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Abstract.

Comparative neuroanatomy suggests that the CA3 region of the mammalian hippocampus is
directly homologous with the medio-dorsal pallium in birds and reptiles, with which it largely
shares the basic organization of primitive cortex. Autoassociative memory models, which are
generically applicable to cortical networks, then help assess how well CA3 may process
information and what are the crucial hurdles it may face. The analysis of such models points at
spatial memories as posing a special challenge, both in terms of the attractor dynamics they can
induce and of how they may be established. Addressing such challenge may have favoured the
evolution of elements of hippocampal organization observed only in mammals.



1. Introduction: a comparative perspective

The forebrain of vertebrates shows remarkable morphological variation and specialized
adaptations, presumably related to differences in environment. Yet, in all species, part of the brain
apparently is involved in the formation of map-like representations of the environment. The need to
localize distributed resources such as food, shelter and so on is an essential component of the
evolutionary success of freely moving species. It is quite likely that the formation of map-like
representations strongly depend on the potential to generate relational representations of
environmental features (of course, in order to navigate, animals do not simply rely on these
relational maps between landmarks, but also make use of e.g. idiothetic cues).

In all species studied, including teleost fish, amphibians, reptiles and mammals, relational
representations are mediated by structures in the brain that embryologically derive from the most
medial part of the telencephalic anlage (Rodriguez et al., 2002). In mammalian species, this
derivative is called the hippocampal formation and it is of interest that a correlation apparently
exists between the volume of the hippocampal formation and successful spatial performance. It is
therefore not surprising that the mammalian hippocampal formation is considered to represent one
of the phylogenetically oldest cortical areas. Comparative neuroanatomical studies, in conjunction
with embryological studies as well as data on gene expression patterns have indicated that the
hippocampal formation in mammals most likely is homologous to parts of the medial cortex in
reptiles (Ulinsky, 1990, Lopez-Garcia and Martinez-Guijjaro, 1988, ten Donkelaar, 2000). The
hippocampal formation originates from a dorsomedially positioned anlage in the developing brain
which shows a gross overall similarity with the dorsomedial cortex in reptiles (Stephan, 1975). In
birds, the cortex of the medial surface of the pallium merges with more ventrally located pallial
structures such that the apparent typical layered structure of the cortex no longer is apparent.

The overall wiring of the mammalian hippocampal formation (Amaral and Witter, 1989) will not
be reviewed here. Suffice it to note that, both with respect to its extrinsic as well as its intrinsic
connections, it shows remarkably strong similarities even when such different species as the mouse
and monkey are compared. This indicates that there may be some ecological benefit for this
stabilized connectivity. In order to gain insight into the functional relevance of this particular
organization of the hippocampal system, only a few approaches are at hand. Either we test the
effects of loss of parts of the system, for example in lesioned animals (Kesner et al, 2002), or we
adopt computational modeling approaches, in which, at the cost of many necessary simplifications,
network organization can be varied at will. Both approaches have to be informed by an appreciation
of the organization of homologous structures in non-mammalian species of vertebrates, which
indicates which changes and refinements may have been driven by evolutionary pressures.



2. The medial pallium in reptiles and in birds
2.1. Structure and connectivity of the mediodorsal cortex of reptiles.

The cortex in reptiles is generally divided into mediodorsal cortex, dorsal and lateral cortex. The
mediodorsal cortex is further subdivided into a small-celled part and a large-celled one, also
referred to as medial and mediodorsal cortex (Fig.1a,b). Like the cortex that makes up the
mammalian hippocampus, within the reptilian cortex three different layers are distinguished, an
outer molecular layer, the cell layer, and, bordering the underlying white matter, the polymorph
layer (Fig.1d). In general the small celled portion of the reptilian cortex is considered to be
comparable to the dentate gyrus of the mammalian hippocampus. The large celled part is taken to
be comparable to the CA-fields, but in reptiles no further subdivisions have been distinguished, for
example between a CA3-like and a CA1-like region.

Neurons in the small celled portion are pyramidal or spherical, with an average diameter of about
6-18 um. They are closely packed and extend dendrites into the molecular layer as well as into the
polymorph layer. Similar to what is seen in the dentate gyrus in mammals, a majority of the
dendrites do extend into the molecular layer and the first bifurcation is close to the soma. In
contrast to the mammalian situation though, the cell types appear to be more variable, such that a
total of 6 different cell types have been described within the cell layer, of which only some
contribute to projections targeting adjacent portions of the cortex, mainly to the large celled part of
the mediodorsal cortex (Wouterlood,1981; Olucha et al., 1988). These projections are strongly
Timm positive, stikingly similar both morphologically as well as in terms of overall distribution to
the mossy fiber projection in mammals (Olucha et al., 1988; Lopes Garcia and Martinez-Guijaro
1988). Although not much is known about the different local circuitry neurons in the reptilian
brain, neurons have been described in both the molecular layer and the deep polymorph layer.

The cell layer of the large celled portion comprises mainly one cell type, which shows a polygonal
or pyramidal shape, with large apical dendrites extending into the molecular layer as well as basal
dendrites extending into the polymorph layer and adjacent white matter. Short basal dendrites
extend from the soma parallel to the cell layer. Additional neurons in the molecular and polymorph
layer have been described as well (Wouterlood, 1981, ten Donkelaar, 2000). Note that in several
mammalian species, the anterior (supracallosal) continuation of the hippocampus, indusium
griseum and tenia tecta (considered the olfactory hippocampus) shows similarities to the lizard
medial cortex, where the dentate and CA fields form a continuous sheet of cells with two
morphologies, granule and pyramidal (Stephan, 1975; Wyss and Sripanidkulchai 1983; Shipley and
Adamek, 1984; Kunzle 2004). Projections distribute widely in the cortex, including a return
projection to the small celled part. Most notably, widespread dense intrinsic projections have been
described distributing both to apical as well as basal dendrites, reminiscent of the associative
connectivity in the mammalian CA3 (Hoogland and Vermeulen-Vanderzee 1993; Olucha et al.,
1988).

2.2. Structure and connectivity of the dorsomedial telencephalon of birds.
In birds, the dorsomedial telencephalon is considered the homologue of the hippocampal region of

mammals. However, a detailed comparison between subdivisions of the avian and mammalian
hippocampus, and even between birds and reptiles, is still speculative. According to the detailed



descriptions of Ariens Kappers et al (1936), there is a layered cortical structure that might be
considered the avian hippocampus and parahippocampal region. In the chicken, the dorsomedial
cortex comprises a superficial plexiform layer, a granular layer and a periventricular or polymorph
layer (Molla et al., 1986). Interestingly, according to the latter authors, the cells in the granular
layer are pyramidal or bipyramidal cells, similar to what has been reported for the mediodorsal
cortex in a number of reptilian species. On the basis of afferent and efferent connections, it can also
be argued that the dorsomedial telencephalic area in birds is comparable to the hippocampal
formation and parahippocampal region in mammals (see Dubbeldam 1998 for a review).

