
1863-18

Advanced School and Conference on Statistics and Applied
Probability in Life Sciences

Ping Yan

24 September - 12 October, 2007

Public Health Agency of Canada
Surveillance and Risk Assessment Div.

Ottawa, ON K1A 0K9, Canada

Probability, stochastic processes and infectious disease models



1

1

Probability, stochastic processes and 

infectious disease models

Ping Yan

Infectious Disease and Emergency Preparedness Branch

Public Health Agency of Canada

2

Deterministic:

• a system of integro-differential equations

Stochastic:

• a multivariate semi-Markov process

A general epidemic in a closed population 

S
RIE

Susceptible 

individuals

A function capturing   

interaction between # 

of “S” and # of “I”

individuals over time

Exposed, infected but 

latent (not infectious)

The hazard function of 

the sojourn time TE

during the latent period 

Infectious

The hazard function of 

the sojourn time TI during 

the infectious period 

Removed
(isolation, recovery, death, etc.)

E I t

E S t

• a highly contagious disease 

• a long (but not very variable) latent period

If the population is closed:

Expected # susceptible 

individuals Expected # infectious 

individuals
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A general epidemic in a closed population 

S
RIE

Susceptible 

individuals

A function capturing   

interaction between # 

of “S” and # of “I”

individuals over time

Exposed, infected but 

latent (not infectious)

The hazard function of 

the sojourn time TE

during the latent period 

Infectious

The hazard function of 

the sojourn time TI during 

the infectious period 

Removed
(isolation, recovery, death, etc.)

Deterministic:

• a system of integro-differential equations

Stochastic:

• a multivariate semi-Markov process

S 0

E S t E I t

E S

The final size
S0 I0 E S

E S t E I t

Expected # susceptible 

individuals

Expected # infectious 

individuals
In general

4

An autonomy of a general epidemic in a simple model 

t

S0

During the early phase,

1. Limit the outbreak to a handful cases and 
prevent the exponential growth to occur.

2. If an exponential growth has occurred, 
reduce the initial growth rate 

• This may or may not be a good 
objective

t :
S t

n 1

n S 0 I0

Early phase

E I t e t

E S t

E I t

E I t

E S

The final size
S0 I0 E S

After the early phase,

1. Delay the outbreak (peak) and 
buy time (e.g. vaccine)

2. Reduce the maximum number 
of infectious individuals at 
any time (if constrained by 
healthcare capacity).

3. Keep the final size as small as 
possible.



3

5

t :
S t

n 1

1. The branching process 

(the first approximation)

Early phase:  the depletion of susceptible individuals is ignorable

N :  # of next generation individuals produced by an 

infected individual during generation time TG.

Reproduction number:    R0 = E[N]. 

Generation

0 1 2 3

Infectious 

period starts

Infectious period 

ends (removal)

Infectious         

Index 

case

Onset of 

infection

Latent      

(unable to infect)

Generation time

Next generation cases

T E T I

T G TE T I

Generation g:       a discrete counter,  g = 0, 1, …

Generation time :  from “onset of infection” to 
“removal” of an infected individual.

T G

Why care about R0?

To control the outbreak,                          

Rc 1 c R0 R0

1. During the early phase,

Rc < 1 with pr. 1,

extinction.

2. There is often (not always) a 

monotone relationship between 

R0 and the final size.

S 0

E S t E I t

E S

The final size
S0 I0 E S

E S t

Rc < R0 often imply reduced 

mean final size.
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t :
S t

n 1

2. The exponential growth 

(the second approximation)

Early phase:  the depletion of susceptible individuals is ignorable

N :  # of next generation individuals produced by an 

infected individual during generation time TG.

Reproduction number:    R0 = E[N]. 

Generation

0 1 2 3

E I t e t

E I t

Infectious 

period starts

Infectious period 

ends (removal)

Infectious         

Index 

case

Onset of 

infection

Latent      

(unable to infect)

Generation time

Next generation cases

T E T I

T G TE T I

Generation g:       a discrete counter,  g = 0, 1, …

Generation time :  from “onset of infection” to 
“removal” of an infected individual.

