic ordering occurs at T_{c}, and eventually quadrupolar ordering at lower temperature -If $\mathbf{2 / 3} \mathbf{z J}<\mathbf{2 / 2 7} \mathbf{z J} \mathrm{J}_{\mathrm{q}}$, it is the contrary

1st case : J> J $/$ /9
Magnetic ordering at \mathbf{T}_{c} : $\mathbf{M} \neq \mathbf{0}$, but then Q is also $\neq 0$

1st order transitions are also possible:
$2^{\text {nd }}$ case: $\mathrm{J}<\mathrm{J}_{\mathrm{q}} / 9$
$Q \neq 0$ at T_{Q}, and $M \neq 0$ at $T_{c}<T_{Q}$ $T_{c} \approx 2 z J \frac{1}{2+\exp \left(-\beta z J_{N} Q\left(T_{c}\right)\right.}$

$T_{c}=T_{Q}$

Susceptibility above the ordering temperatures:
$M=X_{1} H+X_{3} H^{3}+\ldots, Q=X_{Q} H^{2}$
Expansion for small H :

$$
\begin{aligned}
& X_{1}=\frac{C}{T-T_{c}}, X_{3}=-\frac{C^{\prime} T}{\left(T-T_{c}\right)^{4}}\left(1+\frac{T_{Q}}{T-T_{Q}}\right) \\
& X_{Q}=\frac{C^{\prime}}{T-T_{Q}}\left(1+\frac{a}{T-T_{C}}\right)
\end{aligned}
$$

If no biquadratic interactions: $X_{3}<0$ and diverges at T_{C}. If $J_{q} \neq 0$, then X_{3} may change sign

If $T_{Q}>T_{c}$: quadrupolar ordering is signalle by a divergence of X_{3}, not of X_{1}