Figure 1. The reptilian and avian forebrain and the generic cortical architecture of autoassociative
memory networks. Partial cross sections through cerebral emispheres of a crocodile (a), a lizard (b)
and a zebra finch (¢). Pyramidal cell positioned in phylogenetically ancient layered cortex (d) and
autoacciative network based on plastic recurrent connections (e). Abbreviations (by panel): D,
dorsal; DM, dorso-medial; M, medial; LC, large celled; SC, small celled; HP, hippocampus; V,
ventricle; cl, cell layer; ml, molecular layer; pl, polymorph layer; aff, afferent connections; inh,
(feedforward and recurrent) inhibition; rc, recurrent connections. (a), (b) and (d) redrawn from
Gloor (1997); (c) from Sadananda (2004).

Two issues appear relevant here. First, the question arises whether or not in birds, hippocampal and
parahippocampal subdivisions are apparent that show cytoarchitectonic and/or connectional
similarities to those described in mammals; and second, it is of interest to assess whether the typical
unidirectional connectivity seen in the mammalian hippocampal system is present in birds.
Unfortunately, staining the avian brain for the distribution of Zinc with the Timm stain, which in



mammals and reptiles stains the projection from neurons in the granular cell layer to a group of
large pyramidal cells, does not provide useful clues. In birds the Timm stain only results in rather
diffuse and weak staining (Faber et al., 1989, Montagnese et al., 1993, 1996).

A case of mistaken identity?

Two recent studies addressed both issues by studying the connectional organization of the
dorsomedial telencephalic domain of the pigeon in much detail (Kahn et al., 2003; Atoji and Wild
2004). Both studies describe, within this part of the avian brain, a V-shaped ventral medial region,
subdivided into a lateral and medial blade of neurons which enclose an area called central or
triangular region (cp. Fig.1c). This ventral region is bordered more dorsally by an area referred to
as dorsomedial cortex, followed by a more dorsolaterally positioned dorsolateral cortex. Both
follow the original descriptions of Karten and Hodos (1967), supplemented with neurochemical
patterns as described by Erichsen et al (1991). On the basis of the connectional data, both papers
describe a series of connections comparable to the mammalian trisynaptic circuit. Unfortunately,
the results lead Kahn et al (2003) to suggest that the ventral domain is comparable to CA1, similar
to suggestions based on anterograde tracing in the zebra finch (Székely and Krebs 1996), whereas
Atoji and Wild (2004) suggest that this region actually represents the dentate gyrus. In terms of
position and shape the suggestion that the ventral region actually is the “dentate” of the avian brain
is the more apparent one (see also Atoji and Wild, 2006); however, no clear conclusions can be
stated here at this point in time. Moreover, both in birds and in reptiles, the dorsomedial cortex
issues projections to the lateral septum, similar to what is reported for CA3 and CA1 in mammals.
Irrespective of whether the ventral of dorsomedial areas should be considered the homologue of the
mammalian dentate gyrus, neither of the connectional studies indicate that in the avian brain
unidirectional connections of one cortical area to another are present that form large, Zinc-positive
terminals that may function as detonator synapses, as proposed for the synapses on the mossy fibers
to CA3 cells in mammals (Andersen, 1962). In all reports, bidirectional connections are in fact
predominant.

Physiology and plasticity of the avian hippocampal formation

In comparison to the vast amount of neurophysiological data in mammals, there are relatively few
studies analyzing the activity of neurons in the avian hippocampal formation, and they point at
broad similarities with the spatially selective activity of mammalian hippocampal neurons. These
similarities are consistent with the intensely studied role of the avian hippocampus in episodic and
spatial memory (Krebs et al., 1989; see the discussion by Clayton et al., 2003; Healy et al, 2007).
As reviewed by Bingman and Sharp (2006), location specific cells, “arena-off” cells and path cells
have been described in the pigeon hippocampus, and even some putative “grid-like” cells.
Recordings have also revealed the presence of oscillatory activity, in birds, similar to the theta
rhythm of rodents, though slower (Siegel et al., 2000). Different cell types, however, could not be
reliably localized to distinct subdivisions within the hippocampus (see Hough and Bingman, 2004),
or to a distinct layer within a subdivision, with only some distinction based on electrophysiological
cell properties, perhaps corresponding to principal cells and interneurons (Siegel et al., 2002). Units
in the ventral regions might tend to be similar in spike width and frequency to the pyramidal cells
of CA regions in the rat, while units in the dorsocaudal region might be more similar, in terms of
firing pattern, to the granule cells of the mammalian DG, perhaps in support of the conclusions of
Kahn et al (2003). If anything, there is clearer evidence for lateralization, e.g. path cells are found
on the left side, and location specific cells show more prominent selectivity on the left (Siegel et al.,
2006).



Forms of synaptic plasticity potentially involved in learning and memory such as LTP and LTD
have also been discovered in the avian brain (Scott and Bennett, 1993, Wieraszko and Ball, 1993,
Margrie et al, 1998). There is also evidence for the formation of new synapses after training (Unal
et al., 2002), as well as considerable long-standing evidence for neurogenesis, which antedates
parallel evidence more recently found in mammals. Nevertheless, in contrast to the extensive
literature available for rodents, synaptic plasticity has not been described in subregional detail.

Homology and beyond

In conclusion, our current understanding does not allow us to draw firm conclusions concerning
structures in the avian brain that would represent the mammalian dentate gyrus, despite the
homology between the overall ‘hippocampal region’ in the two lineages (Colombo and Broadbent,
2000). Importantly, some aspects of the connectivity are quite different, leading one to doubt the
relevance of forcing a correspondence at the subregional level, given hundreds of million years of
separate evolution (Striedter, 2005). The salient exception is that, as for the reptilian one, the avian
hippocampus appears to retain a connectional system comparable to the autoassociative system of
the mammalian CA3 field (Fig.1e). This suggests that a fundamental associative memory function
of the primitive cortex (Braitenberg and Schiiz, 1991) may have been largely preserved in all
amniotes, based on its recurrent architecture and associative synaptic plasticity, though perhaps
made more complex and powerful in different ways in reptilian, in avian and in mammalian
derivatives. This simplifying perspective, that regards the CA3 field as part of the common
amniotic heritage, and DG and CA1 as novel mammalian concoctions (although with similarities,
particularly in the distribution of Zinc, with reptiles) informs the computational analyses described
next.