T G

Can one relate R0 with ?

Motivation:

• use empirically observed to

deduce R0

• commonly seen in literature.

1. The branching process 

(the first approximation)
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t :
S t

n 1Early phase:  the depletion of susceptible individuals is ignorable

Generation

0 1 2 3

E I t e t

E I t

Infectious 

period starts

Infectious period 

ends (removal)

Infectious         

Index 

case

Onset of 

infection

Latent      

(unable to infect)

Generation time

Next generation cases

T E T I

T G TE T I

Reproduction number:    R0 = E[N]. 

(a familiar formula in ecology, intuitive)

(a familiar formula in mathematical biology)

(Anderson, R.M. and May R. M, 1991)

(Lipsitch et al. 2003)  

–appears in recent literature (e.g. Science;  Proc. Roy. Soc.  Int; etc.),

– in relation to SARS and Pandemic Influenza

(Anderson, R.M. and May R. M, 1991)

R0 e E T G

R0 1 E T G
R0 1 E T I

R0
E TI

1 e E TI

R0 1 E T G f 1 f E T G
2

f
E T E

E T G

1. The branching process 

(the first approximation)

2. The exponential growth 

(the second approximation)
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t :
S t

n 1Early phase:  the depletion of susceptible individuals is ignorable

Generation

0 1 2 3

E I t e t

E I t

Reproduction number:    R0 = E[N]. 

Infectious 

period starts

Infectious period 

ends (removal)

Infectious         

Index 

case

Onset of 

infection

Latent      

(unable to infect)

Generation time

Next generation cases

T E T I

T G TE T I

R0 e E T G

R0 1 E T G

R0
E TI

1 e E TI

R0 1 E T G f 1 f E T G
2

R0 1 E T I

All are special cases of Anderson, D.  and Watson, R. 

(Biometrika, 1980)

R0 1 1

1

1

1 1 2

1

2

E T E
E T I

var T E 1
2 var T I 2

2f
E T E

E T G

1. The branching process 

(the first approximation)

2. The exponential growth 

(the second approximation)
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t :
S t

n 1Early phase:  the depletion of susceptible individuals is ignorable

The latent period TE and infectious period TI are independent, gamma distributed

R0 1 1

1

1

1 1 2

1

2

0. 1

0. 5

1

4

2

f X x 1

X
1

x

X

1 1
e

x

X

x

Probability densities for gamma distribution

X E X 1

Anderson, D.  and Watson, R. (Biometrika, 1980)

Assumptions:

E T E , var T E 1
2

E TI , var TI 2
2
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Classes of branching processes (BP):

Infectious period 

starts

Infectious period 

ends (removal)

Infectious TIIndex 

case

Onset of infection

TG = TI

N next generation cases R0 = E[N].

x

3. Crump-Mode-Jagers (CMJ) BP:

• TE = 0; 

• next generation cases: counting process {K(x)}

• {K(x)} has stationary increment

• random infection period TI with E[TI] =

• TI serves as a random stopping time for {K(x)}

Infectious 

period starts

Infectious period 

ends (removal)

Infectious TI

Index 

case

Onset of 

infection

Latent  TE

TG = TE+TI

N next generation cases R0 = E[N].

x

4. Bellman-Harris + CMJ BP:

• latent period has a distribution,  E[TE] =

• infection period TI has a distribution, E[TI] =

• next generation cases: counting process {K(x)}

• TI serves as a random stopping time for {K(x)}

N next

generation 

cases
Index 

case

Onset of 

infection

Latent  TE

TG = TE

R0 = E[N]. 

