

1855-11

School and Workshop on Highly Frustrated Magnets and Strongly Correlated Systems: From Non-Perturbative Approaches to Experiments

30 July - 17 August, 2007

Mobile holes in frustrated quantum magnets

Didier Poilblanc Université Paul Sabatier, Toulouse, France

Mobile holes in frustrated quantum magnets

An Introduction

To be covered in the book chapter:

- Ordering phenomena at commensurate fermion densities on frustrated geometries
- Doping Quantum Dimer Models

OUTLINE

- Basic notions on frustration
 - Some frustrated lattices
 - Quantum disordered phases (VBC & spin liquids)
- Some doping issues Impurities and mobiles holes in VBC & spin-liquid hosts

The concept of frustration

For classical spins, one cannot minimize independently all bond (AF) interactions

Simple frustrated lattices

Reminder from previous lectures

Lattices of corner-sharing units

A lattice for theorists !

Corner-sharing tetraedras in 3D & 2D

The Kagome lattice

2D lattice of corner sharing triangles

Very high classical degeneracy !!

Quantum disordered phases

& Quantum Critical Point (QCP) scenario

VBC vs SL

Plaquette correlations in J1-J2-J3

$$C_{\mathsf{plaquette}}(p,q) = \langle Q_p Q_q \rangle$$

Plaquette operator $Q_{ijkl} = P_{ijkl} + P_{ijkl}^{-1}$ where P_{ijkl} cyclic permutation

Mambrini et al., PRB **74**, 144422 (2006) (Exact diag. 32 sites cluster)

Deconfined Critical Point

Beyond Ginzburg-Landau paradigm of phase transitions ! Senthil, Sachdev, Fisher et al.

Other proposal ...

Sandvik, Phys. Rev. Lett. **98**, 227202 (2007)

Melko & Kaul, arXiv:0707.2961

$$H_{\rm JQ} = J \sum_{\langle ij \rangle} \mathbf{S}_i \cdot \mathbf{S}_j - Q \sum_{\langle ijkl \rangle} (\mathbf{S}_i \cdot \mathbf{S}_j - 1/4) (\mathbf{S}_k \cdot \mathbf{S}_l - 1/4)$$

Doping frustrated magnets

Itinerant frustrated systems

 5d transition-metal pyrochlores as Cd₂Re₂0₇ or KOs₂O₆ Hanawa et al., PRL 87, 187001 (2001) Hiroi et al., JPSJ 73, 1651 (2004)

CoO triangular layer based compound Takada et al., Nature 422, 53 (2003)

All superconducting with T_c up to 13.7 K !

Some exotic phenomena in doped 2D frustrated quantum magnets - p.

Injecting a hole by ARPES

Kinetic frustration

t-J model not particle-hole symmetric => sign of t matters !

Confinement vs deconfinement

Two emerging length scales

Senthil et al.

Injected hole acts like a probe: bare and dressed wavefunctions

 $|\Phi_{\text{bare}}\rangle = c_{O,\downarrow} |\Phi_0\rangle$

Ground state of the Mott insulator

Remove a spin down at a given site O

Leaves behind a spin up polarization at a typical distance ξ_{AF} from site O

$$|\Phi_{\rm GS}
angle =$$
 "one impurity-one spinon" GS

 $\left< S_{i}^{z} \right>_{\rm GS}$ \implies Profile of spinon wavefunction

Spin density around a vacancy

 $\langle S_i^z \rangle$ at distance $\mathbf{r} = \mathbf{r_i} - \mathbf{r_O}$ from defect

Kagomé: deconfined Checkerboard: strongly confined

D.P. et al. PRB (2006)

Overlap (squared) $Z = |\langle \Phi_{gs} | \Phi_{bare} \rangle|^2$ zero or finite ?

> $Z_{
> m Kagome} = 0$ $Z_{
> m checkerboard} \simeq 1$

Dynamic hole (finite t) $\longrightarrow Z_{\mathbf{k}}$ $A(\mathbf{k}, \omega) = Z_{\mathbf{k}} \delta(\omega - \omega_{\mathbf{k}}) + A_{\text{inc}}$?

Single hole Green function

$$A(\mathbf{k},\omega) = \operatorname{Im}\{\langle \Phi_0 | c_{\mathbf{k}\uparrow}^{\dagger} \frac{1}{\omega + i\epsilon - H} c_{-\mathbf{k}\downarrow} | \Phi_0 \rangle\}$$

"Bare" wavefunction
(Bloch state)

Use Lanczos continued-fraction method

Hole dynamics: t-J model

Hole dynamics in the VB Solid

Single hole doped in a spin liquid

Summary / Conclusions

- Frustration + quantum fluctuations lead to exotic disordered GS (VBC, SL, ...)
- Possible realization of exotic physics (Deconfined Critical Points, etc...)
- The doping issue might reserve many surprises but needs further investigations