3. The CA3 region as an autoassociative memory

David Marr (1971) brilliantly synthetized ideas about the role of the hippocampus in memory
formation, which he may have subsumed, but indirectly, from neuropsychological studies, and took
them as the starting point to understand the organization of hippocampal circuits. This ‘structure-
from-function’ theoretical research program has been enormously influential, even though the
details of his modeling approach are difficult to appraise. For example, Marr eloquently
emphasized, in words, the “collateral effect” i.e. the potential role in pattern completion of
recurrent connections, prominent among CA3 pyramidal cells (Amaral et al, 1990); but his own
model was not really affected by the presence of such collaterals, as shown later by careful meta-
analysis (Willshaw and Buckingham, 1990). Marr thought in terms of discrete memory states, and
devoted an entire section of his paper to ‘capacity calculations’, which indicates that he realized
how an estimate of the maximum number of activity patterns retrievable from a memory network
could be a central contribution of mathematical models. The simple model he considered, with
binary processing units and binary synaptic weights, is endowed with the capacity to retrieve up to
Ppe patterns, where p. (aca)” « 1, and aca is the activity level of CA pyramidal units, i.e. the fraction
of units active in a pattern (which generalizes to the sparsity parameter for non binary patterns).
Marr stated that with an activity level aca = 0.001, the hippocampus could store and retrieve of the
order of p. =~ 100,000 memories, which he reckoned was a reasonable number, at least for a
temporary memory store. Those ‘doubly binary’ models cannot be easily related to real CA3
neuronal networks, however, and even if they were, the observed mean sparsity acas = 0.03-0.04
(see e.g. Papp and Treves, 2007) would lead to a rather dismal capacity of about p. = 100 patterns.
Although the paper by Marr was nearly simultaneous with the discovery of place cells (O'Keefe
and Dostrovsky, 1971) and with that of long term synaptic potentiation (Bliss and Lemo, 1973;
cited as a note added in proof) for a long time Marr did not seem to inspire further theoretical
analyses - with the exception of an interesting discussion of the collateral effect in a neural network
model (Gardner-Medwin, 1976).

3.1. The Dentate Gyrus as a generator of CA3 activity

With their 1987 review, McNaughton and Morris re-examined and revived the Marr framework,
discussing several ‘Hebb-Marr’ associative memory model architectures and whether they
resembled hippocampal networks. The operation of such models of attractor networks (Amit,
1989) can be more readily analyzed if the memory patterns to be stored are assigned "by hand’,
rather than self-organized under the influence of on-going inputs. One can imagine that a system of
strong one-to-one connections from another area may effectively ‘transfer’ a pattern of activity
from the other area, where it is determined by some unspecified process, to the associative memory
network. McNaughton and Morris (1987) took the strong “detonator” synapses on the MF
projections from DG to CA3 (Andersen, 1962) as an approximate implementation in the real brain
of such one-to-one connections. The distributions of activity to be stored in memory would be
effectively generated in DG, perhaps by expansion recoding (as hypothesized for granule cells in
the cerebellum) and then simply transferred to CA3.

As clarified by Treves and Rolls (1992), for the dentate gyrus to ‘impose’ a novel pattern of activity
onto CA3, it need not transfer its own, and one-to-one connections are not necessary: they would
not be very explanatory either, in that they would simply anticipate the question of how to generate
an appropriate pattern of activity back to DG, rather than resolving it. What matters, instead, is that
the MF synapses be strong, sparse, and conveying sparse activity from DG. This is sufficient to



effectively select a limited ensemble of CA3 cells to represent a new memory, unrelated to
ensembles which are co-activated in other, previously stored memories, and which would tend to be
reinstated by the collateral effect. The competition between the MF projections, forcing a novel
ensemble, and the recurrent connections, reinstating fragments of previously stored ones, is a
quantitative balance, which has to be shifted towards the MF inputs only when the system is in
‘storage mode’.

When retrieving a previously stored memory representation, the input to the recurrent network has
to relay a cue, expressed as a pattern of activity on the afferent fibers correlated with the pattern at
the time of storage of a particular memory. Simple algebra shows that such correlation tends to be
washed away unless the afferents make many associatively modifiable synapses onto each
receiving cells, synapses that have to be modified during storage (Treves and Rolls, 1992). The
CA3 region would then work better as a recurrent associative memory, implementing pattern
completion thanks to the collateral effect (Rolls, 1989), if it had two separate afferent systems: one
particularly strong at the time of storage, relaying sparse activity, and possibly weak at retrieval —
which can be identified with the mossy fibers — and one relayed by many synapses, highly plastic
but weak during storage, and transmitting at retrieval — to be identified with the perforant path.

The argument requires DG activity to be sparse or moderately sparse (values of apg = 0.1 or 0.02
produce nearly identical results in the mathematical model) but it does not constrain further the
form of granule cell activity, e.g. in its spatial correlates. It does predict, however, that since the
useful role of the ‘duplicated’ DG input is only in establishing new CA3 representations, lesioning
DG or blocking MF transmission should have no effect on memory retrieval. The prediction is so
far consistent with behavioral results obtained in two independent experimental approaches
(Lassalle et al, 2000; Lee and Kesner, 2004).

3.2. The function of neuromodulation

A selective modulation of the activity (and plasticity) of specific synaptic systems may be effected
by acetylcholine (ACh), exploiting the orderly arrangement of pyramidal cell dendrites in the
cortex, which allows for differential action on the synapses distributed in distinct layers (Hasselmo
et al., 1994). Acetylcholine is one of several very ancient neuromodulating systems, well conserved
across vertebrates, and it may have operated in this way already in the early reptilian cortex,
throughout its subdivisions. Hasselmo has emphasized this likely role of ACh in memory, with a
combination of slice work and neural network modeling (Hasselmo et al., 1995, 1996). This work
has been focused on the hippocampus - originally, the medial wall - and on piriform cortex -
originally, the lateral wall. The proposed mechanism, however, has no reason to be circumscribed
to these regions, and it could well operate across cortical systems involved in memory storage. A
drawback of relying on ACh modulation alone is that it requires an active process that distinguishes
storage from retrieval periods, and regulates ACh-release accordingly. Combining ACh modulation
with MF orthogonalization may allow the hippocampus to operate efficiently also during behaviors,
such as exploration, when storage and retrieval are perhaps largely admixed. In addition, the more
complex circuitry allows for further neuromodulatory control, e.g. through dopamine release
(Kobayashi and Suzuki, 2006). In refining the architecture of the hippocampus, therefore, it could
be that mammals have devised a more efficient memory process, which augments rather than
replacing the earlier one based on neuromodulation.