1. Galton-Watson BP:

• infectious period degenerated to a point TI 0

• latent period is a constant TE = , zero variance 

2. Bellman-Harris BP:

• infectious period degenerated to a point TI 0

• latent period follows an arbitrary distribution 

with E[TE] =
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Classes of branching processes (BP) in relation to 

Special cases of Anderson, D.  and Watson, R. (Biometrika, 1980)

R0 1 1

1

1

1 1 2

1

2

N next

generation 

cases
Index 

case

Onset of 

infection

Latent  TE

TG = TE

R0 = E[N]. 

1. Galton-Watson BP:

• infectious period degenerated to a point TI 0

• latent period is a constant TE = , zero variance 

R0 e E T G

2. Bellman-Harris BP:

• infectious period degenerated to a point TI 0

• latent period follows exponential distribution 

with E[TE] =

R0 1 E T G

E I t e t

E I t

R0 f ?
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Classes of branching processes (BP) in relation to 

Special cases of Anderson, D.  and Watson, R. (Biometrika, 1980)

R0 1 1

1

1

1 1 2

1

2

Infectious period 

starts

Infectious period 

ends (removal)

Infectious TIIndex 

case

Onset of infection

TG = TI

N next generation cases R0 = E[N].

x

3. Crump-Mode-Jagers (CMJ) BP:

• TE = 0; 

• next generation cases: counting process {K(x)}

• {K(x)} has stationary increment

• random infection period TI with E[TI] =

• TI serves as a random stopping time for {K(x)}
– TI exponentially distributed,  E[TI] =

R0 1 E T I

E I t e t

E I t

R0 f ?

– TI is not random E[TI] = , var[TI] = 0

R0
E TI

1 e E TI
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R0 1 1

1

1

1 1 2

1

2

Classes of branching processes (BP) in relation to 

Special cases of Anderson, D.  and Watson, R. (Biometrika, 1980)

Infectious 

period starts

Infectious period 

ends (removal)

Infectious TI

Index 

case

Onset of 

infection

Latent  TE

TG = TE+TI

N next generation cases R0 = E[N].

x

E I t e t

E I t

R0 f ?

4. Bellman-Harris + CMJ BP:

• latent period has a distribution,  E[TE] =

• infection period TI has a distribution, E[TI] =

• next generation cases: counting process {K(x)}

• TI serves as a random stopping time for {K(x)}

b) latent and infectious period are 

exponential

R0 1 E T G f 1 f E T G
2

f
E T E

E T G

a) constant latent & infectious periods  

R0 e E T E
T I

1 e TI

14

Cases
1 2

R 0

C1 0 0
2

e

C2 0 1
2

1

C3 0
1 2

1 1

1

1

C4 0
1

0
1 e

C5 0
1

1 1

C6 0
1 2

1 2 1

1

2

C7 0 0 e
1 e

C8 1 0
1

1 e

C9 1 0
1 1

1

1

1 e

C10 0 1 e 1

C11 1 1 1 1

C12
1

1 1 1

1

1 1

C13 0 2 e
1 2 1

1

2

C14 1
2

1

1 2 1

1

2

General
1 2

1 1

1

1

1 2 1

1

2

R0 1 1

1

1

1 1 2

1

2

Special cases of Anderson, D.  and Watson, R. 

(Biometrika, 1980)

Classes of branching processes (BP) in relation to 

This is one of an extensive list of results by 

Anderson, D. and Watson, R. (1980) concerning 

SEIR models with gamma distributed latent and 

infectious periods.

– proof is limited to Erlang distributions where 

1=
-1 and 2=

-1 take integer values  
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Classes of branching processes (BP) in relation to 

General result (Yan, P. 2007):

K x
def.

cumulative number of infectious contacts by time x

• x = 0 : the beginning of infectious period

• next generation cases: counting process {K(x)}

• {K(x)}: stationary increment E K x x

Infectious 

period starts

Infectious period 

ends (removal)

Infectious TI

Index 

case

Onset of 

infection

Latent  TE

TG = TE+TI

N next generation cases R0 = E[N].

x

E I t e t

E I t

R0 f ?

