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Abstract: This talk addresses two distinct phases of a typical infectious outbreak: the 
initial phase when the depletion of the susceptible population is ignorable;  and the 
final phase when a proportion of the susceptibles escapes from the infection (final 
size).  Based on personal experience working in a public health agency,  examples 
from some epidemiology studies will be given to demonstrate how mathematical 
theories are applied in public health. 
 
For the initial phase,  there are two approximations to describe the spread of an 
infectious disease: (i) the branching processes;  (ii) the exponential growth curve.  
The former is based on generation concept characterized by a mean parameter: the 
reproduction number (Ro);  whereas the latter is based on trend over calendar time 
characterized by an exponential growth rate as its parameter.  It is common to use  the 
empirically-observed early exponential growth rate to estimate Ro  for different 
infections in different settings using formulae derived when both the latent and 
infectious periods follow exponential distributions. There has been numerous recent 
literature involving mathematical models related to SARS, pandemic influenza and 
other infectious diseases in some very high impact journals (e.g.  Nature,  Science,  
etc. ) by just doing this.  This talk will first show that all these formulae are special 
cases when the latent and infectious periods are gamma-distributed where a closed-
form solution for Ro was established by Anderson, D. and Watson, R. (Biometrika, 
1980).  This talk will use continuous time branching processes to establish a more 
general result that takes that published in Anderson, D. and Watson, R. (1980) as its 
special case. The implication of this general result has two folds:  (1)  in general, it is 
*not* possible to deduce the reproductive number from the exponential growth rate 
and the mean latent and infectious periods alone;  one needs to know the distributions 
of the latent and infectious periods, as well as the (perhaps time-dependent) disease 
transmission rate;  (2) the following three aspects:  (i) the intensity of infectious 
contacts as a counting process; (ii) the distribution of the latent period during which 
the infected individual does not transmit; (iii) the distribution of the infectious period, 
independently shape the relationship between the growth rate and the reproduction 
number. 
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For the final phase, this talk will address the final size along the line of a central limit 
theorem by von Bahr and Martin-Lof (1980) and its generalities. Unlike the 
exponential growth rate during the initial phase, there is a general monotone 
relationship between asymptotic mean final size and Ro.  Under some fairly general 
conditions, this relationship is invariant if there exists a latent period,  an arbitrarily 
distributed infectious period and with any number of infectious stages and/or a stage 
during which infectives are isolated.  This generality allows one to modify and use the 
final size equation to formulate Operations Research framework where the objective 
is to minimize a function of the final size (e.g. hospitality,  absenteeism,  deaths, etc.) 
with constraints such as limited resources. 
 
(If time allows, this talk may also address related topics on the "degree distributions" 
when the transmission of diseases is viewed as a realization of random graphs, and 
show how the properties of the infectious period distribution shapes these degree 
distributions.) 
 
Acknowledgement:  This talk is built upon my studies of early work by Professors 
Peter Jagers and Andrew Barbour on branching processes and on modelling the 
transmission of diseases using stochastic processes. 
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