3.3. Quantitative analyses of storage capacity

Such a hypothesis leads to predict quantitative rather than qualitative effects for most
manipulations, and hence it has to be articulated in terms of network models that allow quantitative
measures. Unfortunately the rudimentary binary-synapse model considered by Marr (1971) does
not allow a meaningful correspondence with experimental measures, as indicated by the many
predictions at the end of his paper, which have remained untested. The associative memory model
introduced by John Hopfield (1982), on the other hand, proved suitable for a theoretical
breakthrough when it was analyzed by Amit, Gutfreund and Sompolinsky (1987). They were able
to calculate its storage capacity by applying mathematical techniques from statistical physics,
which could later be applied to biologically more plausible versions of the model. The generic
result is that a network with C recurrent connections per unit can retrieve, i.e. complete, up to

1e~0.2-0.3 Clla In (1/a)], (1)

patterns of activity, where a is their sparsity value (in the sparse, a << 1 regime; see Treves and
Rolls, 1991). Each such representation can contain at least

i=Naln (1/a) bits )

of new information, where N is the number of units. This leads to a maximum total amount of
information, cumulating the contribution of all memory patterns, which is proportional to the
number of synapses NC, and which does not depend much on sparsity

Imax = 0.2-0.3 N-C bits. 3)

Efficient use of the retrieval capacity of the CA3 recurrent network requires that its pyramidal units
encode as much new information in a pattern of activity as the amount, estimated in Eq.(2), which
can be later retrieved; just as efficient use of cash lending machines requires one to deposit in the
corresponding account the wherewithal, that one wants later to withdraw. The challenge for
afferent inputs is then to prevail during storage over the recurrent connections, which do not impart
new contents to a pattern of activity to be stored, but to let them carry out pattern completion at
retrieval. Analytical estimates, derived for a simple model with discrete attractor states (Treves and
Rolls, 1992), suggest that this challenge can be met by afferent inputs with the characteristics and
strength of the mossy fibers (Mori et al, 2007), but not by those, conveyed by the perforant path to
CA3, relayed by synapses which are presumably similar to recurrent synapses, but fewer in
number. To make full contact with recordings of CA3 activity, however, the argument has to be
generalized and applied to models in which CA3 units encode spatial representations, not just
discrete attractor states.



4. CA3 as a memory store for spatial ‘charts’

Initially, the quantitative neural network analyses cited above had been formulated in terms of fully
connected recurrent architectures and discrete memory states, conceived - in the limit of no
fluctuations - as points in a multidimensional space, in which each component corresponds to the
firing rate or in general to the activity of one unit (Hopfield, 1982). Thus, the salient spatial
character of hippocampal memory correlates was provisionally neglected, to take advantage of the
formal models based on discrete attractor states. The very same autoassociator architecture,
however, may subserve both the storage of discrete memories as point-like attractor states, or of
more complex memories, including continuous attractors, when network dynamics converges to
fixed points which are not isolated, but continuously arranged on one or more low-dimensional
manifolds embedded in the high—dimensional activity space. Simple examples of continuous
attractors are present in models of orientation selectivity by horizontal interaction in visual cortex
(Sompolinsky and Shapley, 1997) or of the head direction system (Skaggs et al., 1995). These
models do not store information in long term memory, and their fixed points comprise a single (in
these particular cases, 1D) manifold. Samsonovich and McNaughton’s multiple chart model (1997)
demonstrated instead, in the context of a model for path integration, how one could conceive of
fixed points organized in multiple 2D continuous manifolds, each of which maps the animal’s
position in a distinct environment.

4.1. Context discrimination and exact localization from CA3 activity

The model conceptually distinguishes two types of information that can both be extracted from
CA3 activity: context discrimination (“which chart does the current activity pattern belong to?”’)
and exact localization within a context (“where in the chart?”’). The distinction may be fuzzier for
an animal, who navigates among a succession of local contexts without clear boundaries, but it is
very helpful at a theoretical level. For both types of information, part may be present, at any given
time, in the inputs to CA3, and part may be retrieved there through pattern completion. Path
integration, and the predictive coding of future locations, to the extent that they are implemented
within CA3, can be conceptualized as continuously sliding activity within the manifold spanned by
a single chart; whereas the retrieval of the current context from partial cues corresponds to chart
selection, i.e. to pattern completion in a slightly more general sense, in which the attractor is a full
chart (Fig.2A).

Within a chart, population activity on the surface of this attractor can therefore be conceived in a
form of a “"bump", and it is then the position of the bump that codes for the position of the animal
(Fig.2B). On the surface of strictly continuous attractors there is no resistance to drift, hence
population activity is only marginally stable: a bump smoothly follows any variation of the input
signal.

Individual cells may not be responsive anywhere on a chart, or they may have the characteristic
place fields. Sharp (1991) demonstrated, using a simple neural network model with only a generic
resemblance to hippocampal networks, how place cell-like responses could arise from the
association of different local views, and how the direction-dependent place fields typical of 1D
environments may become direction-insensitive in 2D through such associational mechanism.
Place fields per se arise in networks of different architecture and plasticity, which are made to
process spatial information (Burgess and O’Keefe, 1996; Treves et al., 1992; Zipser, 1985), so their
mere appearance does not usefully constrain hypothetical hippocampal operations. Their relative
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quality, however, can give important insight on these operations, particularly as concerns exact
localization within a context. One can assess the quality of place fields directly, e.g. visually from
firing rate maps but, for a quantitative appraisal of how encoding quality translates into network
function, it is convenient to assess it in terms of localization measures.

As shown by Wilson and McNaughton (1993), one can easily decode, with reasonable accuracy,
the position of the rat in a recording box, from a sufficient number of simultaneously recorded
units. One constructs firing rate vectors at any time ¢, as vectors {r,(f)} where each component 7; is
the firing rate of one unit; then one may simply average all vectors expressed when the rat is in
position (x,)), to extract a ‘template’ or mean vector {r,(x,))}; and finally by finding the best match
for a vector at time # among all templates, one can assign a decoded position to time 7. More
sophisticated procedures yield somewhat better performance. The very same decoding procedure
can be applied to data obtained by simulating simple network models. Moreover, if a rat, real or
simulated, has explored several environments, one may measure both the accuracy of decoding its
position in each environment, and of decoding which environment the rat is in, both with the same
procedure and using multiple sets of templates, one per environment.

4.2. Fractured attractors tend to collapse

The mathematical analysis of attractor states applies, strictly speaking, only to networks with
infinitely many cells, whose place fields are arranged with infinite regularity to tile each chart. In
this limit case there is no resistance to drift on the surface of a continuous attractor. This also
implies that such attractors are susceptible to noise, which would push a bump away from its
coding location. In a real system, however, besides noise there are also several sources of disorder:
even when there is only one map in memory, disorder arises from the finite size of the system, from
the partial connectivity, from non-exact assignment of connection weights, etc. It was pointed out
by Tsodyks and Sejnowski (1995) that the continuity of a 1D ‘ring’ attractor would be broken
already by the moderate irregularity associated with assigning units to code random positions along
the ring, instead of equally spaced positions. In statistical physics terms, the free energy is not quite
constant along the ring: it has valleys at slightly lower levels where the units happen to be more
concentrated; so that the network relaxes its activity in one of the discrete states at the bottom of the
valleys, rather than being indifferently movable anywhere on the ring. To stabilize network activity
at arbitrary positions requires, for example, supra-linear activation functions (Stringer et al, 2002a)
of the type that might be implemented by NMDA-receptor currents (Lisman et al., 1998). The same
phenomenon manifests itself in a different fashion if one attempts to create a continuous 1D
attractor not on a ring, which has no boundary, but on a linear segment, which has two extreme
points. If equally spaced patterns are stored through a standard ‘Hebbian’ learning rule, they need
to be encoded with different weights, heavier at the extremes, otherwise the extremes collapse onto
the median point (Blumenfeld et al., 2006).