R0
E I

General result:

R0

E I 1

probability density of latent period survivor function of infectious period

E e xf TE
x dx I e xF TI

x dx
1 I

• TE and TI are independently, arbitrarily distributed, with Laplace transforms

16

Special cases of

R0 1 1
1

1

1 exp
1 1 2 2

2

4. If TE is gamma and TI is inverse-Gaussian

R0
E I

1. If both the latent period TE and infectious period TI are gamma distributed, 

R0 1 1

1

1

1 1 2

1

2

E
1

1 1

1

1
I

1 1 2

1

2

2. If both the latent period TE and infectious period TI are inverse-Gaussian, 

E exp
1 1 2 1

1 I

1 exp
1 1 2 2

2 R0
1

exp
1 1 2 1

1
1 exp

1 1 2 2

2

Cases
1 2

R 0 Remarks

C1 0 0
2

e e T G as C1 in gamma TE and T I

C2 0 1
2

1

exp 1 1 2

C3 0
1 2

exp
1 1 2 1

1

C4 0
1

0
1 e

as C4 in gamma TE and T I

C5 0
1

1
1 exp 1 1 2

C6 0
1 2

1 exp
1 1 2 2

2

C7 0 0 e
1 e

as C7 in gamma TE and T I

3. If TE is inverse-Gaussian and TI is gamma 

R0
1

exp
1 1 2 1

1
1 1 2

1

2
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From special cases to general cases

R0

exp
1 1 2 1

1
1 exp

1 1 2 2

2

special cases of

E I 1

special cases of

R0 1 1

1

1

1 1 2

1

2

R0 e E T G R0 1 E T G

R0 1 E T G f 1 f E T G
2

special cases of Euler-Lotka

equation (Lotka, 1925) 

0
e A d 1

A Pr TE T E T I

K x
def.

cumulative number of infectious contacts by time x

0 if T E

x d

dx
K x if T E , T I T E

Infectious 

period starts

Infectious period 

ends (removal)

Infectious TI

Index 

case

Onset of 

infection

Latent  TE

TG = TE+TI

N next generation cases R0 = E[N].

x

E I t e t

E I t

18

How does the distribution of TE shape the initial growth ?

E I 1

exp 0. 15327 t

exp 1. 8939 t

If no latent period,

gamma distributed 

infectious period 

with mean = 2, 

shape parameter 6.

With gamma distributed latent 

period:  mean = 8,  shape = 70 

R0 4

1

E I

lim
0

E I
1

lim E I 0.

When and the distribution of the infectious 

period TI is given:

Give the infectious period TI distribution and 

— the same R0

If is empirically observed, one may under 

estimate R0 if one assumes a latent period 

distribution which is shorter than it should.

• the longer is TE in stochastic order,

larger survival function

for all xF E x Pr T E x

smaller E( )

the longer is TE in Laplace order,

the smaller is the growth rate
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How does the distribution of TI shape the initial growth ?

1

E I

lim
0

E I
1

lim E I 0.

2 1

2 2

2 4

E I 1

When and the distribution of TE is given:

Gamma disted infectious period TI

I

1 1

• the larger is the shape para. 

(smaller is the variance                          )           

• the larger is the value of 

2
1

var T I 2
2

I

For the same mean 

If is empirically observed, one may over

estimate R0 if assuming exponentially  

distributed infection period if var TI
2

the shorter is TI in Laplace order,

• the shorter is TI in stochastic order,

smaller *
I ( )

the smaller is the growth rate

20

How does the distribution of TI shape the initial growth ?

1

E I

lim
0

E I
1

lim E I 0.

E I 1

When and the distribution of TE is given:

• the larger is the mean value 

• the larger is the value of 
I

For the same shape parameter :

but it also increases R0 = .

the larger is the growth rate

the shorter is TI in Laplace order,

• the shorter is TI in stochastic order,

smaller *
I ( )

the smaller is the growth rate

Gamma disted infectious period TI

I

1 1

How do and = E[TI ] shape the initial growth ?
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How do and = E[TI ] shape the initial growth ?

