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Many-body physics and collective behaviour

Complementary fundamental questions:

• What are constituent elements of
matter, and their interactions?

⇒ High-energy physics

• Given a set of degrees of freedom and their interactions:
what is resulting collective behaviour?
⇒ Many-body physics and complexity
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Fluctuations and quantum dimer models

Fluctuations (thermal, quantum, . . .) destroy order.

⇒ what happens instead?

⇒ QDMs capture several aspects of new physics

Outline

• historical perspective: high-temperature superconductors

– spin liquids and fractionalisation

• quantum dimer models
– phase diagram

– liquidity and deconfinement
– topological order

• Outlook
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Background: short-range RVB physics

Basic problem of high-Tc: how do holes hop through an
antiferromagnetic Mott insulator on square lattice?
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Hole motion is frustrated:
hopping creates domain walls
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Possible resolution: magnet enters a different phase
resonating valence bond liquid phase

which breaks no symmetries. Neighbouring electrons form a

singlet (“valence”) bond, denoted by a dimer: | ↑↓〉 − | ↓↑〉 ∼
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The basic RVB scenario - electron fractionalisation

Energetics RVB Neel

single pair valence bond optimal

higher coordination energy from resonance ...each neighbour

hole doping motion unimpeded motion frustrated

————–

• Basic resonance move is that of benzene

• Removing an electron→ holon + spinon

spinon and holon are
deconfined

↓
(bosonic) holons can

condense
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The Rokhsar-Kivelson quantum dimer model

H
QDM

= t( )+v( )
H

QDM
= t( )+v( )

• Hilbert space: exponentially numerous dimer coverings

• Resonance (t) and potential (v) term from uncontrolled
approximation – one parameter: v/t

• RK point v/t = 1 is exactly soluble in d = 2 at T = 0:

|0〉 = 1√
Nc

∑
c |c〉 → 〈P̂ 〉 = 1

Nc

∑
c,c′〈c|P̂ |c′〉 = 1

Nc

∑
c pc

→ classical calculation for diagonal operators

• v/t > 1 and limits of v/t → −∞ give solid (staggered and
columnar, respectively) phases:
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The enemy: order by disorder

• Consider v = 0: only term in HQDM is kinetic term

• kinetic term gains energy from resonating plaquette:

=

• Maximal energy gain→ dense packing

• Dense packing→ crystallinity

• Crystallinity→ symmetry breaking: ‘order by disorder’

• Plaquette solid: only variational guess!
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Phase diagram for square and triangular lattices

1

staggered

staggered

RVB

0

columnar 12x 12

columnar columnar/plaquette
v/t

All phases on square lattice are confining RK; Sachdev; ...

Triangular lattice has bona fide RVB phase
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Liquidity and fractionalisation

• Removing an electron: holon (S=0) and spinon (q=0)

• Spinon and holons are deconfined: spin-charge separation
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Anything beyond conventional order and disorder?

Gas-crystal (e.g. rock salt):

Paramagnet-ferromagnet

Anything else???
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Liquidity and topological order

Topological order on surface of non-trivial topology (e.g. cylinder)

• Winding parity P with respect to cut
is invariant under action of HRK

⇒ P labels topological sectors

• Liquids locally indistinguishable ⇒
ground states |e〉, |o〉 degenerate for
L → ∞:
‘topological degeneracy/order’ Wen

• Unlike conventional order: degenera-
cy due to breaking of local symmetry
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Topological quantum computing Kitaev; Ioffe et al.

Topological protection: Use |P〉 = |e〉, |o〉 as q-bit Kitaev

• Liquids locally indistinguishable: Ee
N − Eo

N ∝ exp(−L)
⇒ local noise HN cannot lead to dephasing

• Proposal is scalable: many cuts in single chip

• Implementation as Josephson-junction array Ioffe et al.

• Problem: logic gates; non-local operations, ...
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A closer look at the square lattice

Orientation of dimers (from red to blue sublattice) is possible.