With 2D would-be continuous attractors, the relevant case for the chart model, the effects of
inhomogeneity in the distribution of place field centers and of boundary conditions are much
stronger than in 1D. Even with networks of considerable size, to establish reasonably smooth 2D
attractors, such that activity can settle at almost arbitrary positions, one needs special learning rules
(Kali & Dayan, 2000) or external factors such as position-dependent threshold (Stringer et al.,
2002b) or gain modulation (Roudi & Treves, 2006). As a result, a bump, without further sensory
input, would slowly drift away from its coding location and stabilize in a local or in the global
minimum of the free-energy surface (Hamaguchi et al., 2006). This drift may, however, be much
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slower than pattern completion. That is, efficient coding of a position is possible on the timescale
between the attraction to the surface and before the bump drifts away by a reasonable amount
(Fig.2A). Interestingly, since the bump is sustained by the attraction to the surface, the bump does
not disintegrate. When more then one chart is stored, disorder is increased. Attractor "collapse’ is
then accelerated slightly at each extra chart added. Close to storage capacity, suddenly all charts
become unstable, that is, bumps drift away very fast, pattern completion may occur to ‘wrong’
charts and, finally, no convergence is observed at all. Interestingly, such malfunctions may occur
independently for different locations in an environment, thus part of a chart may be recalled
perfectly, while another part may be lost. These effects may be very difficult to assess in the real
hippocampus, which normally operates under the influence of afferent inputs. Unless one designs
ad hoc experiments to let place cell activity sustain itself (Jarosiewicz and Skaggs, 2004), it is much
easier to understand the issue by studying retrieval dynamics through network simulations.

0 20 400 800 1200 1600
time (timesteps)

e ~— n H . . . .
0 20 400 800

20 400 800 1200 1600 1200 1600
time (timesteps) time (timesteps)

Fast attraction
to the attractor
surface
Very slow collapse to few
final attractor states

0

D

0757

05 1

Overlap with original pattern

0.25 7

Figure 2. Continuous attractors in theory and in practice. A) Continuous attractors allow for rapid
pattern completion, similar to that of discrete ones. As a result, a bump of activity forms on an
attractor surface, to codes for position in the corresponding environment. As shown by the green
arrows, the metrics of real space is conserved during pattern completion: similar inputs cause bump
formation on nearby locations on the attractor. Theoretically continuous attractors in practice
contain privileged spots, which in the absence of ongoing input act as discrete attractors and
‘attract” bumps from their vicinity. In a small system, this effect can take the form of a complete
attractor collapse. The timescale of pattern completion and that of drift or collapse can however be
separated. B) Sample network population responses, coding for two different locations on the
surface of a torus (periodic boundary conditions). At time step 0 we see the summation of afferent
inputs only. Pattern completion is effectively accomplished between 0 and 20 timesteps (roughly
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250 msec of real time), leading to bumps at the exact location of the input. Several hundred
timesteps later, the two example bumps, coding initially for two locations far apart, drift into the
same position. C) Drift speed and distance in three networks differing only in size (blue: N=400
units, cyan: N= 1600, green: N=4900 units; feed-forward connections per unit: Co=0.08NV;
recurrent connections per unit: C.=0.24N). The graph shows the average overlap between ongoing
population activity and the original activation caused by the sensory input. In larger networks, the
drift is slower and covers less distance, as shown by the large final overlap value, indicating more
privileged spots than in smaller networks, i.e. a better approximation of the continuous attractor
limit. D) Place-fields of 4 randomly chosen CA3 units. At timestep 0 (sensory input alone) and 20
(after pattern completion, but before attractor collapse) place-fields are generally round in shape,
and present a smooth firing rate map. As population bumps reach their final state on the attractor
surface (panel B), place-fields lose their smooth shape and smoothness, and tend to fire at the same
rate in large portions of the environment, with sharp boundaries, which are common to many other
units. The borders of such regions define the basin of attraction of a final (collapsed) state.

Simulations of a medium-size self-organizing hippocampal model demonstrate that, if ad hoc
mechanisms are not introduced, rather than 2D charts one obtains ‘wrinkled’ attractors, where
activity can settle in only one or a few positions (Papp and Treves, 2006). In these simulations, a
virtual rat explores one or several virtual environment, realized as square boxes with toroidal
boundary conditions (the 2D equivalent of a ring), while a population of CA3 units develops
representations of each environment (Treves, 2004). If the unsupervised self-organization of a chart
is produced solely by a ‘Hebbian’ learning rule, place-cell-like responses emerge spontaneously in
CA3, but many units end up having one of a few available fields, or no field: the corresponding
attractor has collapsed. These are finite size effects, and they can be alleviated by scaling up the
number of units and the connectivity in the simulated network (Fig.2C); by constraining activity to
be less sparse than experimentally observed, e.g. acas = 0.2 rather than acaz = 0.03; and by keeping
inhomogeneities to a minimum; but even with thousands of CA3 units the resulting attractors
remain far from the ideal charts realized in mathematical models (see also Fig.3 below).

This ‘attractor collapse’ scenario is particularly relevant for threshold-linear units with no
saturation, which may model neuronal activity far from saturation. Simulations with effectively
binary units, instead, with activity determined by a sigmoidal activation between 0 and 1, yield
bumps of activity which are much more stable, and show virtually no drift in the absence of inputs
(Papp and Treves, unpublished observations). In the sigmoidal model, however, most units in a
stable state have activity close to 1 or 0 (that is, maximum or zero activity), and such an activity
profile is incapable to describe real place-fields, where activity changes gradually over space (see
also Roudi and Treves, 2006).

4.3. How to iron out two-dimensional charts?

In the multiple chart model, exploration of a new environment must lead to the formation of a new
chart. A number of questions then arise: how is the new chart laid out? ab initio or using some pre-
wired connectivity? are inputs from a population of grid cells useful? can the process be aided by
the dentate, as for discrete attractors? is the final chart as smooth as the ideal concept of a
continuous attractor implies? how many charts can possibly accumulate in a single recurrent
network? These are very much issues of current research, and in the following we only discuss
some of the results already obtained within the modeling approach.