E I 1

R0

Rc 1 c R0 R0

Consider two strategies at reducing R0

cc 1 cStrategy A

1

0A

E I

Strategy A 1

c

1

1 c

1

0B

Strategy B
c 1 c

Strategy B cc 1 c

If there is a constraints in health care resources, 

such as limited capacity of hospital beds, it may be 

advantageous to set reduction of as one of the 

public health management objectives.

Two Rc – equivalent strategies may not have 

the same amount of impact on reduction of .

22

Motivation:

How long it takes to infect a person?  — the distribution of the transmission interval

R0 1 E T G f 1 f E T G
2Review the formula

We have seen that it is valid if

1. TE and TI are both exponential;

2. TE and TI are independent;

3. TG = TE+ TI

Lipsitch et al. (Science, 2003) called E[TG] the mean serial interval, defined 
as the time from the onset of symptoms in an index case to the onset of 
symptoms in a subsequent case infected by the index patient.  

f
E T E

E T G

E T G E T E E T I

Lipsitch et al. (2003)  postulated

(mean generation time)

Infectious period 

starts

Infectious period ends 

(removal)

Infectious TI

Index 

case

Onset of 

infection

Latent  TE

TG = TE+TI

Generation time

X

Transmission interval

Secondary case

T G T E X|X T I

T G

Def.

= from infection of an individual to the infection of a secondary case by that individual

— Wallinga and Lipstich (Proc. Roy. Soc. B; 2007)

• use empirically observed or approximated        to deduce R0T G
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How long it takes to infect a person?  — the distribution of the transmission interval

Infectious period 

starts

Infectious period ends 

(removal)

Infectious TI

Index 

case

Onset of 

infection

Latent  TE

TG = TE+TI

Generation time

X

Transmission interval

Secondary case

T G T E X|X T I

1. E TG E TE fraction of E TI

What is this fraction?

2. If TE and TI are exponential, 

independent, and next generation 

cases from Poisson process

E T G E T E E T I E T G ?

T G and T G identically distributed ?

3. Can one determine the distribution for       ? T G

postulate: is identically distributed with a r.v. defined by  p.d.f. g( )T G

E T G
0

g d

Two recent publications: i. Wallinga and Lipstich (Proc. Royal Society. B; 2007)

ii. Roberts and Heesterbeek (The Journal of Math. Biolgy; 2007)

0
e A d 1 (Euler-Lotka)Normalize the kernel of: g

A

0
A d

by consequence:  the answers to questions in 2. are “yes”.

24

How long it takes to infect a person?  — the distribution of the transmission interval

Yan, P. (on-going)

Assumptions:

1. {K(x)} Poisson process ( )

2. TI arbitrary distribution:

Laplace transform           exists 

F I x Pr T I x

I

3. X and TI are independent

E T G E T E E X 1 |X 1 T I
d

d
log I

f T G
f TE

f X |X T I
(convolution)

Infectious period 

starts

Infectious period ends 

(removal)

Infectious TI

Index 

case

Onset of 

infection

Latent  TE

TG = TE+TI

Generation time

X

Transmission interval

Secondary case

T G T E X|X T I

f I x d

dx
F I x

f X x |X T I
e x FI x

1 I

e xF I x

I

I 0
e xF I x dx

1 I

E X|X TI
1

I 0
xe xFI x dx 1

I

d

d I
d

d
log I

Pr X T I 0
1 e x f I x dx 1 I
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How long it takes to infect a person?  — the distribution of the transmission interval

Yan, P. (on-going)

f X x |X TI
e x FI x

1 I

e xF I x

I

f T G
f TE

f X |X T I

E X|X T I
d

d
log I

E T G
d

d
log I

assuming new infections follow Poisson process

Wallinga and Lipsitch,  Roberts and Heesterbeek

g
A

0
A d

FE I F E

F E I =  survival function of T G TE TI

F E =  survival function of T E

g f TG
,

g d d
d

log I

If TI is gamma distributed with mean and shape parameter : I
1 I

1 1

1

Roberts and Heesterbeek (2007)

