

1863-18

Advanced School and Conference on Statistics and Applied Probability in Life Sciences

24 September - 12 October, 2007

Probability, stochastic processes and infectious disease models

Ping Yan

Public Health Agency of Canada Surveillance and Risk Assessment Div. Ottawa, ON K1A 0K9, Canada

PUBLIC HEALTH AGENCY of CANADA AGENCE DE SANTÉ PUBLIQUE du CANADA Classes of branching processes (BP) in relation to p						
Special cases of Anderson, D. and Watson, R. (<i>Biometrika</i> , 1980) $R_0 = (1 + \rho v \phi_1)^{\frac{1}{\phi_1}} \frac{\rho \mu}{1 - (1 + \rho \mu \phi_2)^{-\frac{1}{\phi_2}}}$ This is one of an extensive list of results by Anderson, D. and Watson, R. (1980) concerning SEIR models with gamma distributed latent and	Cases	ν	μ	$\mathbf{\phi}_1$	$\mathbf{\phi}_2$	R ₀
	C1 🗸	v	→ 0	→ 0	$\mathbf{\phi}_2$	e^{pv}
	C2 🔨	v	→ 0	= 1	$\mathbf{\phi}_2$	$1 + \rho v$
	С3	v	→ 0	$\mathbf{\phi}_1$	$\mathbf{\phi}_2$	$(1+\rho v\phi_1)^{\frac{1}{\phi_1}}$
	C4 🗸	0	μ	\$ 1	→ 0	$\frac{\rho\mu}{1-e^{-\rho\mu}}$
	C5 🗸	0	μ	\$ 1	= 1	$1 + \rho \mu$
	C6	0	μ	$\mathbf{\phi}_1$	\$ ₂	$\frac{\rho\mu}{1 - (\mu\rho\phi_{2} + 1)^{-\frac{1}{\phi_{2}}}}$
	C7 🗸	v	μ	→ 0	→ 0	$e^{\rho v} \frac{\rho \mu}{(1 - e^{-\rho \mu})}$
infectious periods.	C8	v	μ	= 1	→ 0	$\frac{(1+\rho v)\rho \mu}{1-e^{-\rho \mu}}$
- proof is limited to Erlang distributions where	C9	v	μ	$\mathbf{\phi}_1$	→ 0	$\frac{(1+\rho v\phi_1)^{\frac{1}{\phi_1}}\rho\mu}{1-e^{-\rho\mu}}$
	C10	v	μ	→ 0	= 1	$e^{\rho v}(1+\rho \mu)$
$\kappa_1 = \phi_1^{-1}$ and $\kappa_2 = \phi_2^{-1}$ take integer values	C11 🔨	v	μ	= 1	= 1	$(1+\rho\nu)(1+\rho\mu)$
	C12	v	μ	$\mathbf{\phi}_1$	= 1	$(1 + \rho v \phi_1)^{\frac{1}{\phi_1}} (1 + \rho \mu)$
	C13	v	μ	→ 0	\$ ₂	$e^{\rho v} \frac{\rho \mu}{1 - (\mu \rho \phi_{2} + 1)^{-\frac{1}{\phi_{2}}}}$
	C14	v	μ	= 1	\$ ₂	$\frac{(1+\rho v)\rho \mu}{1-(\mu \rho \phi_{2}+1)^{-\frac{1}{\phi_{2}}}}$
	General	v	μ	\$ 1	$\mathbf{\phi}_2$	$\frac{(\rho v \phi_{1}+1)^{\frac{1}{\phi_{1}}} \rho \mu}{1-(\rho \mu \phi_{2}+1)^{-\frac{1}{\phi_{2}}}}$

Synthesis: R_0 , $E[\tilde{T}_G]$ and ρ $(R_0 = \beta\mu)$ $E[\tilde{T}_G]$ is determined by β and by the distribution for T_I ; not by the distribution of T_E except for its mean. $E[\tilde{T}_G] = \nu + \frac{d}{d\beta}[-\log \mathcal{L}_I^*(\beta)]$ IF, big if, $E[\tilde{T}_G]$ can be derived from data, one can use $\frac{E[\tilde{T}_G]-\nu}{\mu} = \frac{E[X]X \leq T_I]}{\mu} = \frac{1}{\mu} \frac{d}{d\beta}[-\log \mathcal{L}_I^*(\beta)] = f(R_0; \mu, \phi, \cdots)$ to derive R_0 in the absence of knowledge of ρ . If gamma distributed T_I : $\frac{E[\tilde{T}_G]-\nu}{\mu} = \frac{(\phi R_0+1)\left[(\phi R_0+1)^{\frac{1}{\mu}}-1\right]^{-R_0}}{R_0(\phi R_0+1)\left[(\phi R_0+1)^{\frac{1}{\mu}}-1\right]}$ R_0 can be solved numerically. ρ is determined by β , by the distribution for T_I and by the distribution of T_E $\beta \mathcal{L}_E(\rho)\mathcal{L}_I^*(\rho) = 1$ $R_0 = \frac{\mu}{\mathcal{L}_E(\rho)\mathcal{L}_I(\rho)}$ One can not deduce R_0 by empirically observed ρ and $\mu = E[T_I]$ alone. One needs detailed distributions for both T_E and T_I . There is no general relationship between ρ and $E[\tilde{T}_G]$. Special case: $E[\tilde{T}_G] = \nu + \frac{\mu}{(1+\rho\nu)(1+\rho\mu)+1}$