12



13

In relation to the last question, discrete memory states models point at sparsity as the crucial
representational parameter that influences memory capacity (besides the anatomical one of the
connectivity per unit), as illustrated by Eq.(1) above. Hippocampal space-related activity lends
itself to the measurement of sparsity values, e.g. defined as the square of the mean firing rate across
a population of units at a given instant, divided by the mean of the square firing rate (Treves and
Rolls, 1991). Applying such measure to individual cells recorded in a freely foraging task (courtesy
of Jill and Stefan Leutgeb) one obtains values for CA3 in the sparse range, acas = 0.02-0.06 (Papp
and Treves, 2007). The storage capacity of a multi-chart recurrent autoassociator was analyzed by
Battaglia and Treves (1998), who extracted a simple ‘rule-of-the-thumb’ for assessing the memory
load of a chart. A chart which maps a finite environment onto the activity of place-cell-like units is
equivalent, capacity-wise, to as many discrete attractor states as there are locations, in the
environment, for which the activity vectors are pair-wise decorrelated. If the 2D environment is
represented by place-cell-like units, which are quiescent outside their place field, the decorrelation
radius is roughly the radius of the typical place field, which is itself proportional to the linear size
of the environment times the square root of the sparsity of the neural representation. Thus, if some
dozen typical CA3 fields, say, ‘fit’, once properly juxtaposed, in a typical rat recording box, the
memory load of the chart corresponding to that box is roughly equivalent to a dozen discrete
memories of equal sparsity. The number of such charts, or distinct environments of the size of a
typical recording box, that can be held simultaneously in the network, is theoretically limited by the
critical value

Pehars = 0.1 C/ In (1/a) 4)

(see Figs.1, 2 in Battaglia and Treves, 1998). This is still a huge number, of the order of several
hundreds, given the recurrent connectivity of the CA3 network in rodents (Amaral et al, 1990). The
apparent paradox that fewer charts can be stored if they are sparser (a lower a parameter makes the
denominator larger) can be understood by considering that sparser activity, in a large net, leads to
better spatial resolution, and hence requires more discrete fixed points attractors to cover, as
effectively smaller tiles, the whole environment. This chart capacity again respects the associative
memory theoretical upper bound alluded to above, in that the maximum amount of information that
can be retrieved per synapse is about 0.15 bits, as shown in Fig.5 of Battaglia and Treves (1998). It
remains to be seen, however, whether in practice the upper bound can be approached.

4.4. The challenge of confronting grid cells

In the simulations of Fig.2, the inputs to CA3 units were from other units that themselves had
place-field-like properties. One may expect that introducing a model of mEC grid cells as an input
station to CA3 would help produce better continuous attractors, given the regularity of
experimentally observed grid fields, and the accurate localization they allow (Fyhn et al., 2004;
Hafting et al., 2005). Taken as an isolated mEC-CA3 feedforward network, the transformation from
grid cells to place cells is similar to a 2D Fourier transform, requiring only a few grid cells of
different spatial frequencies but otherwise straightforward — if the grid fields are precisely aligned
and the feed-forward connection weights are assigned pre-calculated values (Solstad et al, 2006). In
fact, retrieval dynamics proceed smoothly from mEC-like grid inputs, if the CA3 representation has
earlier been established with the aid of strong DG inputs as in Fig.3.
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Figure 3. Characterization of the dynamics of recall. A) Percent correct localization increases as the
information provided by afferent inputs is reverberated in the recurrent network for several
iterations (roughly corresponding to 100 msec). Note that the afferent cue is partial, comprising
only 20% of the activity pattern in the model input layer. The localization of the virtual rat,
afforded by population activity at timestep 0 (summation of afferent inputs only) is already better
than before learning (cp. Fig 4A), yet it is further improved as activity is iterated in the recurrent
network (timesteps 1-9) and thus memory is recalled from the model CA3 network. B)
Development of place-fields for three representative CA3 units. Iteration through the recurrent
collaterals also decreases the number of resulting place fields, as small peaks gradually vanish. .

If the weights have to emerge from a self-organizing process, even the most effective algorithm, a
variant of Independent Component Analysis subject to a sparsity constraint, was found to produce
rather implausible place fields even when summing from 100 grid units (Franzius et al., 2007). The
main difficulty, for the algorithm which has to structure the weights appropriately, is how to
suppress the periodicity inherent in the grid fields, to lead to a single-peaked place field: a
competitive learning algorithm may only reduce the mean number of peaks of the output units
(Rolls et al., 2006). The difficulty is alleviated when the algorithm has available the input of an
increasing number of grid units, of the order of thousands. Even in this situation, however, the self-
organization of the feedforward weights is a delicate process, easily disrupted by the concurrent
effect of any recurrent weights. In the presence of massively recurrent connectivity, as in CA3, no
one has been able to demonstrate, so far, how direct grid cell inputs could be the driving force for
the establishment of a new chart — all the more unlikely, if the recurrent connections are structured
by the earlier storage of other charts, which interfere with the new one. It is reasonable to expect
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that combining grid cell inputs with non periodic spatial inputs, representing e.g. the activity of
cells in lateral entorhinal cortex (IEC) should help with the formation of place fields; but evidence
about the spatial correlates of IEC activity is too fragmentary yet to effectively constrain
computational models.

The dentate gyrus as a chart preprocessor

The recent characterization of multi-peaked place fields in the dentate gyrus (Leutgeb et al., 2007)
provides a break-through for the development of models of chart formation in CA3. The observed
fields resemble those produced by self-organization of feedforward inputs from grid-like-units
(Franzius et al., 2007; Rolls et al., 2006), redefining the feedforward models as relevant for
studying granule cell activity and its changes after different manipulations. At the same time, the
question arises as to whether the observed fields in the dentate can serve as effective inputs to drive
the establishment of new spatial representations in CA3. What computational models can attempt to
resolve, is whether such inputs can, given an appropriate synaptic structure with MF characteristics,
overcome the unwelcome effects of the prevailingly recurrent CA3 circuitry, including the
‘wrinkling’ and eventual collapse of individual charts and the coalescence of new charts with
previous ones.

With simulations, one can investigate the emergence of new charts in models with contrasting
architecture, e.g. with and without a layer modeling the dentate gyrus. Fig.4 shows the results of
simplified simulations, in which the same network was trained as a virtual rat explored a new
environment. The DG layer, if present, is modeled here with single-field granule units and one-to-
one detonator synapses to CA3 units, extrapolating somewhat current experimental evidence on the
strength and indirect suppressive effect of MF activity (Mori et al, 2007), and is active only during
training. At testing, DG is turned off, and CA3 cells, activated by the model perforant path and
under the influence of recurrent collaterals, both modified during training, show scattered spatial
responses before training, which self-organize into smoother fields after training (Fig.4).
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Figure 4. Development of CA3 place fields with and without a model DG array. A) Training the
model in new environment with DG inputs (solid line) increases percent correct localization
relative to training without DG (dashed line). Learning for one epoch (corresponding to ~10
minutes for a real rat) increases in both cases the accuracy afforded by decoding the entire
population of 4900 CA3 units; further training without DG, however, is detrimental. B) Three
examples of firing rate maps in the model CA3 population are shown before and after training.
Without DG, CA3 fields do not develop single peaks (note that single peaks occurring across the
toroidal boundaries appear as double when the torus is displayed as a square box). Note also the
refinement in the fields with the second epoch of training.

The DG teaching input modifies, in this simulation, both the perforant path and the recurrent
collateral weights, and both contribute to the response properties of CA3 units. As the perforant
path, which at testing relays only a partial cue, is made to gradually fade over 10 x 12.5msec
iterations, towards the end of the iteration cycle the cue is largely completed by the collateral effect

(Fig.3).