0
g d 1

2

Yan, P. (on-going)

E T G
d

d
log I

1
1

1
R0

1

R0 R0

26

How long it takes to infect a person?  — the distribution of the transmission interval

g f TG
,

g d d
d

log I

Yan, P. (on-going)

If TI is gamma distributed with mean and shape parameter : I
1 I

1 1

1

Roberts and Heesterbeek (2007)

0
g d 1

2
E T G

d
d

log I

1
1

1
R0

1

R0 R0

Infectious period is  constantExample 1:

(var T I

2

0)

lim 1

R 0

1

R0 R 0

1

R 0

1

1 e R 0

E T G
1

R 0

1

1 eR 0

If constrained by R0 > 1 

(a necessary condition for r > 0)

1

R 0

1

1 eR 0

e 2

e 1

1

2

0
g d 1

2

1

2
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if latent period is also constant

How long it takes to infect a person?  — the distribution of the transmission interval

Example 1:

g f TG
,

g d d
d

log I

Yan, P. (on-going)

If TI is gamma distributed with mean and shape parameter : I
1 I

1 1

1

Roberts and Heesterbeek (2007)

0
g d 1

2
E T G

d
d

log I

1
1

1
R0

1

R0 R0

Infectious period is  constant

The longest possible 

distribution for

when 1

T G

R0 1

as increases

0
g d

2
g

1 , if

0, otherwise.

f T G
|X 1

e

1 e
, if

0, otherwise.

E TG
e

1 e
d

1
R0

1
1 eR 0

e 2
e 1

1
2

28

How long it takes to infect a person?  — the distribution of the transmission interval

Infectious period is exponentialExample 2:

g f TG
,

g d d
d

log I

Yan, P. (on-going)

If TI is gamma distributed with mean and shape parameter : I
1 I

1 1

1

Roberts and Heesterbeek (2007)

0
g d 1

2
E T G

d
d

log I

1
1

1
R0

1

R0 R0

1

1

R 0

1

R0 R 0 1

1

R0 1

E T G
1

R 0 1

If constrained by R0 > 1 

(a necessary condition for r > 0)

E T G
1

2

0
g d 1

2
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How long it takes to infect a person?  — the distribution of the transmission interval

Infectious period is exponentialExample 2:

g f TG
,

g d d
d

log I

Yan, P. (on-going)

If TI is gamma distributed with mean and shape parameter : I
1 I

1 1

1

Roberts and Heesterbeek (2007)

0
g d 1

2
E T G

d
d

log I

1
1

1
R0

1

R0 R0

1

if latent period is also exponential The longest possible 

distribution for

when 1

T G

R0 1

as increases

f T G
|X T I

1

1
e e

1

E TG 1

1
1 R0 2

g 1 e e

0
g d

30

One can not deduce R0 by empirically observed and = E[TI] alone. One needs 

detailed distributions for both TE and TI .

Synthesis: R0 ,            and E T G

E T G

R0 1 R 0 1
1

1 R0

R0 R 0 1 R0 1
1

1

If gamma distributed TI: R0 can be solved numerically.  

R0(             )

R0
E I

is determined by , by the distribution for TI and by the distribution of TE

E I 1

is determined by and by the distribution for TI ; not by the distribution of TE

except for its mean.  