Analogy: dimer = flux !E
• Link with dimer→ flux !E = +3

• Unoccupied link→ flux !E = −1

• ∇ · !E = 0 → !E = ∇× !A = ∇× h

Vector potential !A in d = 2 is simple scalar (height h) Youngblood et al.
Mapping to height takes care of hardcore constraint→ we can
coarse-grain safely to get effective long-wavelength theory.

Sq =
∫

(∂τ h̃)2 − ρ2(∇h̃)2 − ρ4(∇2h̃)2 + λ cos(2πh̃)

Crucial: bipartitness⇒ height (U(1) gauge) theory
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Gauge theory for ice

• Define ‘flux’ vector field on links of the
ice lattice: Bi

• Local constraint (ice rules) becomes
conservation law (as in Kirchoff’s laws)

⇒ gauge theory

∇ · B = 0 =⇒ B = ∇× A

• Ice configurations differ by
rearranging protons on a loop

• Amounts to reversing closed loop of
flux B

• Smallest loop: hexagon (six links)

From ice to artificial electromagnetism



Long-wavelength analysis: coarse-graining

• Coarse-grain B → B̃ with ∇ · B̃ = 0

• ‘Flippable’ loops have zero average flux:

low average flux⇔ many microstates

• Ansatz: upon coarse-graining, obtain energy
functional of entropic origin:

Z =
∑

B

δ∇.B,0 →

∫

DB̃ δ(∇ · B̃) exp[−
K

2
B̃

2]

• Artificial magnetostatics!

• Resulting correlators are transverse and
algebraic (but not critical!): e.g.

〈B̃z(q)B̃z(−q)〉 ∝ q2
⊥/q2 ↔ (3 cos2 θ − 1)/r3.
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Bow-ties in the structure factor of ice

proton distribution in water ice, Ic Li et al.
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‘Quantum ice’: artificial electrodynamics

• Hilbert space: (classical) ice configurations

• Add coherent quantum dynamics for hexagonal loop:

HRK = −t



| 〉〈| | + h.c.



 + v



| 〉〈| | + · · ·





• Effective long-wavelength theory Hq =
∫

Ẽ2 + c2B̃2
Maxwell

• This describes the Coulomb phase of a U(1) gauge theory:
– gapless photons, speed

of light c2 ∝ t − v

– deconfinement

– microscopic model!
RKTF

0 18−

MF

‘staggered’confining phases Coulomb

v/t

• Artificial electrodynamics with ice as ‘ether’

From ice to artificial electromagnetism



Tutorial I: Winding number for bipartite lattices

• Orient each bond to point from
sublattice A to B

• Assign z − 1 units of flux to each
dimer, −1 unit to each empty link

• Show that the total flux crossing a
cut remains invariant under local
dynamics
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Tutorial II: Enumeration of dimer coverings

Define Grassman variables ηi on sites of square plaquette

• ηiηj = −ηjηi ;
∫

dη ηα = δα,1

• Show that the number of dimer coverings
equals:

Nd =

∫ 4
∏

k=1

dηk exp[
1

2
ηiAijηj] =

√

|det A|

where Aij = ±1 according to the direction
of the arrow between i and j.

4

1 2

3

Square lattice: define antisymmetric Ajk = 1 (i) if j is the left
(bottom) neighbour of k.
• How can the above formula be used to calculate Nd?

• This can be done generally for planar lattices (Kasteleyn’s thm)
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Tutorial III: Overlap matrix

A ‘transition graph’ is obtained by superposing two dimer
configurations, |i〉 and |j〉, and erasing all doubly occupied links.

• If a dimer stands for an SU(2) singlet, show that the overlap
is given by

Sij ≡ 〈i|j〉 =
∏

α

2xLα

where the product runs over all loops in the graph, and Lα

is the length of a loop.

• Show that the {|M〉} with M = 1 . . . Nd

|M〉 =
∑

i

(S−1/2)Mi|i〉

form an orthonormal set (if S is invertible).
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