Note that in these preliminary simulations, MF synapses are one-to-one, and DG units have single-
peaked fields, unlike those observed by Leutgeb et al. (2007). Still, DG units have spatially
continuous firing rate maps, which is the crucial element to generate continuous representations of
space, and which is beyond the scope of the original Treves and Rolls (1992) argument. We suggest
that a thorough quantitative analysis of information storage in a model CA3 network, operating
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with and without dentate gyrus, is needed, to assess again any information theoretic advantage in
forming new representations, this time in the form of charts of place-cell-like units. Since,
unfortunately, the very 2D nature of charts makes a simplified mathematical analysis of
information storage like the one in Treves and Rolls (1992) difficult to work out, computer
simulations offer at present a practical approach to this issue.

In our simulations, considering one time step to be 12.5 msec, attractors tend to collapse over
several seconds (Fig.2). Some deterioration in the accuracy of localization may appear already
within the equivalent of 100-150 msec (Fig.3). In rodents, theta-oscillations pace activity over a
similar time scale, and it might just be that the collapse phenomenon, because of the typically
sustained afferent inputs (e.g. from mEC units) and because of the limited time for convergence, is
not so relevant to the real hippocampus. Theta oscillations are however characteristic of exploratory
behaviour, usually associated with memory encoding in the CA3 network, not retrieval; and the
correspondence between real hippocampal dynamics in different behaviouaral conditions and the
simplified dynamics of simulated models must be elaborated much better, probably with more
complicated models, before dismissing the implications of attractor collapse.

At any rate, the collapse of attractors is intimately related to the recurrent nature of the CA3
network. If one makes partial ‘lesions’ to the recurrent connections, attractors become smoother. At
the same time, however, one loses the benefits of the collateral effect (Fig.3). A possible solution to
this problem, seemingly ‘invented’ by mammals as mentioned above, might be the insertion of a
population of units right after CA3, as a post-processor, i.e. the CA1 feedforward network. In
simulations to be reported elsewhere (Papp and Treves, 2007) we observe that CA1 processing may
smooth the representation retrieved from CA3, thereby increasing its spatial information content
(Treves, 2004).
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5. Morphing memories and morphing environments

Do discrete boundaries between attractor states survive manipulations in which external correlates
are intentionally interpolated, i.e. morphed, between pre-established representations? In simulations
of the morphing experiments of Wills et al (2005) and Leutgeb et al (2005b), we aimed first to test
the idea that correlations between encoded patterns may lead to a linearization of responses along
the morphing sequence, as observed by Leutgeb et al in contrast to Wills et al (Papp and Treves,
2005). Second, we aimed to assess the relevance, in the model, of the ratio of recurrent to afferent
connections in driving recall dynamics. The first issue is relevant, as a crucial difference between
the two experiments involved the degree of orthogonalization of the spatial representations
originally established (whether they led to complete remapping or not, see Leutgeb et al, 2005a).
The second issue is relevant, in relation to the hypothesized effect of ACh, even if this is not
explicitly modeled in the simulations. We proceed by first using simple, discrete patterns and then
2D charts.

5.1. Morphing discrete patterns

The model simulated in this and the following section includes 2 layers: ‘entorhinal cortex’, serving
as the input, and CA3, the actual attractor network. Each of them is comprised of 3600 threshold-
linear units (Treves, 1991), arranged on a 60 by 60 grid with periodic boundary conditions.
Connectivity is partial: 240 units randomly chosen in the EC array connect to any CA3 unit, which
also receives from a random assortment of 400 fellow CA3 units. Discrete patterns or spatial charts
are not the product of extensive training, but rather they are ‘assigned’ to the CA3 network, in a
crude model of one-shot associative learning, as in the Hopfield (1982) model. A simple Hebbian
learning rule is used, as in Treves (2004). Patterns are set also in the EC layer, and associated with
those in CA3 with the same one-shot learning rule. During testing, a full input pattern is presented
in EC, and the network is updated for several hundred timesteps.

Different input patterns in EC, e.g. A and B (representing for example the circle and square box
used in the experiments), were created by scrambling EC units among themselves. Morphs were
then set up by setting the activity of a fraction of EC units to their activity in one pattern and the
remaining cells to their activity in another pattern. Changes from one full pattern to the first morph,
between the morphs, and between the last morph and the second full pattern was set to be
equispaced. Correlated initial patterns were created with an incomplete scrambling, thus a number
of EC units had in this case the same representation for A and B, whereas the other were allowed to
have different representation.

The storage capacity of the network was first established and was found to be around 60
independent patterns. To stay well below storage capacity, only 4 discrete patterns were used in the
morphing simulation. Results were mapped as a function of two parameters, the recurrent-to-
afferent strength and the degree of correlation between A and B. In Fig.5A four representative
examples are shown for these two parameters. As in Leutgeb et al, 5 intermediate morphs were
used, denoted as AAAB, AAB, AB, ABB and ABBB respectively. The reference case, with
‘normal’ recurrent strength and no correlation between A and B, is shown in panel 3, and
corresponds to a sudden transition between the two discrete attractors, for A and for B. Decreasing
the recurrent strength by a factor of 10 (Fig 5A, panel 1), the transition becomes linear. A very
slight trace of pattern completion can be still detected (as overlap scores for AAAB and AAB
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above the line connecting those for A and B), showing that although the strength of recurrent
weights is decreased they are still not completely ineffective. Introducing a correlation of 0.3 (that
is, 30% of EC units are kept to have the same representation in A and B) in the case with strong
recurrent weights (panel 4) strongly increases the overlap between the representation of A and B,
and the sudden transition is lost, replaced by an accelerating decrease in overlap scores over the
morphing sequence. Thus introducing correlations between attractors has a similar effect to reduced
recurrent ratios. Finally, again decreasing the effect of recurrent connections while also keeping the
elevated correlation (Fig 5A, panel 2), a smooth linear transformation appears between similar
attractor states, with overlap scores that remain high even between A and B.