E T G

E TG
d

d
log I

There is no general relationship between and          . E T G
E T G 1 1 1

Special case:
(exponential)

IF, big if,            can be derived from data,  one can use E T G

E TG E X|X TI 1 d

d
log I f R0; , ,

to derive R0 in the absence of knowledge of .
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R0
E 1 I

1
I
2

R0
E I

Modification of 

0. 08709numeric solution:

F
e

b
.1

, 
2

0
0

7

F
e

b
.2

1
, 

2
0

0
7

M
a

r.
1

3
, 

2
0

0
7

A
p

r.
2

, 
2

0
0
7

A
p

r.
2

2
, 
2

0
0

7

M
a

y
.1

2
, 

2
0
0

7

J
u

n
.1

, 
2
0

0
7

J
u

n
.1

, 
2
0

0
7

E i t exp 0. 08709 t

E i t exp 0. 08709 t

Initial growth:

1. 0011274. 1 2 7

R0 1. 001127 7 7. 0079

Simulation

Assumptions

1. Gamma distributed latent period TE :  mean =19 days and shape parameter 70

2. Gamma distributed pre-symptom infectious  period TI
(1):  mean µ =1.5 days and shape parameter 70

3. Gamma distributed pre-symptom infectious  period TI
(2) : mean µ =5.5 days and shape parameter 6
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Simulation

Assumptions

1. Gamma distributed latent period TE :  mean =19 days and shape parameter 70

2. Gamma distributed pre-symptom infectious  period TI
(1):  mean µ =1.5 days and shape parameter 70

3. Gamma distributed pre-symptom infectious  period TI
(2) : mean µ =5.5 days and shape parameter 6

0. 08709
Deterministic curve of SEIR model

• Use integro-differential equations 

to  calc. a deterministic curve  

(S0 =1550,  I0=1)

200 realizations

• Simulate # daily new infections 

as a non-homogenous Poisson 

process with the deterministic 

curve as its intensity function 

(200 realizations )

E i t exp 0. 08709 t

1. 0011274. 1 2 7

R0 1. 001127 7 7. 0079
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Simulation

Assumptions

1. Gamma distributed latent period TE :  mean =19 days and shape parameter 70

2. Gamma distributed pre-symptom infectious  period TI
(1):  mean µ =1.5 days and shape parameter 70

3. Gamma distributed pre-symptom infectious  period TI
(2) : mean µ =5.5 days and shape parameter 6

1. 0011274. 1 2 7

R0 1. 001127 7 7. 0079

0. 08709

• Simulate # daily new infections 

(200 realizations )

E T G
d

d
log I• Use 

E TG 19 0. 82141 19. 82141

(theoretically predicted)

21 days

20 days

20 days

E i t exp 0. 08709 t

Question: Can the difference between 

modes be a proxy for            ?E T G

34
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Deterministic curve of SEIR model

(S0 =1550,  I0=1)

Simulation

Assumptions

1. Gamma distributed latent period TE :  mean =19 days and shape parameter 70

2. Gamma distributed pre-symptom infectious  period TI
(1):  mean µ =1.5 days and shape parameter 70

3. Gamma distributed pre-symptom infectious  period TI
(2) : mean µ =5.5 days and shape parameter 6

Statistically estimated (back-calculation)

# mumps by date of infection in 

Nova Scotia, Canada,  using illness data

Reality check:

1. 0011274. 1 2 7

R0 1. 001127 7 7. 0079

1. Early departure from exp. growth

Depletion of susceptibles is faster 

than expected (e.g. intervention)

or S0 may be too large in the 

simulation model.
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Deterministic curve of SEIR model

(S0 =1550,  I0=1)

Simulation

Assumptions

1. Gamma distributed latent period TE :  mean =19 days and shape parameter 70

2. Gamma distributed pre-symptom infectious  period TI
(1):  mean µ =1.5 days and shape parameter 70

3. Gamma distributed pre-symptom infectious  period TI
(2) : mean µ =5.5 days and shape parameter 6

1. 0011274. 1 2 7

R0 1. 001127 7 7. 0079

2. More sustained outbreak than 

predicted 

The closed population model in 

simulation may be not incorrect.