Further simulations show that an even higher degree of correlation leads to a complete collapse of
the memory states for A and B. The collapse, much like the collapse within a chart, described in the
previous section, results from the action of recurrent collateral connections, as shown by the finding
that removing such connections altogether the representations of A and B remain different, and .the
transition over the morphing sequence linear. Like the collapse within a chart, it will not manifest
itself when the network is sufficiently driven, that is steered, by afferent inputs. Note that recurrent
weights in these simulations reflect the storage of only the extreme patterns, unlike the model
analysed by Blumenfeldl et al (2006).
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Figure 5. Simulation of the morphing experiments. A) Morphing environments. In our simulations,
the input array is arranged on the nodes of a (virtual) square grid, and it encodes a representation of
space in terms of self-similar single-peak place fields — so the center of environment A is
represented by a bump of activity in the center the grid. The position of the input units on the grid
is reshuffled in environment B while, to model gradual changes from one environment to the other,
a partial reshuffle of half the units encodes environment AB. The other 4 morphed environments
were obtained by shuffling 1/6, 2/6, 4/6 and 5/6 of the units. B) Morphing discrete input patterns
with different feed-forward / recurrent ratio and different levels of correlation between patterns A
and B. Relatively suppressed feed-forward weights and no correlation (panel B.3) lead to a sudden
transition during morphing. Stronger sensory input linearize the transition (B.1). Correlations,
along with suppressed feed-forward weights both linearize the transition and decrease the distance
between the representation of environments A and B (B.4). The presence of strong inputs and of
correlations between A and B results in a linear transition with morphing, resembling the results of
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Leutgeb et al 2005b. Dots: overlap between population response to a morphed pattern, and to
pattern A, across repeated simulations. C) Similar results were obtained with morphing charts
instead of discrete patterns. Weak sensory inputs and the absence of correlation between chart A
and B lead to a sudden transition between A and B (C.3). Correlations are found to effectively
linearize the transition during morphing (C.4), as well an increased input strength (C.1). Strong
inputs together with correlations lead to linearization and to less distance between the
representation of A and B. Dots: overlap of population responses at corresponding locations in
environment A and in a morphed environment. Dashed line: the mean overlap between
environment A and the morphs.

5.2. Morphing charts

Simulations with 2D representations were conducted with the same procedure as for the discrete
attractor case, however in a more complex situation, where spatial charts are stored in the network
instead of discrete patterns. To attain the larger capacity needed to store charts, a network
comprised of 4900 CA3 units arranged on a 70 by 70 grid was used, with 400 afferent inputs and
1200 recurrent connections each. The network was found to store up to 8 different charts before a
clear capacity breakdown, and 4 charts were used in the morphing simulations, to stay below
storage capacity. Using periodic boundary conditions, each chart was arranged on a torus, and a
scrambling procedure was used on the torus to obtain morphed environments. Connection weights
were precalculated as a sum of contributions from the different charts stored, in each decreasing as
a function of the distance between the position of the pre- and post-synaptic unit in the chart.
Parameters were chosen through an extensive search, to find conditions that would allow the
slowest drift of population activity, i.e. the best stability in the chart.

In order to set up the chart, the centers of place fields in EC and in CA3 were assigned prior to
setting up the weights. Each unit, both in EC and in CA3, was simply set to have a field in all of the
environments (decreasing the number of units coding for an environment decreases the stability of
the resulting memory, as measured by percent correct localization). Note therefore that, in these
simulations, for simplicity each EC unit was set to have one peak, unlike the simulations with grid
units described earlier. The morphing effect discussed here is an effect endogenous to the recurrent
CA3 network, and thus likely to emerge irrespective of the input pattern in EC.

In a case of recall with strong recurrents and no correlation (Fig.5B, panel 3), the mean overlap for
morphs AAAB and AAB shows pattern completion towards morph A, whereas for ABB and
ABBB the CA3 units tend to converge towards the representation of B. In middle morph, some
locations are coded as more similar to those in A, while others to those in B. In morphs AAB and
ABB, in fact, there are already some locations acquiring the representation of the extreme shape
that is more distant in terms of the morphing sequence. Still, the representation in the majority of
spatial locations switches abruptly between the morphs AAB and AB. Individual place fields
mostly follow the same dynamics, with most often global remapping between morphs AAB and
AB. Decreasing the strength of recurrent connections leads again to a linearization of the transition
(panel 1). There is now little sign of pattern completion, however, unlike that seen with discrete
attractors. Place fields change smoothly over the whole morphing sequence (data not shown).
Again, that implies that a network predominantly driven by external inputs, e.g. from mEC, is
unlikely to show the features characterizing attractor dynamics, be they advantageous, like pattern
completion, or disadvantageous, like attractor collapse.
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Introducing correlation (panel 4) between the neural representations of A and B formed by CA3
also abolishes the sudden transition. As shown by the scatter of individual dots in panel 4,
individual locations change their population code quasi independently over the morphing sequence,
similar to experimental results by Leutgeb et al (2005b). In the model, however, no unit acquired a
place field only in some intermediate morphs, because in the model only the extremes A and B
were used in setting connection weights, and in A and B each unit had a place field. Decreasing the
relative strength of the recurrent connections further linearizes the morphing curve (panel 2), with
the overlap between A and B remaining quite elevated, again consistent with the findings of
Leutgeb et al. Place-field again changed smoothly.

A conclusion from these morphing simulations is that correlations in the environment, as well as
between discrete stimuli represented in a strongly recurrent network, lead to attractor collapse, a
different manifestation of the same phenomenon apparent with the storage of continuous attractors,
discussed above. The drift to discrete attractor locations within a would-be continuous attracting
manifold is augmented, when multiple manifolds are stored, by their collapsing onto each other.
Both phenomena remain latent, when the network is, broadly speaking, steered by afferent inputs: a
weakly recurrent network is less subject to attractor collapse, but then population activity tends to
track ongoing inputs anyway, resulting in essentially linear transitions along a morphing sequence.
The self-organized formation of a single continuous attractor and the retrieval of pre-established
representations from morphed inputs therefore both face the same challenge, in the recurrent CA3
network, of separating patterns that are separated in the inputs. When multiple spatial charts are to
be self-organized from scratch, the difficulty for the CA3 network is redoubled, and further
computational work may help assess to what extent the Dentate Gyrus may help meet the
challenge.

6. Conclusions

As originally proposed by David Marr (1971), and then by McNaughton and Morris (1987) and by
Rolls (1989), the general theory of autoassociative memory networks provides a most useful model
with which to gain insight into the information processing operations performed by the
hippocampal CA3 network. A comparison with the organization of the medial telencephalon in
reptiles and birds in fact indicates in CA3, in contrast to other hippocampal subfields in mammals,
the most preserved traits of the archetypical organization of primitive cortex. This suggests that in
functional terms, too, the operation of CA3 may be the straightforward evolutionary derivative of
an archetypical storage site for complex memories, involving relations between disparate elements,
and capable of autoassociative retrieval from arbitrary partial cues. The mathematical analysis
introduced for the Hopfield (1982) model by Amit, Gutfreund and Sompolinsky (1987), as well as
computer simulations on more realistic versions of the model, allow for a quantitative appraisal of
how efficiently CA3 may function as an autoassociative memory network, in particular in terms of
the crucial constraint of storage capacity. These approaches reveal that acquiring new memory
representations in general, and acquiring spatial representations in particular, even more when
derived from grid units, pose hard challenges to CA3. Meeting these challenges may have required,
in mammals, the evolution of additional specialized circuitry, including at least the dentate gyrus as
a preprocessing stage to CA3. It remains to be explored whether other, distinct evolutionary
adaptations may have met similar challenges in the avian brain, given the intriguing suggestion that
birds, unlike reptiles, appear to have evolved similar slow-wave sleep dynamics as mammals
(Rattenborg, 2007).
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