Statistically estimated (back-calculation)

# mumps by date of infection in 

Nova Scotia, Canada,  using illness data

Reality check:
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Deterministic curve of SEIR model

(S0 =1550,  I0=1)

Simulation

Assumptions

1. Gamma distributed latent period TE :  mean =19 days and shape parameter 70

2. Gamma distributed pre-symptom infectious  period TI
(1):  mean µ =1.5 days and shape parameter 70

3. Gamma distributed pre-symptom infectious  period TI
(2) : mean µ =5.5 days and shape parameter 6

1. 0011274. 1 2 7

R0 1. 001127 7 7. 0079

21 days

20 days

20 days

3. Shorter “serial intervals”

than what model predicted 

May suggest that the assumed 

mean latent period = 19 days 

a bit too long for mumps. 

Statistically estimated (back-calculation)

# mumps by date of infection in 

Nova Scotia, Canada,  using illness data

Reality check:
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About the final size

There is very often (not always) a monotone relationship between R0 and the final size.

2 1

1 R 0
2

2 var N R 0 1

1 R 0
2

N next generation cases
Index 

case E[N] = R0 var[N] = ?

S 0 I0 E S

n

asym p .
N , 2

S0

E S t E I t

E S

The final size
S0 I0 E S

E S t

I 0

S 0

limn
S 0 I0 E S

n is the root of the final size equation1 exp R0

38

1 exp R0
I 0

S 0

Early appearance in Kermack and Mckendrick (1927). 

• Homogeneous mixing (all susceptibles and infectives are of the same kind),  the final size is 

invariant if, 

1. existing a latent period & arbitrarily distributed infectious period;  

2. any # infectious stages and/or a stage during which infectives are isolated.  

• The final size equations are valid under certain situations with heterogeneous mixing.   

1. Ma and Earn (2006)  (integro-differential equations) showed that it holds in general settings

The final size equation

3. Ludwig (1975);  von Bahr and Martin-Löf (1980);   Scalia-Tomba (1985);   Martin-Löf

(1986);  Lefèvre and Picard (1995);  etc.

S 0 I0 S

n

asym p .
N , 2

is invariant.
0

E I t dt
log 1

2. They are valid, as long as the conditions that the conditions that the force of infection at 

time t can be expressed by I(t)],
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2 1

2 2

2 4

From generality of final size equations

0
E I t dt

log 1

exp 0. 15327 t

exp 1. 8939 t

If no latent period,

gamma distributed 

infectious period 

with mean = 2, 

shape parameter 6.

With gamma distributed latent 

period:  mean = 8,  shape = 70 

R0 4

The areas covered by the following curves are identical.

1 exp R0
I 0

S 0

40

A modification of the final size equations including intervention

To control the outbreak,                                    Rc 1 c R0 R0

1 exp R0

Without intervention: With intervention:

1 exp 1 c R0

Some intervention may be quantifiable (e.g. amount of antiviral doses) with a demand.

To achieve reduction of R0 by a factor of 0 < c < 1, one needs to pay a price P(c)

1 exp 1 c R0 cP c , 0

(a joint work with Dr. Fan Zhang at PHAC)

• assuming that         is proportional to the final size (e.g. antiviral drugs are

only applied to those who are infected)

P c

implying that the controlled final size to be determined by input P c

• This may be conducted under constraints P c P limit

use final size equations to set an Operations Research agenda.



21

41
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If no intervention, 25% 

population expected ill If effective use up all the limited resource,  at the best one reduces the 

% of illness from 25% to 18%,  using the modified final size eqn.

Different ways of resource allocation are size-equivalent (18%).

Search for the optimum policy under constraint:

• Reduce the final size (consequently, hospitalization, death, etc.) as much as possible 

min : w 0 overall mortality w 1 hospitalization w 2 absenteeism

• Constraints:  limited resources such as fixed amount of antiviral drugs at disposal.

Use final size equations to set an Operations Research agenda.

1. Delay the first wave may buy 

time for a vaccine to arrive

2. Reduce the peak level may 

make it easier to health care 

to manage




